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Abstract— Autonomous knowledge discovery requires 

metrics of rule base quality. This work recommends metrics 
useful for selecting good cause-and-effect rules from naturally 
occurring dynamic data such as found in historian databases 
in the Chemical Process Industry. 

I. INTRODUCTION 
The Chemical Process Industry (CPI) uses models 

(knowledge) to guide and automate process management 
decisions (control). When derived from first principles 
and/or from laboratory and pilot plant experiments, ideal 
knowledge is of less than ideal use for real processes.  

Process operators eventually derive linguistic 
relationships from observation and intuition. 
Stephanopoulos and Han [1] described this learning as “a 
cognitive skill of experienced process operators that fits the 
current facts about the process and enables the operators to 
assess process behavior and predict the effects of possible 
control actions”. Oshima [2] described deficiencies in such 
knowledge stating that misjudgment on behalf of operators 
can arise from to a wrong impression of what is going on in 
the process.  

Expert Systems and Fuzzy Logic Controllers make use 
of linguistic information in form of IF/THEN statements. 
Fuzzy Logic Controllers (FLC) are applied in: robotics 
(Collewet, et al. [3]), automated vehicles (Ko and Chen [4]) 
and process control (Rhinehart [5]). Expert systems in the 
CPI control, monitor (Cimander, et al. [6]), and understand 
process behaviors. Other applications are operator training, 
and planning and scheduling of operations and 
maintenance (Fonseca and Knapp [7]), especially after 
failure or abnormal running conditions.  

Expert Systems made by polling information from 
experienced personnel are never complete. Such rules 
pertain only to critical or obvious trends, and often do not 

incorporate knowledge of events of lesser significance. 
Finally, knowledge collected from experts is usually in the 
form of static rules loosely related to the real numerical 
world (Kordon [8]). This rigid, non-adapting rule base does 
not include temporal behavior making it inadequate for 
complete supervisory control. 

Extracting complete and dynamic knowledge is 
confounded by temporal characteristics of process plants. 
Due to lag or delay the present value of the controlled 
variable is not the effect of the current conditions of the 
system. This delay is usually variable - the result of the 
hydrodynamic characteristics of processes. Another 
temporal characteristic that must be incorporated is 
persistence of any event. The mixing nature of a process 
tends to diminish the effect of any non-persistent event that 
may occur, and a learning algorithm overlooking 
persistence may incorrectly interpret this event as a rule. 

The work presented here is part of a larger project, 
which aims to describe an algorithm that will extract useful, 
complete, linguistic, temporal and mechanistic cause-and-
effect rules from numerical data, such as from historian 
databases of process plants. Information extracted from 
historical data could be expressed in simple linguistic terms 
very similar to human understanding of the process. For 
example: IF condition1 AND condition2 OR condition3 
AND condition4…THEN after certain delay control 
variable will be such. The statement between the IF and the 
THEN conjunction is the antecedent and the statement after 
the THEN conjunction is the consequent. 

Rules can be created, by choosing/assembling different 
antecedents, conjunctions and consequents in a variety of 
ways. However, the common aspect of any rule creation 
algorithm or approach is the validation of rules created. To 
autonomously find correct rules and to create optimized 
rule bases shall require metrics (numerical measures) that 
evaluate certain desirable characteristics of a linguistic rule. 
This paper concentrates on recommending the right 
metrics, which prescribe correct, complete and mechanistic 
temporal linguistic rules. 
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II. PREVIOUS WORK 
Goodness metrics can be classified into two 

characteristics: measures that evaluate the fitness of 
individual rules (Local strategies) and those that evaluate 
the fitness of the entire rule base (Global strategies).  

GA based technologies that use local strategies include 
the work by Ngan, et al. [9]. The final fitness function is a 
weighted function of the above-mentioned metrics. Using a 
single fitness function is not advised when multiple 
objectives are being addressed because this reduces the 
distinguishing features. In the current work we propose a 
multi-objective approach for evaluation of rules.  

