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Abstract— MIMO-identification and robust MIMO-

controller design are cumbersome. As a result, MIMO-systems r y
are often controlled by decentralized control systems, which —— G(s)_ :>
consist of independent SISO-controllers based on the diagonal

elements of the system. The neglected off-diagonal elements

limit however the performance. This paper presents a design T‘f'

approach that combines decentralized control design with an

input/output decoupling transformation yielding higher closed

loop performance. This approach consists of a procedure

to find the transformations of the inputs and the outputs

such that the relation between the transformed inputs and Fig. 1. Proposed control scheme: decoupling transformation of inputs

outputs is as diagonal as possible. Then, decentralized control nd outputs, ang independent SISO-controllers.

techniques are used to design independent SISO-controllers

for the optimal decoupled system, which guarantee robust This results in the control scheme of fig. 1. Robust stability

e roraion I ccomie s mat o 3. socomnaized O1 e tolal contolr s quaranteed wih asynthesis

controller, but the performance approaches that of a full like .treatment of the uncertamty of the me_asur(_e(_:l FRF-

MIMO-controller. The optimal decoupling quality, and  Matrix (due to measurement noise and nonlinearities) and

accordingly, the achievable closed loop performance depends the known model-error when the imperfectly decoupled

on the symmetry in the system. Validation results on a system is approximated by a diagonal system.

automotive durability test rig simulation shows that the The advantage with regard to decentralized control is

controller designed with decoupling yields better performance LS . . .

than a decentralized controller. that the main interactions in the system are taken into

account, yielding better performance. The main advantage

l. INTRODUCTION with regard to full MIMO-control is the simplicity of the

The design of a multiple-input-multiple-output (MIMO) design, including the fact that no MIMO-identification is
model-based feedback controller suffers from two majarequired.
problems. The first one is the identification step. The This paper is organized as follows: section Il discusses
estimation of an accurate model, which matches well witthe design of a decentralized controller for the decoupled
the measured response, is often very cumbersome. Findiggstem which guarantees robust performance. With respect
the optimal parametric MIMO-model, is still an importantto this robust performance criterium, the decoupling pro-
research topic ([1], [2]). cedure, presented in section Ill, is an optimization that

The second problem is the controller design. Most robushinimizes the interaction in the decoupled system. This
control techniques are well-suited for single-input-singleprocedure is validated on a non-linear simulation model
output (SISO) problems, but are, in practice, difficult to tun@f an axle test rig in section 1V. Section V discusses the
for MIMO-systems. Therefore, a decentralized controlletonclusions.
is often used. A decentralized controller consist of inde-
pendently designed SISO-controllers based on the diagonal || NOMINAL STABILITY AND ROBUST
elements of the system. The neglected off-diagonal elements PERFORMANCE
in the MIMO-system limit the performance.

The control design procedure proposed in this paper The MIMO-controller is designed as a decentralized
tackles both problems. First an optimal frequency indecontroller between the transformed inputs and outputs.
pendent transformation of the inputs and outputs is calcd-he decentralized controller has to meet two criteria [3]:
lated, such that the relation between the transformed inputeminal stability (section 11-B) and robust performance
and transformed outputs is as diagonal as possible. THisection II-C). Nominal stability is achieved if the decen-
calculation is based on the measured frequency resportsalized controller, designed for the diagonal elements of the
function matrix (FRF-matrix), so no MIMO-identification decoupled system, is stable for the complete system. Robust
is required. Secondly, a decentralized controller is designgetrformance is achieved if the performance requirements
between the transformed inputs and transformed outputse met for all plants within the uncertainty set. This section
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summarizes the results of [3], and translates them to be usedlhe easiest way to deal with this is to treat the differences

in the decoupling control scheme. betweenGq and D4 as multiplicative output uncertainty:
The nominal stability and robust performance criteria - ~ - -,
result in bounds on the sensitivity and complementary Ex(f) = (Gd(f) _Dd(f)) Dy ®)

sensitivity of all independent SISO-control loops in thecompletely analogue to robust stability in standatd.-
decentralized controller design, which can be used straighjasign, the decoupling controller is nominally stable if:
forwardly in an H., loop shaping design of the SISO-

controllers. E(’h(f)) < (HET(f)”oo>_1- (6)

