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Adaptive Controller Design and Disturbance Attenuation for
SISO Linear Systems with Noisy Output Measurements and
Partly Measured Disturbances

Sheng Zeng

Abstract—In this paper, we present robust adaptive controller
design for SISO linear systems with noisy output measuremes and
partly measured disturbances. Using the worst-case analigsapproach,
we formulate the robust adaptive control problem as a nonlirear H°°-
optimal control problem under imperfect state measuremens, and
solve it using game theory. The design paradigm is the same #sat
in [1] with the only difference being the treatment of the meaured
disturbances. The same results as those in [1] are achievdd.addition,
when the relative degrees from the measured disturbances tthe
output are no less than that from the control input, the controllers
designed achieve theero disturbance attenuation level with respect to
the measured disturbance inputs. The asymptotic tracking bjective is
achieved even if the measured disturbance is only uniformlypounded,
without requiring it to be of £nite energy. This strong robustness
property is then illustrated by a numerical example.

Index Terms— Nonlinear H°° control; cost-to-come function; inte-
grator backstepping; adaptive control; measured disturbaices.

|. INTRODUCTION

Zigang Pan

oourished, see the book [9] for a complete list of references.
More recently, this approach has been generalized to systems
with unknown sign of the high frequency gain. This nonlinear
design methodology has also been applied to linear systems [9]
to compare performance with that of the certainty equivalence
approach. As to be expected, a systematically designed nonlinear
adaptive control law leads to better closed-loop performance than
that for the certainty equivalence based design when the system
is free of disturbance. Yet this approach has also been shown to
be nonrobust when the system is subject to exogenous disturbance
inputs.

Robust adaptive control has been an important research topic
in late 1980s and early1990s. This research leads to various
modifcation techniques in adaptive control design in order to
render the closed-loop systems robust [10]. Despite their sucgcesses
they fell short of directly addressing the disturbance attenuation

The design of adaptive controllers has been an important réroperty of the closed-loop system.

search topic sincd970s. The classical adaptive control design

The objectives of robust adaptive control are to improve tran-

is based on the certainty equivalence principle [2], which hasient response, to accommodate unmodeled dynamics, and to reject
been shown to be effective for linear systems with or withougxogenous disturbance inputs. These objectives are the same as
stochastic disturbance inputs [3], [4]. Using this approach, th&ose that motivate the study of ti#€>-optimal control problem,
controller is designed as if the unknown parameters are knowwhere these objectives are fulflled by studying the disturbance
in implementation these unknown parameters are substituted Bjfenuation property of the system. The game-theoretic approach
their on-line estimates, which are generated through a varietg H°°-optimal control [11] offers the most promising tool to

of identifers, as long as the estimates satisfy certain propertiggneralize the results to nonlinear systems [12]-[14]. These obser-
independent of the controller. This approach leads to structuralkgtions and results motivated the worst-case analysis approach to
simple adaptive controllers. Yet, early designs based on th&daptive control, where the adaptive control problem is formulated
approach has been shown to be nonrobust [5], [6] when th&$ @ nonlinea# >*-optimal control problem under imperfect state
system is subject to exogenous disturbance inputs and unmodef@gasurements. The unknown parameter vector is viewed as part of
dynamics. This approach has also failed to generalize to nonlinette expanded state vector, and the measures of transient response,
systems with severe nonlinearities. This has motivated the study @isturbance attenuation, and asymptotic tracking are all incorpo-
robust adaptive control ih980s and1990s, and nonlinear adaptive rated into a single game-theoretic cost function. The cost-to-come

control in 1990s.

