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Abstract— For a special class of systems, it is shown that the
existence of a Common Quadratic Lyapunov Function (CQLF)
is necessary and sufficient for the stability of an associated
switched system under arbitrary switching. Furthermore, it is
shown that the existence of a CQLF for N(N > 2) subsystems
is equivalent to the existence of a CQLF for every pair of
subsystems. An algorithm is proposed to compute a CQLF
for the subsystems, when it exists, using the left and right
eigenvectors of a critical matrix obtained from a matrix pencil.

Index Terms— switched systems, stability, common
quadratic Lyapunov function, M–matrix

I. PROBLEM STATEMENT

Consider the switched system

Σs : ẋ(t) = A(t)x(t), A(t) ∈ A = {A1, A2, . . . , AN} (1)

where x(t) ∈ <2 is the state, andAi ∈ <2×2, i =
1, 2, . . . , N are the system matrices for the subsystems

Σi : ẋ(t) = Aix(t) , i = 1, 2, . . . , N. (2)

Throughout the paper, the negative of each matrixAi (i.e.,
−Ai) is assumed be anM–matrix1. Therefore, each matrix
A = [aij ] in the setA satisfiesaii < 0, i = 1, 2 and
aij ≥ 0, and is Hurwitz. The objective of this paper is to
derive necessary and sufficient conditions for the stability of
the switched system (1) under arbitrary switching between
the system matricesAi, i = 1, 2, . . . , N .

Clearly, if a common quadratic Lyapunov function
(CQLF) exists for the subsystemsΣi, i = 1, 2, . . . , N , then
the switched system (1) is stable under arbitrary switching.
The converse of this statement is not true in general [3],
[4]. However, in this paper, we prove that the converse is
indeed true for a specific class of systems.

The following notation will be used in sequel. LetT =
[tij ] ∈ <n×m. T is said to be a non–negative matrix, and
denoted asT º 0 if tij ≥ 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ m.
Similarly, for two matricesT1, T2 ∈ <n×m, we writeT1 º
T2 if T1 − T2 º 0. For Q ∈ <n×n, Q > 0 denotes that Q
is positive definite.

II. M AIN RESULTS

We first consider the two subsystem case.2

Proposition1: For the systems in (1) and (2) withN =
2, the following statements are equivalent.

The authors are with the Department of Electrical Engineering-Systems,
University of Southern California, Los Angeles, CA, 90089-2565, USA.
E-mail: {ayanendp, akar, msafonov, ubli}@usc.edu

This research was supported in part by NSF grant ANI-0137091 and
AFOSR grant F49620-01-1-0302.
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(i) The switched systemΣs is stable under arbitrary
switching.

(ii) The matrix pencilαA1 + (1 − α)A2 is Hurwitz for
all α ∈ [0, 1].

(iii) A CQLF exists for the subsystemsΣ1 andΣ2.
Remark1: (i) In general, the existence of a CQLF is

not necessary for the stability of a switched system under
arbitrary switching [3], [4]. However, for the special class
of systems under consideration, Proposition 1 states that
stability of the switched system in (1) is equivalent to the
existence of a CQLF for the subsystems in (2).

(ii) The stability properties of the switched system in (1)
can be determined by checking the stability of the matrix
pencil, αA1 + (1 − α)A2, α ∈ [0, 1], which can further
be reduced to checking whetherA1 is Hurwitz and whether
the matrix productA−1

1 A2 has any negative eigenvalues [5].
Furthermore, the critical value ofα for which αA1 + (1−
α)A2 has the largest real eigenvalue can be found easily [4].

Lemma1: If the diagonal entries of the matrices for the
systems in (1) and (2) withN = 2 are equal to−1, then
the following statements are equivalent.

(i) The switched systemΣs is stable under arbitrary
switching.

(ii) The matrix pencilαA1 + (1 − α)A2 is Hurwitz for
all α ∈ [0, 1].

(iii) A diagonalCQLF exists for subsystemsΣ1 andΣ2.
Remark2: This type of system, whose system matrices

have −1 on the diagonals, are widely encountered in
problems of power control for wireless networks [6], [7].

The results of Lemma 1 can be extended as follows.
Theorem1: If the diagonal entries of the matrices for

the systems in (1) and (2) withN > 2 are equal to−1,
then the following statements are equivalent.

(i) The switched systemΣs is stable under arbitrary
switching.

(ii) All matrices in the convex hull
∑N

i=1 αiAi are Hur-
witz for αi ≥ 0, i = 1, 2, . . . , N , and

∑N
j=1 αj = 1.

(iii) The matrix pencilsαAi + (1−α)Aj are Hurwitz for
all α ∈ [0, 1], and alli, j = 1, 2, . . . , N , i 6= j.

(iv) A diagonalCQLF exists for every pair of subsystems
Σi andΣj , i, j = 1, 2, . . . , N , i 6= j.

(v) A diagonal CQLF exists for the subsystemsΣi,
i = 1, 2, . . . , N and it can be computed using the
following algorithm.

Algorithm 1: (a) Among all pairs of the matricesAi and
Aj , i, j = 1, 2, . . . , N , i < j, determine (using Lemma 1)
the matrixA = αAi +(1−α)Aj which has the largest real
eigenvalue for someα ∈ [0, 1].



(b) Solve forv = [v1, v2]T from Av = λv.
(c) Compute the diagonal common Lyapunov matrixD as
D = diag[v2/v1, v1/v2]. ¤

Remark3: In general, forN > 2, the existence of
a CQLF for every pair of subsystems is necessary but
not sufficient for the existence of a CQLF for all of the
subsystems [4], [8]. However, the above theorem states
that this condition is also sufficient for the special class
of systems under consideration.