A. Nomenclature This is condition is too conservative becauBa (f)

(”;(f) is the measured MIMO-FRFE-matrix at the fre-iS not an uncertainty but a known error. [4] uses this
quency f, Ty and Ty are the constant transformationknowledge to define a less conservative bound on the
matrices of the outputsyf and the inputs«) and G4(f) Ccomplementary sensitivity:

is the transformed measured FRF: - (Td(f)) < NE;(ET(f))' )

~ _ —1 —1
Ga(f) =Ty G(NTy - @ The p-norm is calculated with respect to the structure of

Dq(f) is defined agliag{Ga.,, (f)} (diag{...} denotes the the controller, which is diagonal. .
diagonal matrix consisting of the elements between braces).Although (7) is a condition for the full MIMO-design,
When the decoupling is perfediq(f) is equal toDg(f). It can_b_e used as an upper bound on the complementary
In reality decoupling is seldom perfect, and in that cas&ensitivity for all SISO-controller designs, due to (3). In
Dq(f) is an approximation ofs4(f). Finally, Dg(s) is a this way, general nominal MIMO-stability condl_tlpns are
diagonal MIMO-model consisting op independent para- translated to bounds of_the complement_ary sensmyny of all
metric SISO-modelsDg(s) = diag {dg, (s), ..., da,(s)}. SISO-control loops, which can be used ing,-design of

The controller design discussed in this section is thihe SISO-controllers.
design of a decentralized controller fa&q(f), which ¢ Robust performance
consists ofp independent SISO-controller designs based on
Dd(s). B

The uncertainty on the measured FR¥f) is repre-
sented as multiplicative output uncertair®y,(f), which
means that the true plant is unknown but is in the s

(I+Wo(f)Ao(f)) G(f) with [Aollse < 1. Ca(s) = Woa = Ty' W, Ty. ®)
diag{ki(s),...,ky(s)} is the diagonal controller, designed Robust performance (RP) is achieved if the controller
for the systemDq(s). The complete controller which will satisfies the performance specification for all plants within
be applied to the syste(/) is O(s) = Ty Ca(s)Ty - the set(T+ Woa(f)Ao(f)) Ga(f) With [Aofc < 1.

The sensitivity and complementary sensitivity based 0F—lig. 2 shows the scheme used to design such a controller.
Da(f) and the independent SISO-controllers are dGﬁneﬁjhe performance weighV,, defines the performance cri-

as: terium: [W,, S|l < 1. This scheme can be transformed in
(2) the generalu-analysis structure of fig. 3A, defines the
structure of the uncertainty, is a full matrix stemming

BecauseDy and Cq are diagonal,Sq and T4 will be  from the H., performance specification.
diagonal, which implies that; The RP-condition as a function &I is:

o (éd) = max (S'd,“-) = max ((1 + Dd,iik’i)_l) 3)

i=1,..,p i=1,..,p

The uncertainty structure used in this paper is the
multiplicative output uncertaintyWo(f) of the measured
FRF G(f). The equivalent uncertainty 064 (f) follows
esttraightforwardly from (1):

Sd = (I+];)dcd)_1~
Ty = (I+DdCd)‘1DdCd.

paM) <1, vf C)

with p calculated with respect to the structure of
The same holds for the complementary sensitivity. ApplyindA = diag{A., Ap}. Applying u-synthesis to design
the total controller to the system will result in the following RP-controllers would again require thBtr is treated as

sensitivity and complementary sensitivity: uncertainty, yielding a too conservative controller.
- - . S [3] describes a method to deal with this problem. In
S = (I+ gdcdll - = (I+ (}C),l - (4) order to apply that method the interconnection maivik
T = I+GgqCq) 'GaCyq = I+GC)'GC. is written as a lower linear fractional transformationSyf
B. Nominal stability and Tq:
Nominal stability.is obtaingd iS is stqple.ﬁtraightfor— M = N +NETe (1 - N;f;Td)f N
ward controller design result in the stability 8f, but due S o = o =\l g (10)
to imperfect decoupling nominal stability is not guaranteed. M = Nj§ + N7y53Sq (I — N33 Sd) Noi.
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by every SISO-controller. Both boundaries on the SISO-