function analysis [13] is applied to obtain the state estimator for

Nonlinear adaptive control attracted a lot of research attention #ie¢ expanded state vector, which results in an on-line parameter
1990s after the celebrated characterization of feedback linearizabientifer and a state estimator for the original system. This
or partially feedback linearizable systems [7]. A breakthrougistep converts the nonlinedd >*-optimal control problem under
is achieved when the integrator backstepping methodok)gy Wé@perfect state measurements into one under full information
introduced [8] to systematically design adaptive controllers fofeasurements. This full information measurement problem is then
parametric strict-feedback and parametric pure-feedback nonlineg@lved for a suboptimal solution using the integrator backstepping
systems. This has led to an period of intense research into tAiethodology. This design paradigm has been applied to worst-case
topic of nonlinear adaptive control when a large volume of resultBarameter identication problems, which has led to new classes
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a strictly minimum phase transfer function from the control inputan be transformed into the following form in thecooridinates

to the output, and some other assumptions, which are the same g

as [1_]. The adaptive cor_wtrol design follows the same paradlgm g=Az + (yAa11 + ular +ijA213j)6+Dw+Dw(2a)

as discussed above, which leads to two classes of parametrized

controllers in closed form with the following robustness properties.

The close-loop system admits a guaranteed disturbance attenuatlorl{_

level with respect to the exogenous disturbance inputs, where tiaered is theo-dimensional vector of unknown parameters of the

ultimate attenuation lower bound is equal to the noise intensity |aystemsa € NN; the matricesA, Az11, Aaiz2, A2is1, - - -, A213g,

the measurement channel. The closed-loop system is totally stalile D, C, and E are known and have the followmg structures,

with respect to the disturbance input and the initial conditionA = (aij)nxn;asi+1 = l,a;; = 0, for 1 < ¢ < r —1 and

Furthermore, it achieves asymptotic tracking of the referencer2 < j < n; Asjs = [ Oox(re1) Abizg Aba, ]',Amm =

trajectory for all uniformly bounded disturbance inputs that ar¢ 1 0,4(,—1) ], C = [ 1 Oixn-1) |, andz(0) = zo. We

of bounded energy. These results are the same as those of [1].will design adaptive controller using system (2), which is called

addition, with proper scaling, the controller achieves any positivehe design model.

attenuation level with respect to the measured disturbance inputs. Assumption 3: The matricesD and E are such thaiZE’ > 0.

When the output has relative degrees for the measured disturbantrsgEne( := 1/(EE’)% andL := DE’. |

that are greater than or equal to that for the control input, the Because of the structure &f and 4,1, the £rst element of the

controllers designed achieveero disturbance attenuation level parameter vectof, denoted bybo, is the high frequency gain of

with respect to the measured disturbances. This does not mean t&f transfer functiorf (s). We partition parameter vecter into

we achieve decoupling from the measured disturbances. Therefope- [ bo 0. ], whereb, is a (o — 1)-dimensional vector.

when the unmeasured disturbanceCisN L, the tracking error Assumption 4: The sign ofbg is known, and W.L.O.G., assume

asymptotically converges to zero for any measured disturbangg > 0. There exists a known smooth nonnegative radially-

that is uniformly bounded. unbounded strictly convex functioR(f), such that the true value
The balance of the paper is organized as follows. In Sectiofic © := {# : P(§) < 1}. Moreover,¥0 € O, by > 0. O

Il, we present the formulation of the adaptive control problem Assumption 4 delineated theepriori convex compact set where

and discuss the general solution methodology. In Section I, wihe parameter vectdt lies in.

obtain parameter identifer and state estimator using the cost-to-The control law is generated y(t) = 1u(t, yjo,e), Wio,¢)), Where

come function analysis. Then we derive the adaptive control lay - [0,00) x C x C — R. We denote the class of these admissible

in Section 1V, and present the main result on the robustness gbntrollers by M.

the closed-loop system. The theoretical results are illustrated by The control objective is to design a robust adaptive controller for

one numerical example in Section V. The paper ends with som@), such thatCz(t) tracks a reference signg&( )Whne rejecting

j=1

z+ Ew (2b)

conclusions in Section VI. the uncertainty quadrupléco, 6, Wo,c0), Wio,00)) € W := R" x
O x C x C, which comprises the initial state, the true values of
Il. PROBLEM FORMULATION unknown parameter vector, the unmeasured disturbance waveform,

and the measured disturbance waveform, and keeping all signals
in the closed-loop system uniformly bounded.

