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Abstract— For a special class of systems, it is shown thatthe (i) The switched systen®, is stable under arbitrary
existence of a Common Quadratic Lyapunov Function (CQLF) switching.

is necessary and sufficient for the stability of an associated iy The matrix pencilaA 1 — o)A is Hurwitz for
switched system under arbitrary switching. Furthermore, it is (i) allea ea[tO 1]pe Cilady + ( )4z is Hurwitz fo

shown that the existence of a CQLF for N(N > 2) subsystems !
is equivalent to the existence of a CQLF for every pair of (i) A CQLF exists for the subsystems; andX.,.
subsystems. An algorithm is proposed to compute a CQLF Remark1: (i) In general, the existence of a CQLF is

for the subsystems, when it exists, using the left and right not necessary for the stability of a switched system under
eigenvectors of a critiqal matrix obtained from a.r.natrix pencil. arbitrary switching [3], [4]. However, for the special class

Index Terms—switched systems, stability, common . . .
quadratic Lyapunov function, M—matrix of sy;tems under. conS|derat|0n1 ProppsFuoq 1 states that

stability of the switched system in (1) is equivalent to the
_ |. PROBLEM STATEMENT existence of a CQLF for the subsystems in (2).
Consider the switched system (i) The stability properties of the switched system in (1)
S, i(t) = A(t)z(t), A(t) € A= {A, Ao, ..., Ax} (1) can pe determined by checking the stat_:)ility of the matrix
pencil, 4; + (1 — a)A2, o € [0,1], which can further
where z(t) € R? is the state, andd; € R?*?, i = be reduced to checking whethdy is Hurwitz and whether
1,2,..., N are the system matrices for the subsystems the matrix productd; * A, has any negative eigenvalues [5].
. . Furthermore, the critical value aef for which a4, + (1 —

Rit #(t) = Aw(t), i =12, N. (2) ) Aj has the largest real eigenvalue can be found éasily [4].
Throughout the paper, the negative of each matrjxi.e., Lemmal: If the diagonal entries of the matrices for the
—A,) is assumed be ah/—matrixt. Therefore, each matrix systems in (1) and (2) witiv = 2 are equal to-1, then
A = [ai;] in the setA satisfiesa;; < 0, ¢ = 1,2 and the following statements are equivalent.

a;; > 0, and is Hurwitz. The objective of this paper is to (i) The switched systend, is stable under arbitrary
derive necessary and sufficient conditions for the stability of ~ switching.

the switched system (1) under arbitrary switching between(i) The matrix pencilaA; + (1 — a)A2 is Hurwitz for
the system matriced;,i = 1,2,...,N. all a € [0, 1].

Clearly, if a common quadratic Lyapunov function (i) A diagonal CQLF exists for subsystends; and %,.
(CQLF) exists for the subsystems, i = 1,2,..., N, then Remark2: This type of system, whose system matrices
the switched system (1) is stable under arbitrary switchinglave —1 on the diagonals, are widely encountered in
The converse of this statement is not true in general [3problems of power control for wireless networks [6], [7].
[4]. However, in this paper, we prove that the converse is The results of Lemma 1 can be extended as follows.

indeed true for a Speciﬁc class of Systems_ Theorem1: If the diagonal entries of the matrices for
The following notation will be used in sequel. Lét= the systems in (1) and (2) with > 2 are equal to-1,
[ti;] € ®*™. T is said to be a non-negative matrix, andhen the following statements are equivalent.
denoted ag” > 0 if ti; >0forl <i<mn,1<j<m. (i) The switched systen®, is stable under arbitrary
Similarly, for two matricesl’, T, € R"*™, we write T} > switching. v
Ty if Ty — Ty = 0. ForQ € ®"*", Q > 0 denotes that Q (i) All matrices in the convex hul ;" , a; A; are Hur-
is positive definite. witz for a; > 0,i=1,2,...,N, and ¥ a; = 1.
(iii) The matrix pencilsaA; + (1 — a)A; are Hurwitz for
_ 1. MAIN RESULTS allae0,1], and alli,j = 1,2,..., N, i # j.
We first consider the two subsystem case. (iv) A diagonalCQLF exists for every pair of subsystems
Proposition1: For the systems in (1) and (2) with' = S andS;, 0,5 =1,2,... N, i # j.
2, the following statements are equivalent. (v) A diagonal CQLF exists for the subsystems;,
The authors are with the Department of Electrical Engineering-Systems, t= 1_’ 2, N and it can be computed using the
University of Southern California, Los Angeles, CA, 90089-2565, USA. following algorithm.
E-mail: {ayanendp, akar, msafonov, yt@usc.edu Algorithm 1: (a) Among all pairs of the matriced; and
AF@'SSRer:ﬁ{CQ;Vgof(;’l‘ﬁ%fgzf” part by NSF grant ANI0137091 and . ;"5 — 1 9 . | N, i < j, determine (using Lemma 1)

1see [1], [2] for the definition and properties of M—matrices. the matrixA = aA; + (1 —a) A; which has the largest real
2The proofs of the results in this section are relegated to the Appendii&lgenvalue for somer € [O, 1].
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(b) Solve forv = [vy,v5]T from Av = \v. The eigenvectors ofl; and A7 corresponding to\; can