sensitivity and SISO-complementary sensitivity, define in

fact an upper and lower bound on each diagonal element of
the open loop transfer function:

|Sq.ii| < és, = |Daiiki| > ‘ L ‘ -1

ﬂ

- - csq
(Ta.il <éry = [Daishi| < —— if [or,|>1. (19)
- —1
Fig. 2. Multiplicative output uncertainty, for robust controller design with Ta
decoupling. The plot of both constraints is a simple visual check to see
_ _ if it is possible to meet the constraints and it gives an idea
‘— Aq ‘—‘ in which frequency band each RP-bound will be active.
A
L‘ "J Ill. DECOUPLING PROCEDURE
u, Y, .
M A. Introduction
r z ) :
Many decoupling procedures have been developed in

_ o the past. The easiest-to-use class of decoupling methods is

Fig. 3. General structure for controller design with robust performan(:e[)ased on matrix-decompositions MacFarlane [5] introduces
. T, Sa . _in 1970 the so-calledommutative controllerbased on an

The matricesN;;* and Nj;* are independent oCq. A eigenvalue decomposition. In 1982 Hung [6] launched a

cording to [3], the RP-criterium (9) can now be written 3% ontroller based on the singular value decomposition. The

follows: decomposition as proposed in (1), puts no constraints on
7(Sa) < és, or &(Ta)<ér, Y, (11) the transformation matrice§y and Ty. If eigenvalue or
o ) ) ) singular value decompositions are used, some constraints
with ¢s, the solution of the following equations: are inherent in the used method: in the eigenvalue decom-
NS4 NS4 position the left and right transformation matrices are the
. 11 12 =1 12 . . . .
HA - Sa  ~ Sa . (12) inverse of each other, in the singular value decomposition
CsqNz1  CsqN33

the left and right transformation matrices are unitary matri-

The structure A used in this y-norm calculation is Ces.
diag{A, Cq4}. Calculation oféy, is completely analogue. A general decoupling transformation is described in the
Remark that (11) states that at each frequency only one @teory of theDyadic Transfer function Matrice¢DTM).
both conditions must be satisfied. A p x p transfer function matrixG(s) is called dyadic if
The obtained RP-criterium is a sufficient but not necthere exist constantx p matricesTy andTy and rational
essary condition for robust performance. It is however th#ansfer functionsy (s), ..., g,(s) such that:
tightest bound possible [3]. This means that there can exist . .
decentralized controllers which violate the bounds and still G(s) = Tydiag{gi(s)..-. 9p(s)} Tu- (16)
have robust performance, but at the same time there willwens [7] showed that iiG(s) is dyadic, the columns
exist controllers with the same values #®©(Sq4) and5(Tq) of Ty can be calculated as the eigenvectors of
which do not yield robust performance. G(c2)G~1(c;) and the columns oI’y as the eigenvectors
In the case of multiplicative output uncertainty, the interof G=(c;)G(c2) with ¢; andc, two arbitrary constants. If
connection matriXM can be calculated from fig. 2 and thea system is dyadic, the calculated transformation matrices
RP-boundsis, andér, can be calculated as the solutionare real and independent of the chosen constants. If the

of: transformation found with this procedure is not real, the
CWou Wog Wog system is not dyadic. In that case, the transformation
b 0 0 “w, | =1, 13) matrices do not decouple the system perfectly.

It is obvious that only few systems are dyadic. Perfect

is,DaG;t —ig,DaG;t g, E . ; . ) .
“Satidq “Satidxq €84S symmetry is required and so, in practice, Owens’ method is

with Bg = (éd _ f)d> &1 and: hardly usable. The method to calculate the transformation
d matrices in this paper is an optimization of the elements of

0 0 Wodédﬁgl Ty and T+ . Next section discusses the choice of the cost

pa |l —W, W, —Wpédf)gl —1.  (14) function. Section III-C describes the calculation of an initial

- - im requir rt th imization pr re.
—ep T or,l e, Br estimate, required to start the optimization procedure

The last step in the controller design is to find a conB: Optimization procedure
troller which meets at every frequency at least one of the With p the number of inputs and output¥y and Ty
conditions of (11). Due to (3), the boundaries must be médtave2p? elements. Multiplying a row ofl'y; or a column
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of Ty with any nonzero number, does not influence the w
decoupling quality, yieldin®p(p — 1) parameters left to
optimize. Due to these many optimization parameters, the
cost function should be easy to calculate.