Assumption 5: The reference trajectory;q, is r times contin-
uously differentiable. The signal; and the £rst- derivatives of
ya are bounded and available for feedback. [}
we consider the g4 gesign purposes, instead of attenuating the effect ahd
w, we design the adaptive controller to attenuate the effeat of

We consider the adaptive control problem for single-input:
single-output (SISO) linear systems.

Assumption 1: The linear system is known to be at mast
dimensional;n € IN.

By adding additional dynamics if necessary,
following true system dynamics:

$=Ad + Bu+ D+ Doy 2(0) = a0 (1a) an(_jw. Thls is dc_)ne to allow our design pa_radlgm to b_e carried out.
N This will result in a guaranteed attenuation level with respect to
y=C1 + Ew (1b) 4 andw as well, see [1] for a discussion. We take the uncertainty

quadruple(zo, 8, wo,0), Wo,)) 10 belong to the sety = R™ x
O xCxC.

Defnition 1: A controller p is said to achievedisturbance
attenuation level v if there existi(t, 0, x, yjo,¢, Wjo,) > 0 and
zo(xo,eo) > 0 such that

wherex € R" is the state vectory € IR is the scalar control
input; y € R is the scalar system outputsy € RR? is the
unmeasured disturbance input vectpre N; w € R? is the
measured disturbance input vectgre IN; all input and output
signalsy, , @, andw are continuous; and the matricels B,

C, D1, D2, and E are of the appropriate dimensions, generally sup Ty < 0; Yt >0 3)
unknown. The transfer function from to y is H(s) = C(s[ - (£0,0,W(0,00) [0, 00)) EW
B,

. NI . where
Assumption 2: (A, C') is observable. The transfer function

. . . . t

H(s) is known to have relative degree € IN, and is strictly T ::/ ((z1 — ya)? + U(r,0,2(7), y Yo D0.17) — P |wf?

minimum phase. The uncontrollable part (with respectjoof

(1) is stable in the sense of Lyapunov. Any uncontrollable mode _, |w‘ Ydr — |9 QO‘QU _ 72|x0 _ 5;0‘;71 — lo(Zo, 6o)

correponding to an eigenvalue of the matrixon the jw-axis is 0

uncontrollable fromw andw. O o € © is the initial guess of; Qo > 0 is the Weighting matrix,
As discussed in [1], there exists a state diffeomorphism 7'x  quantifying the level of con£dence in the estimétg io is the

and a disturbance transformatian= M, such that system (1) initial guess ofro; andII; ' > 0 is the quadratic weighting matrix,
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quantifying the level of confdence in the estimaig and |z|o  andIl := 4*(Z22 — 21X 'T12). ¥ and @ satisfy (12a), (12c),
denotes:T Q= for any vectorz and any symmetric matrix). andII satisfes (10) with proper initialization.

The following notation will be used throughout this papeér. We make the following assumption on the weighting maéix
denotes the estimate of § denotes the estimate 6f e; ; denotes Assumption 6: The weighting matrixQ is given by
a j-dimensional column vector, all of its elements &eexcept

its ith row is 1, such ases,» = [0,1,0,0]'. Q=3" { 0 0 g, [ «@'C'(7°¢* ~1)CP 0
Defne¢ := [#’,z']'. Note thatd = 0, we have the following 0 A 0 0
expanded dynamics for system (2) where A > 0 is n x n dimensional, and is defned bye(7) :=
. 0 0 Tr(X7(7))/Ke, Ko > 72Tr(Qo) is a constantyr > 0. ]
§ = { yAs1s + udors + Z;ﬁ:l Agrsib; A £ The matrix3 will play the role of worst-case covariance matrix

of the parameter estimation error. Assumption 6 guarantees that
0 0 |\ i .— A¢ + Dw + Du 53 is uniformly bounded from ab d bel
+ w+ | = | w:=A¢+ Dw+ Dw (4a) is uniformly bounded from above and below.
D D Lemma 1: Consider the dynamic equation (12a) for the co-
y = [ 0o C ]§+Ew = C¢ + Ew (4b) variance matrixX. Let Assumption 6 hold andy > ¢ '