(c) Compute the diagonal common Lyapunov matfixas be computed ag = [\/%7¢%]T andw = [ﬁ? \/%]T

D = diagva /v1,v1 /v2]. 0O Define D = diagw; /v1,ws/v2]. As before, D is a Lya-
Remark3: In general, for N > 2, the existence of punov matrix forA4;. Using (3),(42D + DAs)v < 0 and

a CQLF for every pair of subsystems is necessary biifence, D is a Lyapunov matrix fo, as well.

not sufficient for the existence of a CQLF for all of the Case (ii) . € (0,1). Let A = a A1 + (1 — a.) A2, and

subsystems [4], [8]. However, the above theorem state®nsider the matrix penciB = BA+ (1—3)A1, B € [0,1]

that this condition is also sufficient for the special classvhich achieves its largest real eigenvalue foe 1. Hence,

of systems under consideration.

APPENDIX
A. Proof of Proposition 1

(i) = (ii): Suppose that the matrix pencild; +(1—«) A
is unstable for somex = «o. € [0,1]. Then A,, =

this case reduces to case (i) discussed above, and a diagonal
common Lyapunov matrix]D, can be calculated fod and

A, using the eigenvectors of. Similar arguments hold for

the matricesA and A,. Thus, D is a Lyapunov matrix for

both A; and A,. O

C. Proof of Theorem 1

a.A1+(1—a.)As is unstable which means that alternating The assertions (i} (i), (i) = (iii) and (v) = (i) are

switching between systems; and ¥, utilizing X; for
a.T units of time andX; for (1 — «.)T units of time,

with sufficiently small time interval’ leads to an unstable

switched system.
(i) =(iii): Assume that the matrix pencit4; +(1—a)As
is Hurwitz for all « € [0,1]. It can be shown thatA; +
(1 — a)A5 " is also Hurwitz for alla € [0,1]. Hence, by
the result in [8], a CQLF exists faxX; and >s.
(iii) = (i): Trivial. O

B. Proof of Lemma 1

The assertions (i}= (i) and (i) = (i) follow from
Proposition 1. In order to prove (i8> (iii), suppose that the
matrix pencil achieves its largest real eigenvalue 0 for
a=a.€[0,1]andA = a.A; + (1 —«a,)As. Let Av = \v
andATw = Aw. Since—A is anM—matrix, it can be shown
thatv,w = 0 andw = [v2,v1]T wherev = [vy,va]7 [1].
Define a diagonal matribD = diagw; /vy, ws/ve]. From
ATw = dw < 0 and Av = \v < 0, it follows that
(ATD + DA)v < 0. Hence,—(ATD + DA) is an M-
matrix [1] and since it is also symmetricA” D+ DA) < 0,
and D is a Lyapunov solution forA. We now proceed to
show that it is also a Lyapunov solution fdr, and A;. We
consider two cases: (i}. € {0,1} and (ii) . € (0,1).

Case (i) Without loss of generality, assume, = 1.
?),»1 31 . i=1,2. The
largest eigenvalue ofl; is \; = —1 + Va;b;. As a, = 1,

Denote the matrices a4; = [

A1 > )Xo, henceaib; > asbs. This may happen when (a)

Ay = Ay (i.e. a1 > ag, by > bo), (b) Otherwise, i.e. when
either(a1 < ag,bl > bg) or (Cl1 > ag,bl < bg)

The first subcase (a)4¢ = A,) is trivial; as any diagonal
Lyapunov matrix for4; would be a Lyapunov matrix for
As. Consider the 2nd subcase (b). Heig,—as) (b1 —b3) <

0. The largest eigenvalue of the matrix pencil, when giveH]

as a function ofx, achieves its maximum fot,,,... = p/q
Wherep = a1ba + asby — 2asbs andq = —2(&1 — ag)(bl —
by). As a € [0,1], so a. = 1 when a;nq.: > 1. Hence,
a.=1,if p>¢>0,ie., we have

a1by + asby < 2a1by and 0 < aghy < a1b; < 1.

®3)

straightforward. The claim (iii)= (iv) follows from the
equivalence of the items (ii) and (iii) in Lemma 1. In order
to prove (iv)= (v), we proceed as follows. Let every pair
of subsystem&; and;, i,5 =1,2,..., N, i # j, have a
diagonal CQLF. The subsysteR} has a set of normalized
diagonal Lyapunov matrice®; =diad1, d;], whered; can
be seen to lie in a convex sef; € (d;,d}), d; >0,

dt > 0 [8], [4]. Similarly for £;, we haveD, —diag1, d;],
d; € (dy,df), d; >0,d] > 0.As¥; andX; have a
diagonal CQLF, the seid; ,d;") N (d; ,d;") is non-empty.

Since this is true for every pair of subsystems, we have
ﬂfil(d.‘ d) # 0 which establishes that there exists a

177

diagonal CQLFz” Dz, for all of the subsystems. Note that
the set of common Lyapunov functions can be computed
by intersecting the interval&d; , d;") whose limits can be

107
determined by solving a second order algebraic equation
for each matrixA4;. An alternative solution is Algorithm 1
which follows from the proof of Lemma 1. (QED)
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