The goal of the decoupling procedure is to simplify
the controller design afterwards. If the decoupling is not
accurate, the RP-bounds will be very difficult to meet. The I I
best optimization criterium would be an optimization of the
RP-boundsés, (13) andér, (14). This is however not
realistic because the calculation of these bounds takes a
few minutes.

The RP-bounds are mainly determined by the differences V. SIMULATION RESULTS
betweenGq(f) andDg(f). That is why the relative differ- ~ Fig. 4 is a schematic representation of a durability test
enceEr betweenGg and Dy is used in the optimization rig for one axle of a car. The points of the axle and the

procedure as follows (which is also an optimization of théuspensions which are normally connected to the car body
nominal stability criterium (6)): are fixed on this test rig. The wheels are mounted on two

position-controlled hydraulic actuators. The inputs of the

min {max {5(];31,(](7 TU,TY))Wf(f)} } (17) System are the signals sent to these actuators, the outputs
Tu, Ty | f are the accelerations measured on each wheel. To make the

Fig. 4. Axle test rig.

vibration tests representative for the further life-time of the

Wy (f) is a frequency dependent weighting function. Ac- I ; ianals. f h outout d duri
curate decoupling is most important around the cross-ovBf € fEIerence signais, for each output, are measured auring
test drive on a test track. These reference signals have to

frequency. In order to avoid that, in that frequency rang e reproduced on the test rig as accurately as possible
S would peak a lot and differ too much fro®y, W . . .
b S, Wy(f) The calculation of the control signals for the hydraulic

can be made larger in that frequency band. . .
actuators, such that the measured signals on the test rig
match the reference signals, is a MIMO-tracking problem.
o . ~_Current industry practice to solve this problem, is to use an
The optimization procedure of the previous secfuo_n I®ff-line iterative process [10]. [10] shows that extending the
non-convex, and a lot of parameters must be optimizedy, rent process with a high-performance MIMO-controller,
S0 an accurate initial estimate is necessary. allows to reduce the number of iterations significantly.
Owens’ method is used to calculate this initial estimate. T system in this example is a numerical nonlinear
Because no MIMO-model is available; and c, must be  gimylation model of the test rig of fig. 4. Nonlinear stiffness
chosen as two frequencie§ and f, where the FlRF IS and damping are used to model the nonlinearities in the
measured. The transformation matricBy_and Ty, can  test rig. The axle test rig is not perfectly symmetric due to
then be calculated as the eigenvectorsGif2)G™"(f1)  an asymmetric mass distribution, differences in suspension
and G~ !(f1)G(f2) respectively, for each pair of available characteristics and different PID-settings for the left and
frequenciesf; and f; [8]. right actuator. A perfect symmetrical axle test rig would be
One problem encountered when applying Owens’ progyadic.
cedure to a system which is not dyadic, is the fact that First, the performance of decentralized control, without
the calculated transformation matrices are complex, angkcoupling, is analyzed. The performance requirement used
therefore cannot be used to transform the time-domajg this section is shown as the dotted line in figég, (full
signals as in the control scheme of fig. 1. The ALIGN1ine) and ér, (dashed line) are the resulting RP-bounds
method [5] is used to find the real matrices which matclyhich have to be met by the independent SISO-designs.
best with the complex transformation matrices. Remark that at each frequency, only one bound must be met
A second problem is caused by the fact that the trang11). Transforming these RP-bounds to an upper and lower
formation matrices are not unique anymore if the systeljound on the open loop transfer function (15) shows that
is not dyadic: the decoupling quality strongly depends Othe RP-bounds are impossible to meet (fig. 6). A proper
the choice off; and f,. To obtain the optimal choice ofi  open loop transfer function has to meg{, at low and
and f, the following optimization procedure is used (withz. at high frequencies. In an intermediate frequency range,
F the set of all frequencies where the FRF is measured)however, neithefs, nor ér, can be met.
_ Secondly the system is decoupled with the procedure
{max [5'(ET(fa f17f2)Wf(f)]}- (18)  of section Ill. A first optimization is performed with a
d simple first order weighting functios; used in (17).
This optimization is of course completely analogue to (17)Fig. 7 shows|W; 1| (full line) together with the obtained
but here the global optimum is easy to find becafisand decoupling quality||Er 1|l (dashed line). Around the
f2 has to be chosen out of the finite sEt cross-over frequencyy( 15 Hz) | Et. 1 ||« rises to 0.5. This