L ) Then, the matrixX is uniformly upper and lower bounded as
The worst-case optimization of the cost function (3) can b‘?ollows- K, < 2(r) < £(0) = 472Q5"; 72Tr(Qo) <
. c o = = - 0 =

carried out in two steps as depicted in the following inequality. TH(Z" (1)) < Ke; Vr € [0, ¢).

sup Jyi < sup sup Tt (5) Proof: See [17] for details. |
(z0,0,,w)EW Y@ (x0,0,w)|y, b To avoid the inversion ofS on-line, we defness(r) :=

71 . . N . . .
The inner supremum operator will be carried out £rst. It is/ 11X (7)), and its time derivative is given by

the identi£cation design step, to be discussed in Section . . 5 5 vy _
Succinctly stated, in this step, we calculate the maximum cost °> — —s2(v'C DA - CPP'C 55(0) =
that is consistent with the given measurement waveform.

The outer supremum operator will be carried out second. It il 'F A on 6 and (12 & -1 Thi
the controller design step, to be discussed in Section IV. In this ¢ rom Assumption 6 and (12a), we negd: (" . This means

IR . )

step we use a backstepping procedure to design the control inﬁ £ quantity¢ ™" is the uItlmate_ lower bound_ on the ac_hlevable

. performance level for the adaptive system, using the design method
This completes the formulation of the robust adaptive contrd?mposed in this paper.

. ) . 9 . .
problem. We turn to the identif£cation design in the next section. “ssu. I’T‘pt!Or‘I 7. If the matrlx.A - LC ISJ;|UI’WItZ, then the
desired disturbance attenuation level> (. Otherwise, the

I1l. DESIGN OFA WORSTCASE IDENTIFIER desired disturbance attenuation leyet ¢ . m]
In this section, we present the identi£cation design for the Assumption 8: The matrixIl, is chosen as the unique positive
adaptive control problem formulated. In this step, the measuremefg£nite solution to the algebraic Riccati equation:
waveformyo o) andwy, .. are assumed to be known. Since the A— CCLOVI 27 1y 122
e ’ . L — +II(A-¢LC) —1C — cu
control input is a causal function af and w, then it is known. ( ¢ ) ( ¢ ) =)

1

PTG

hen,e(r) = K. 's5," (7).

This calculation uses the cost-to-come function methodology. Set +DD = CLL +9*A =0 (10)
function! in (3) to |§fé\% +1, where is the worst-case estimate O

for the expanded state, & = [0',2], Q is a matrix-valued  Then,II satisfeg10) and is a constant matrix.

weighting function to be introduced later, ands a function to  To guarantee the boundness of parameter estimates without
be introduced in Section IV, which is a constant in this sectionpersistently exciting signals, we introduce soft projection design
By the cost-to-come function analysis of [1], we have by using thea priori information thatd € ©.

Defnep := ming, P(0,05) and@, := {0 : P() < HTP} By
. Assumption 4, we havé < p < oco. )
_S(2CC - C'C - Q)E: B(0) =2 {Qg 1? ](Ga) Add the term—S [ (P,(d))" 0ix. | to the right-hand side

0 of the dynamics (6b), where

i:(A—CQEC’)E—FE(A—(QEC')/—F’)/_QDD/ _’Y_QCQEE/

E=(A+S(CC+QNE+COC + D)y~ CF) + Du co(b) op ns
~5(Clya+QE);  £(0)=[8y 5] (6b) P(0) = (T2 —r@) (56(0) v9€ONO (4
0 Vo € ©

whereL is defned ad = [ 01, L' |’ Then

v o ) - Partition € into (', ')’ to obtain the dynamics for the identier.
sz/ (ICE —yal* + € = &g + 1=y — C&P°

O - — —
o = w)dr = 0 €Oy~ @) P = (S DRPOOACE -0 25(0) =770, (122)
Ag A—CLC-TIC'C(C? —~7?) (12b)

wherew, is the worst-case disturbance, given by

q
Wy = CZE/(y _ Cf) + ’Y72(I _ C2E11E)D/ifl(£ _ é) (8) CI) AfCI) + y/_lgll -+ U,Amg + Zuv)ifizlgi; (I)(O) = 0(12C)