Another example of the local approach is by Herrera, et 
al. [10]. Instead of simply counting the number of 
observations within data a “compatibility” degree was used 
which is calculated by taking a norm of the membership 
values of the antecedent and consequent parts of the rule, 
evaluated at every example in the dataset, using this 
compatibility degree various metrics are calculated. 
Measuring the degree to which each dataset affects a rule is 
less susceptible to the variation in amount of data available 
and measures the quality of the rule itself. Earlier, Chen 
and Black [11] also used a degree of the rule to decide 
between conflicting rules that had the same antecedent but 
different consequent parts. Degree was defined as the 
product of the individual membership values of the 
antecedent and consequent parts. Although both these 
approaches are better than simple counting, one should not 
combine the degree of the antecedent and consequent parts 
since each degree explains different features of a rules and 
more information can be extracted by using these 
separately. 

An example of a global strategy is the work by Xiong 
and Litz [12], who introduce a consistency index of the 
entire fuzzy rule base, a function of the number of 
observations of conflicting rules in the rule base. A conflict 
is defined as two rules having the same antecedent but 
different consequents. This index is then combined with the 
performance of the fuzzy logic controller itself to form the 
global fitness function. An earlier work by Wong and Fan 
[13] evaluates the rule base by evaluating the performance 
of the FLC. Traditional performance measures such as Rise 
Time, Overshoot and Integral of Absolute Error are used to 
optimize successive rule populations in a genetic scheme. 
These are evaluated from a step response of the system 
being controlled. Also, it is usually not feasible to run 
control tests on already commissioned processes. This 
might be practical with simple mechanical objects (as 
shown in the example in the paper), or if we have 
successful detailed models of the process. 

III. METHODOLOGY 
The current work introduces a general strategy, based on 

the “truth space diagram” of a rule, to evaluate the multiple 
measures of goodness of linguistic rules. The objective is to 
find metrics that provide information on both the 
qualitative and the quantitative relationships between the 
data and the rule base. 

To find the best (out of many possible) metrics for rule 
evaluation, a case study approach was used. First, process 
data from a simulator (See Figure 1(a)) was generated.  
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         Fig. 1. a) Hot and Cold water simulator, b) Input-Output Variables,  
     c) Fuzzy classification of Temperature with Limits at 10, 50 and 90 °C.  

 
 
Then a rule base containing all possible rules (all 

possible combinations of antecedent and consequent parts) 
was created, designed metrics were calculated and the 



 
 

 

initial rule base (using these metrics) was optimized using 
these metrics to find the optimal rule base. This final rule 
base was inspected by the human operator and the best 
combination of metrics decided based on the quality and 
compactness of the rule base. The approach followed the 
following broad steps. 

A. Data Generation and Processing 
To illustrate the concept, data was acquired from a Hot 

and Cold water simulator. The simulation incorporates real 
world dynamics such as transport and measurement delays 
and is capable of adding deviations such as measurement 
bias and process drifts that have an ARMA stochastic 
behavior, noise and valve “sticktion”. This is a simple 
example, but incorporates behaviors which are 
representative of a majority of unit operations within the 
CPI. The simulation was nonlinear, had multiple inputs, 
and the dynamics of the response temperature (such as 
delay) depended upon operating conditions. For the 
purpose of generating data, three input variables were 
manipulated and the effect on one output variable was 
monitored (See Figure 1(b) for transient response). The 
manipulated input variables were temperature of hot water 
stream (0 ≤ T1 ≤ 100 oC), flow rate of hot water stream (0 ≤ 
F1 ≤ 30 Kg/min) and flow rate of cold water stream (0 ≤ 
F2 ≤ 30 Kg/min). The output variable was temperature of 
the mixed stream (0 ≤ T3 ≤ 100 oC). This input-output data 
was then processed in the following manner: 1) The output 
data was “un-delayed” by shifting data backwards into 
three categories – short, medium and long delay. 2) The 
crisp input-output data was fuzzified. Each variable was 
classified into three fuzzy categories – low, medium and 
high, using triangular membership functions: 
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Where xi is the crisp numerical value of the ith input or 
output variable, is the fuzzy membership value of xi in the 
jth fuzzy category, aj and bj are the fuzzy set break points 
for category j and n is the maximum number of datasets in 
the input-output data. Figure 1 (c) illustrates fuzzy 
classification of one variable into three fuzzy categories. To 
incorporate temporal information, two unique features were 
included into the linguistic rules. The persistence of an 
event was incorporated into the antecedent of the rule while 
the resulting delay was incorporated into the consequent of 
the rule. 