4604

C. Initial estimate

min
f1,f2€F, fi# f2



-
N
T

“““““ W I,

e O
cd
— s

d

2.5r

RP-bounds
[=]
® =
- P
R
e

0.5 "7

Frequency [Hz] Frequency [Hz]
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the same for the second decoupling optimization.
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Fig. 6. Boundaries on open loop transfer function due to RP-bounds:
upper bound (full line), lower bound (dashed line).

_ 5 Fig. 8. RP-bounds with decoupling control: performance specification
large difference betwee@4 andDy yields an upper bound |53 lso (thin full line), RP-boundss,, 1 (full line) and éx, 1 (dashed
on the sensitivity which is hard to meet. These RP-boundge) for first decoupling results, RP-bounds,, > (dash-dotted line) and

- - . - ¢t,,2 (dotted line) for second decoupling results.
(Cs,,1 andér, 1) are plotted in fig. 8¢s, 1 equals 1 around ’
40Hz, which means that SISO-controllers with a bandwidth

of 40 Hz are required to obtain a robust MIMO-bandwidth . . S
of 15 Hz and will have robust performance. After identification of

éhe diagonal elements dq, H., mixed sensitivity loop
shaping is used to design the SISO-controllers. Simple first
order weighting function are fitted ofy, 2 (< 20Hz2) and
érq,2 (> 20H?Z). In fig. 10 the sensitivitySq (dashed line)
nd complementary sensitivitfq (dash-dotted line) are
otted together with the RP-bounds. At some frequencies
he bounds are slightly violated. The amplitude of the open

To improve the decoupling quality around cross-over
second weighting functiori?;» is used (dotted line in
fig. 7). Wy is equal toWW; 1, except between 15 and 40
Hz whereW; » equals 2. The obtained decoupling qualit
(dash-dotted line) is indeed improved around cross-ov
but is worse at low frequencies. The RP-bounds are t

dash-dotted and dotted line in fig. 8. As expected, the RI for f - £ both I i plotted in fi
bound s, » around cross-over is less severe thay) 1. oop transfer functions of both controllers is plotted in fig.

At low frequencies however, the performance of the SISOQ (dotted and dash-dotted line which lie aimost on top of

controllers will have to be somewhat better to meet thcgaCh other).

RP-bounds. To check the robust performance of the total controller, a
The upper bound and lower bound on the open loop-analysis of the total control scheme (fig. 2) is performed.

transfer function (15) plotted in fig. 9 shows that a controllefThe p-norm (fig. 11) is less than one at all frequencies

which satisfiesés, 2 up to 20 Hz, andér, 2 at higher which guarantees robust performance. Nominal stability can

frequencies meets at every frequency one of both conditiobg easily checked with (7).
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second decoupling results: upper bound (full line), lower bound (dash

line), together with the designed open loop transfer functidhg,:nkl
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Fig. 10. Designed4 (dashed line) and'q (dash-dotted line) together
with the RP-bound8s, 2 (full line) andér, 2 (dotted line) for the second

decoupling results.
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Fig. 11. Final-validationyu-analysis of complete closed-loop system.

V. CONCLUSION

This paper describes a control strategy applicable to
square MIMO-systems with a certain degree of symme-
try. First the decoupling step is an optimization of the
transformation of inputs and outputs, such that the relation
between the transformed inputs and outputs is as diagonal
as possible. In the controller design step, decentralized
control is used to control the nearly decoupled system.
Bounds for sensitivities and complementary sensitivities of
the different SISO-controllers are derived which guarantee
robust performance of the total controller. A method is
proposed to obtain useful weighting functions (for SISO-
H~ design) from these RP-bounds.

Thanks to the decoupling transformation, the main inter-
actions are taken into account in the control design, yielding

é% better performance of the total MIMO-controller than the

performance of a decentralized controller.
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