The following derivation for the identifer closely resembles that - . o ! 1~
1 Partitons ass: — | = 512] and introduced i S, 51 0 = —SP(0) —20'C'(ya— C2) — [ T TP | Q&
in [1]. PartitionX asY = S1 5 and introduceb := X +V2C22@'C/(y—C§s); é(o) — Gy (12d)
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i = —®XP.(0) + Ai — [ ®% %H + 08P | Q¢ — (v? Substitutingy andw by v in the equations (9), (12), (15), and
g (16), we obtain the dynamics for control design. The variables to
I+ ®80)C (yq — CF) + (yAs11 + udars + ijA213j)é be designed at this stage includandg.. Note that, I, s, and
0 are always bounded by the design in Section®l}, is bounded
by its dynamic structure. Since,, is explicitly driven by control
u, it can not be stabilized in conjunction within the backstepping

j=1
+CH(IC" +4°®Xd'C’ + L) (y — C&) + Dw; #(0) = io (12€)

where¢, = ¢ — £. design. We will assume it is bounded and prove later it is indeed so
Introduce the value function under the derived control law. We observe that the matrjxhas
. S the same structure as the matrlx then, we apply the integrator
W(t, (1), £(1), 2(1)) = [€(t) — E(@)[5-1 backstepping methodology [8] to stabilize the variabjes, - - -,
=0 - é(t)\zz,l(t) + 2 |(t) — &(t) — D)0 — 0())[5-1 Z,. Since there is a nonnegative de£nite weighting oim the cost

function (14), we can not use integrator backstepping to design
feedback law foré.. Hence, we set. = 0 in the backstepping
W= a1 — yd\2 _ W4|x (0 é)‘%imnil procedure. After the completion of the backstepping procedure, we
9 .5 Ao 5 19 B 9 5 will then optimize the choice of. based on the value function
—e(v'C = DIo = Olarcroe + 77wl + |ij - y‘f' +l&ele  optained. To stabilizey, we introduce variable,, which satisges
=Py — Caf* — P lw — wx[* + 2(0 — 6)' P.(6) (13) g = Afna + paya With initial condition 74(0) = 0, and is

the reference trajectory foy to track. Choosing value function
tVO := |n — n4|%, where Z is the solution to an algebraic Riccati
equation. Treating:; as the virtual control input, we complete the
step0 with the virtual control lawag = 0, which will guarantee
the Vo < 0 underz; = yq4. At stepl, we introducez; := &1 — ya,

IV. CONTROL DESIGN AND MAIN RESULT and choose value functioh; = V; + 1z7. Treating#, as the

) . ) . virtual control input, we end the step with the virtual control
In this section, we describe the controller design for the unceyg,, a1, which guarantee®; < 0 underi, = ?inl) + o, where

tain system under consideration. Based on the cost function (3)) denotes thejth order derivative ofy,. De£ne the variable
the controller design is to guarantee that the following supremurm (1)

. 2 = T2 —y, — oo for step 2. Repeating the backstepping
is less than or equal to zero for all measurement waveforms, procedure until stepr, the control inputu will appear in the

¢ 3 5 dynamic of Z.. Using the similar procedure as previous steps,
{/ (|C"” — Yl we can derive the robust adaptive controllesuch thatV, < 0
0:00) 170 underu := p. Later, we will prove the control law will guarantee
the uniform boundedness of the closed-loop system states and the
asymptotic convergence of tracking error. For detailed equations

. o i . of the backstepping design, see the full version [17].
where functiori is part of the weighting functiohto be designed . .
For the closed-loop adaptive nonlinear system, we have the

in this step. foflowing value function
By equation (14), we observe that the cost function is expresse%l 9 '

in term of the states of the estimator we derived, whose dynamics
are driven byy, u, w, andé, which are signals we either measure
or can construct. This is then a nonlineAr*-optimal control
problem under full information measurements. Instead of consid-
ering y and w as the maximizing variable, we can equivalently
deal with the transformed variable:= [ ((y — Cz) ' ]'.