B. Initial Rule base and Truth Space Diagrams (TSD) 
The structure of the rule base resulting from the above 

step was as follows: 
IF T1 is L/M/H AND F1 is L/M/H AND F2 is L/M/H 

AND Persistence is L/M/H …THEN after L/M/H delay T3 
is L/M/H; Where L/M/H is Low, Medium or High. The 

total number of possible rules will be = (no. of fuzzy 
classes) (no. of variables) = 36 = 729. Hence initial rule base will 
have 729 rules consisting of the various combinations of 
the linguistic categories of each variable in the antecedent 
and consequent parts. The algorithm generates the 
statement of the rules programmatically and performs the 
following steps according to the statement of the rule: 

Step 1: According to the rule statement Rl (where 
1≤l≤729) the persistence of the event expressed by the 
antecedent is calculated. The persistence of the event stated 
is the minimum persistence (or length of time an event 
persists) of any of the three input parts of the rule 
antecedent, i.e. T1 is high, F1 is low etc. 

Step 2: For 1≤i≤n calculate Truth of the antecedent and 
Truth of the consequent for each rule statement Rl. Truth of 
any statement is defined as the degree of membership of 
any data set or example to the linguistic terms in that 
statement. 
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Step 3: The truth space is a two-dimensional space 

bounded by the truth of the antecedent and truth of the 
consequent parts of a linguistic rule. The truth space hence 
is bounded by the region {T: 0≤T≤1, T = truth of 
antecedent/consequent}, where a truth equal to 0 means 
absolute false and truth of 1 means absolute truth. The truth 
space diagram also represents a one-to-one mapping of the 
dataset from the real (numerical) space to a new (truth) 
space defined by the linguistic statement of the rule. The 
space can be divided into four quadrants and each quadrant 
provides different information about the linguistic rule. 

C. Numerical Metrics and Rule base optimization 
Each dataset is represented by a point on the TSD, and 

the location of the point demonstrates the membership of 
the dataset to the linguistic statement of the rule. For 
example, consider point A in Figure 2. The values for Tai 
and Tci are high for this dataset, i.e. what the antecedent 
states the consequent follows or the cause and effect match 
according to the rule statement. This reveals that the 
information expressed in the linguistic rule is contained in 
the numerical data from the simulator. Hence many points 
in Quadrant II of the TSD would reflect the validity of the 
rule. Consequently, points in Quadrant IV would show that 
the rule statement was false, i.e. what the antecedent of the 
rule expressed did not match what the consequent said, for 
example point B in Figure 3.  

 



 
 

 

 

 
Similarly points in the Quadrant I demonstrate the 

incompleteness of the rule, i.e. the consequent was 
observed but was due to an event(s) other than the one 
expressed in the antecedent of the rule. Quadrant III points 
show the possibility of the rule, but because the value of 
both the truths is low, it is not possible to confidently use 
this information. The points that lie on the axis show that 
either the antecedent or the consequent was not expressed 
in the data or the rule was expressed insufficiently within 
the data. 