APPENDIX

A. Proof of Proposition 1

(i) ⇒ (ii): Suppose that the matrix pencilαA1+(1−α)A2

is unstable for someα = αc ∈ [0, 1]. Then Aeq =
αcA1+(1−αc)A2 is unstable which means that alternating
switching between systemsΣ1 and Σ2 utilizing Σ1 for
αcT units of time andΣ2 for (1 − αc)T units of time,
with sufficiently small time intervalT leads to an unstable
switched system.

(ii)⇒(iii): Assume that the matrix pencilαA1+(1−α)A2

is Hurwitz for all α ∈ [0, 1]. It can be shown thatαA1 +
(1 − α)A−1

2 is also Hurwitz for allα ∈ [0, 1]. Hence, by
the result in [8], a CQLF exists forΣ1 andΣ2.

(iii) ⇒ (i): Trivial. ¤

B. Proof of Lemma 1

The assertions (i)⇒ (ii) and (iii) ⇒ (i) follow from
Proposition 1. In order to prove (ii)⇒ (iii), suppose that the
matrix pencil achieves its largest real eigenvalueλ < 0 for
α = αc ∈ [0, 1] andA = αcA1 +(1−αc)A2. Let Av = λv
andAT w = λw. Since−A is anM–matrix, it can be shown
that v, w Â 0 and w = [v2, v1]T wherev = [v1, v2]T [1].
Define a diagonal matrixD = diag[w1/v1, w2/v2]. From
AT w = λw ≺ 0 and Av = λv ≺ 0, it follows that
(AT D + DA)v ≺ 0. Hence,−(AT D + DA) is an M–
matrix [1] and since it is also symmetric,(AT D+DA) < 0,
and D is a Lyapunov solution forA. We now proceed to
show that it is also a Lyapunov solution forA1 andA2. We
consider two cases: (i)αc ∈ {0, 1} and (ii) αc ∈ (0, 1).

Case (i): Without loss of generality, assumeαc = 1.

Denote the matrices asAi =
[ −1 ai

bi −1

]
, i = 1, 2. The

largest eigenvalue ofAi is λi = −1 +
√

aibi. As αc = 1,
λ1 ≥ λ2, hencea1b1 ≥ a2b2. This may happen when (a)
A1 º A2 (i.e. a1 ≥ a2, b1 ≥ b2), (b) Otherwise, i.e. when
either (a1 < a2, b1 > b2) or (a1 > a2, b1 < b2).

The first subcase (a), (A1 º A2) is trivial; as any diagonal
Lyapunov matrix forA1 would be a Lyapunov matrix for
A2. Consider the 2nd subcase (b). Here,(a1−a2)(b1−b2) <
0. The largest eigenvalue of the matrix pencil, when given
as a function ofα, achieves its maximum forαmax = p/q
wherep = a1b2 + a2b1− 2a2b2 andq = −2(a1− a2)(b1−
b2). As α ∈ [0, 1], so αc = 1 when αmax ≥ 1. Hence,
αc = 1, if p ≥ q > 0, i.e., we have

a1b2 + a2b1 ≤ 2a1b1 and 0 ≤ a2b2 ≤ a1b1 < 1. (3)

The eigenvectors ofA1 andAT
1 corresponding toλ1 can

be computed asv = [ 1√
b1

, 1√
a1

]T and w = [ 1√
a1

, 1√
b1

]T .
Define D = diag[w1/v1, w2/v2]. As before, D is a Lya-
punov matrix forA1. Using (3),(AT

2 D + DA2)v ≺ 0 and
hence, D is a Lyapunov matrix forA2 as well.

Case (ii): αc ∈ (0, 1). Let A = αcA1 + (1− αc)A2, and
consider the matrix pencilB = βA+(1−β)A1, β ∈ [0, 1]
which achieves its largest real eigenvalue forβ = 1. Hence,
this case reduces to case (i) discussed above, and a diagonal
common Lyapunov matrix,D, can be calculated forA and
A1 using the eigenvectors ofA. Similar arguments hold for
the matrices,A andA2. Thus,D is a Lyapunov matrix for
both A1 andA2. ¤
C. Proof of Theorem 1

The assertions (i)⇒ (ii), (ii) ⇒ (iii) and (v) ⇒ (i) are
straightforward. The claim (iii)⇒ (iv) follows from the
equivalence of the items (ii) and (iii) in Lemma 1. In order
to prove (iv)⇒ (v), we proceed as follows. Let every pair
of subsystemsΣi andΣj , i, j = 1, 2, . . . , N , i 6= j, have a
diagonal CQLF. The subsystemΣi has a set of normalized
diagonal Lyapunov matricesDi =diag[1, di], wheredi can
be seen to lie in a convex set,di ∈ (d−i , d+

i ), d−i ≥ 0,
d+

i > 0 [8], [4]. Similarly for Σj , we haveDj =diag[1, dj ],
dj ∈ (d−j , d+

j ), d−j ≥ 0, d+
j > 0. As Σi and Σj have a

diagonal CQLF, the set(d−i , d+
i )∩ (d−j , d+

j ) is non–empty.
Since this is true for every pair of subsystems, we have⋂N

i=1(d
−
i , d+

i ) 6= ∅ which establishes that there exists a
diagonal CQLF,xT Dx, for all of the subsystems. Note that
the set of common Lyapunov functions can be computed
by intersecting the intervals(d−i , d+

i ) whose limits can be
determined by solving a second order algebraic equation
for each matrixAi. An alternative solution is Algorithm 1
which follows from the proof of Lemma 1. (QED)¤
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