Introduce the matrixM; := [ A} 'pn -+ Aspn pn |,
wherep,, is an-dimensional vector such that the péit;, p,,) Is
controllable. Then the followingg + 2)n-dimensional pre£ltering
system fory, u, andw generates th@ online:

whose time derivative is given by

We note that the last term W is nonpositive, zero on the set
© and approaches-co as# approaches the boundary of the se
©,, which guarantees the boundnesgof

This completes the identi£cation design step.

sup Jyt < sup
(xg,@,ﬁ)[o)o@,w[(,’w))ew Y[0,00) W[

el + 1= 7?0l —+*Cly — Caf*) dr — lo(io»éo)} (14)

= Vi W=10—-03-1 4+ |z — % — D0 —0)|5-

I I 1
+7l% + 52(1‘]‘ —y§ — ;1)
o

where7 = n — nq4.
The time derivative of this function is given by

2
m—-1AM-1
+2(0 - 6)P.(d)

= —lm—yl’ =o'z —2—2(0-0)
.12
—e(v*¢* - 1) ‘0— 0

no= Am+pay;  1(0)=0 (15a) ®/C/CP ‘
A = Adtpau; A0) = 15b 12 1 i —
_ Atpu  A0=0 (130) tléet 55| —gllp— 1Ak =Y BE
Nw; = Afnu“zi + PnWi; N, (O) =0,i=1,--- 7q(150) Q j=1
. . 2 2 2] <2 2 2 2 — 12
For ease of the ensuing study, we will separétas the sum W™ + 707 =7 fw = wa]” =7 o — D

of several matrices, B
where 3;'s are design functions chosen by designer in backstep-

P = QutPy+ Py (162)  ping procedureg, and, are terms derived in the backstepping
®, = [A}'m -+ A n |M;'Ay  (16b) procedure. See [17] for the detailed information.
b, = AP, +udoz;  u(0) = 0nxo (16c) Then, the optimal choice for the variabfeis £, = £ — 3G
g which yields that the closed-loop system is dissipative with storage
by = Adg+ ijgmwg ®,4(0) = 0,x, (16d) functionU and supply rate-|a; — yal? + 72 w)? + 42|,
=1 Furthermore, the worst case disturbance with respect to the
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value functionU is given by

Wopr = CE'egir 100 + Y 2(I-¢CE'E)D'ST (¢ -¢§)
+CPE'C(z — x) (17a)
wopt - Kljr (17b)

where K is defned by ejr1,1 K’ | = Ij41.

Next, we summerize in the following theorem the strong robust-

ness property of the closed-loop system, whose proof (see [17] f
details) is omitted due to page limitation.

Theorem 1: Consider the robust adaptive control problem for-

mulated in Section Il with Assumptions—8 holding. The robust
adaptive controllery, with either the optimal choic&. or the

suboptimal choice = £ achieve the following strong robustness -

properties for the closed-loop system.

1) The controller: achieves disturbance attenuation leyebr
any uncertainty quadrupleco, 6, W, o), Wo,e0)) € W.
Given ac, > 0, there exists a constant. > 0 and
a compact se®. C O,, such that for any uncertainty
quadruple (zo, 0, W(o,0), Wio,00) € W With |zo] < cu;
[w(t)] < cw; |W(t)| < cu; VE € [0, 00), all closed-loop state
variables are bounded as follows, € [0, c0), |z(t)| < cc;
|2(t)] < ce; 0(t) € Oc; n(t)] < ce; [na(t)] < ce; M) <
cei olo < B() £ 5Q0 < sx(t) <
I (B)] < ceri = 1,2,-++,4
V(20, 0, Wio,00), Wio,00)) € W With 0,00y € L2 N Lo and
11)[0,00) € LoNLoo, then,limtaoo(:pl(t) — yd(t)) = 0.
Based on Theorem 1, we note that the above contrpllean
achieve disturbance attenuation levelvith respect tow andw.
Then, the time derivative of value functidi satisfes:

2)

1 .
Ke v2Tr(Qo)’

3)

U < —|z1 — yal* + 72 w]® +~°|w]?