The following concepts can be defined to assess some 
desired qualities of a linguistic rule: 

Goodness – The consequent of a rule statement should 
be the actual effect of the cause expressed by the 
antecedent of the rule statement. Hence if the truth of the 
antecedent is high the truth of the consequent should also 
be high, subsequently points in Quadrant II show that the 
rule is good because in this quadrant both Ta and Tc are 
high. However merely counting the number of points is not 
correct (discussed earlier) and one should base metrics on 

the degree to which each point affects this quality of the 
rule, a metric should not only contain quantitative 
information but also qualitative information. The following 
metrics are based on the above concept of goodness: 
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Fig. 2. TSD for R480: IF T1 is HIGH & F1 is HIGH & F2 is LOW & 
 Persistence is HIGH THEN after MED delay T3 will be HIGH 

Strength of Goodness: Tc should be approximately equal 
to Ta for all points in Quadrant II if a rule is good. 
Accordingly the RMS distance of the points from the good 
diagonal {line from point (0,0) to point (1,1)} of the TSD 
shows how good is the rule. Closer the points are to the 
main diagonal the better is the rule, i.e. smaller the RMS 
perpendicular distance of all points: 
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Where n2 = no. of points in Quadrant II. 
Probability of Goodness: If a rule is good it increases the 

probability of points to occur in Quadrant II than in other 
quadrants. A normal rule probability and expected number 
of points in Quadrant II can be calculated. A positive 
deviation from the expected number of points will show the 
positive affect of the rule statement and vice versa: 

 

    

 
Fig. 3. TSD for R642: IF T1 is HIGH & F1 is HIGH & F2 is LOW & 
Persistence is HIGH THEN after LONG delay T3 will be MED
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Where nx is the actual number of points in Quadrant x. 
ntot,TSD is the total number of points in the TSD excluding 
points on the abscissa (Ta=0). 
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Where σ is the standard deviation for a probability 
distribution with mean at n2 expected. 

Combined Goodness: Normally the value of Tc should 
be equal to the value of Ta, but the actual value of Tc is 
determined by the quality of the rule statement and the 
quality of the data. Tc will be lower if the rule statement is 
wrong or if deviations occur in the data (due to noise etc.). 
The final value for Tc shall incorporate two deviations: 

dataruleTaTc εσ ±±=  If datarule εσ >>   
then σ for the rule can be calculated: 
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To incorporate the amount of information available the 
above metric can be scaled with a quantity based metric: 
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Badness – If the antecedent of a rule states a cause but 
the consequent of the rule states a false or incorrect effect 
then the rule is bad or incorrect. Subsequently, if Ta is high 
but Tc is low, i.e. a point in Quadrant IV shows that the 
rule is bad. The following metrics are based on the above 
concept of badness: 

Strength of Badness: The RMS perpendicular distance of 
points in Quadrant IV from the bad diagonal {line from 
point (0,1) to (1,0)} of the TSD shows how bad is the rule: 
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Probability of Badness: Similarly to Probability of 
Goodness, expected points in Quadrant IV can be 
calculated and the positive deviation from this expected 
value will show the badness of the rule: 
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Quantity of badness: The amount of information present 
in the fourth quadrant can be found using a quantity based 
metric: 
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Incompleteness – An effect can be the consequence of 
many different causes, an antecedent hence may not be 
completely responsible for the effect stated in the 
consequence of the rule. In such a case, the value for Tc 
will be high but the value for Ta will be low, i.e. points in 
Quadrant I reflect on the incompleteness of the rule. A 
qualitative metric can be designed to measure this property 
of the rule: 
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This is the RMS deviation of Quadrant I points from point 
(0.5,0.5) or lower right hand corner of the quadrant, scaled 

from 0 to 1. 
Insufficiency of Data – Data may not be available to 

sufficiently qualify a rule. The antecedent may not be 
expressed in the data enough number of times to 
confidently state the goodness, badness or incompleteness 
of the rule. Hence a metric is defined to state the 
insufficiency of the data to express a rule:  

datatot
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n
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Where (d) denotes the data-set and n tot, data the total 
number of points in the data-set. 