Consider~?|uw|? = 52 \”wf, we can achieve arbitrary distur-
bance attenuation level with respect taw by multipling a scalar

C ! 1]
’ @ A 05}
T o e
'
Or f— 10 20 E) ) 50
(a) (b)
(©) (d)
Fig. 1. System response under command inp#) = 0, w(t) = 2.5
sin(t), w1 (t) = 0, andwa(t) =

@) E)lagram of CIrCUIt (b) Tracklng error; (c) Control input;
(d) Parameter estimate.

1) the controllep: achieves disturbance attenuation leyalith
respect tav and disturbance attenuation levelith respect
to w.
2) V(:Co,@ wg o) W0, oo)) € W with w[o o) € LoN Lo and
Wo,00) € Loo, thenlim; oo (z1(t) — ya(t)) = 0.
Remark 1: The adaptive control design can be extended to treat
linear systems with partially known control vector £elds. Consider
the following design model

to w. However,¥ have to be positive. To achieve disturbance ;— Ax+(yA211+uA212+Z wJA213])0+Bu+Dw+Dw

attenuation level0 with respect tow, we need the following
assumption.
Assumption 9: The transfer function fromo; to y has relative
degree greater than or equaltpi = 1,- -, ¢ O
Defnition 2: A controller . is said to achievedisturbance
attenuation level v with respect to w and disturbance attenuation
level 0 with respect to w, if there existl(t, 0, x, yjo,4, Wo,q) > 0
andlo(&o, 6o) > 0 such that
Yt > 0.

sup (18)

(£0,0,W[0,00) W [0,00)) EW

Jy,0t < 0;

where
t

((z1 —

0
=7 |wl*)dr =510 = 0ol = 7*|w0 = ol -1 = lo(o, o)

J’y,()t : yd)2 +l(T,9,%(7’),;[/[0’7-],11)[0;])

j=1

y=Czr+ Fw

Compared to the model (2), there is an additional teBm,
where B is known and has the following structureB
[ Oixr—1) bpo  bp1 bpn—r |'. If the high frequency
gain by is unknown,b,o will be absorbed intd. In this case, the
identifer will involve equations (9), (10), and (12) except there
will be an additional termBu in (12e). We can follow the same
steps in the control design. The same results as Theorem 1 and
Corollary 1 still hold.

V. EXAMPLE

In this section, we present one example to illustrate the main
results of this paper. The designs were carried out using MATLAB
symbolic computation tools, and the closed-loop systems were

We have the following results for this objective. For the proofsimulated using SIMULINK.
of this corollary, which is omitted due to page limitation, see [17] Consider the following circuit problem in Figure 1(a), where

for details.

Corollary 1: Consider the robust adaptive control problem for-

v; is the input voltage source), is the measured outputi. is
an unknown sinusoidal voltage soureg;; is an unmeasured ex-

mulated in Section Il, under the assumptions of Theorem 1 armbenous voltage source;,2 is an unmeasured exogenous voltage

Assumption 9, the results of Theorem 1 hold for the control jaw
with either the optimal pO|IC)£* or the suboptimal p0|IC)f 3
In addition,

disturbance in the output channél; is a measured exogenous
current source. The objective is to achieve asymptotic tracking of
v, — Vw2 0 the reference trajectony,.
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The equations that describe the circuit are obtained as equal to that from the control input, the controllers guaraatee

. 1 disturbance attenuation level with respect to measured disturbance

21 = 7 (utve Wi~ RE—22); 21(0) =1 inputs. Furthermore, asymptotic tracking is achieved even though

. 1. 5 R the measured disturbances are uniformly bounded without being of

2 = G (&1 —); 22(0) =1 £nite energy. These theoretical results are illustrated by numerical
y = R+ T2+ w2 examples in the paper.

Future research directions that are of interest are described as
R follows. One fruitful direction lies in the extension of the results
gndwg = Vwz. Ve CAN b? modeled as the output of second-ord% more general multiple-input multiple-output systems. Another
linear system as following, direction lies in the generalization of the results to nonlinear
&3 = 23(0) = 1; systems.
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the same as those of [1]. By proper scaling, one may achieve

arbitrary positive disturbance attenuation level with respect to

the measured disturbances. The advantage of the measurements

of some disturbance inputs is that, when the relative degrees

from the measured disturbances to the output are greater than or
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