The objective was to design metrics that will not be 
affected by amount of total data available, i.e. a metric 
should not merely increase or decrease because of the size 
of the data-set. A metric should be scaled (or normalized) 
from 0 to 1; this improves the Pareto optimization of the 
rule base. A metric should be robust to noise and other 
deviations in the data. 

The size, content and quality of the final optimized rule 
base depend on the metrics chosen during the optimization. 
Different optimization schemes were followed using 
various combinations of the above metrics, the initial rule 
base of 729 rules was optimized, and the results were 
analyzed on various factors such as – Information 
content: were the chosen rules correct? Information 
quantity: was all the information present in the numerical 
data expressed in the final rule base? Information quality: 
what is the confidence in the chosen rules? 

IV. RESULTS AND DISCUSSION 
The objective of the above exhaustive search 

methodology is to determine the goodness criteria that will 
accept good rules and reject bad rules. Good rules express 
the phenomenological mechanism. For example, refer to 
rule statement of Rule 480 (Figure 2). The antecedent part 
states that a high flow rate of water (F1) with high 
temperature (T1) is mixing with a low flow rate of cold 
water (F2) and the persistence of this event is high. The 
logical consequence is that the resultant delay will be 
medium and the resultant temperature will be high (T3).  

A good rule may not be accepted into the final rule base 
if the event it describes does not exist within the data from 
which the knowledge is being extracted. To solve this 
problem one must use a larger data-set which encompasses 
all possible process events.  

A bad rule is a rule, which is inconsistent with the 
process phenomena. For example, the logical consequence 
of the antecedent of Rule 642 (Figure 3) should be that 
after medium delay the temperature is high. This rule is bad 
and is removed by the Pareto search method. Certain bad 
rules may be included in the final rule base due to the 
vagaries of numerical data such as temporary transition 



 
 

 

periods, noise, etc. A bad rule may have a few, scarce data 
points within the TSD, and if these points happen to be in 
Quadrant II the bad rule may appear “good” and become 
accepted. For example, Rule 55 (see Figure 4) is a bad rule, 
which appears to be good due to the nature of data 
available.  

Accordingly, only rules that are corroborated by 
independent data instances should be accepted. A rule 
should be accepted into the final rule base only if  ≥ 

θ % of  (total data-set). The (θ %) parameter 

(percent cut) serves a dual purpose: It removes bad rules, 
which are triggered due to the inconstancy of numerical 
data; and it removes those rules, which have a low support 
or corroboration. 

TSDtotn ,

datatotn ,

The best rule base was found using the following search 
scheme: Insufficiency and Incompleteness were used in the 
first Pareto optimization and Combined Goodness and 
Quantity of Badness in the second. A percent cut of 1% 
was used in the removal of bad or unsupported rules. The 
choice of this parameter depends upon the nature and size 
of the data available and was found using a simple 
optimization routine, which minimizes the number of bad 
rules included in the final rule base. Of the 729 rules in the 
exhaustive rule base, this two-stage Pareto optimization 
selected 110 good and sufficiently expressed rules. No 
selected rules were bad (none were incompatible with 
process phenomena).  

V. CONCLUSIONS 
The above results provide proof of concept for Truth 

Space Evaluation, an effective tool for the following 
purposes: 
1. Extracting linguistic information from numerical data. 
2. Visualizing the relation between the data and the rule 

statement. Providing a linguistic depiction of the 

numerical data according to the rule statement. 
3. Providing robust metrics for rule base optimization. 
4. Reducing the size and variability of the data-set by using 

fuzzy membership and persistence. 
The exhaustive search method will be ineffective for 

processes with a high number of input and output variables. 
More efficient search techniques such as Genetic 
Algorithms can be used to create successive rule bases and 
TSD can be used to provide rule base optimization and 
evaluation. 
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Fig. 4. TSD for R55: IF T1 is HIGH & F1 is LOW & F2 is LOW & 
Persistence is LOW THEN after SHORT delay T3 will be LOW 
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