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Abstract— The problem of optimally fitting controllers to  of the multivariable adaptive control problem presented in
data is examined for the identification of a controller from ([31.[41,[5)).
a given class of MIMO controllers used in model reference The formulation of the problem of fitting MIMO con-

adaptive control. The problem of identifying a MIMO con- I d lead o bl h
troller from this class is formulated. This formulation leads ~trollers to data leads to an optimization problem where a

to an optimization problem where a best2nmx m matrix ~ best 2imx mmatrix of parameters is looked for. It is proved
of parameters is looked for. It is proved that the solution that the solution to this problem can be given in terms of the
to this problem can be given in terms of the solution of golution of an optimization problem where a beatr® x 1

an optimization problem where a best2nn? x 1 vector of o 01 is Jooked for, which has already been solved for the
parameters is looked for, which has already been solved for

the SISO case. Simulations are provided for an example SISO case [7].
which has appeared a few times in the model reference

adaptive control literature. The formulation and solution of II. BASIC DEFINITIONS

this problem illustrates a unifying link between the design of ) .

model reference adaptive control for SISO and MIMO linear The problem of optimally fitting controllers to data
systems. was defined in [7] according to the Willems’ behavioral

approach to dynamical systems [8]. Two basic definitions of
the behavioral framework were used, namely the definition
of a mathematical model and the definition of a data set.

Definition 2.1: A mathematical model is a pa{t, %),
with U the universum — its elements are called outcomes
— and % C U the behavior.

The design of model reference adaptive control for Definition 2.2: A data set is a nonempty subsgtof U.
MIMO linear systems has been considered in several works Using these two definitions, defining a controller as
for the past few years ([1],[2],[3],[4],[5]). However, dif a mathematical model, noticing that the intersection of
ferently from what happens with SISO linear systemdyehaviors is a way of additional restrictions on a system,
where we have “a parameter estimation perspective f&n optimization problem was formulated with the goal of
model reference adaptive control” [6], the identificatioeps finding a best controller from a given class.
for MIMO linear systems has been dealt with, in many Definition 2.3: A controller is a mathematical model.
situations, through the application of arbitrary idenéfion Problem 2.1:Given a class of controller§(U, %¢(0)) |
algorithms. 6 € ©}, where© is a set of parameter vectors, the perfor-

In this work, we show that it is possible to deal withmance (cost) index/;, the operato#’, the time truncation
MIMO controllers in a way analogous to the way SiSooperatorPr, T € Ry, and a data se¥; C P;U, find the set
controllers were dealt with in [7]. More, specifically, we of parameter®©* such that
examine the problem of fitting controllers to data for one . )
class of MIMO controllers used in model reference adaptive ©"(1) =argmin_77(6) @)
control.

In the fitting controllers to data approach we take advan? here
Fage of the the divi_sion of th.e adaptive cpntrol problem 7:(8) A &({ A (b)|be Pr(P?l(.@r)ﬂ%’c(e))})-
in two parts according to [9]: an algebraic part and an
analytic part. From the analytic part we formulate ound& denotes either the mean, the max, or the expectation
class of candidate controllers. The analytic part, howeveiperator and#; is a functional
is substituted by an optimization problem where we try to
find the controller that fits a performance criterion in an Jr:Pr(U) =R
optimal way. Let us notice thatP;(2;) gives all the information

For the MIMO problem, the class of candidate controller§onsistent with the dat@;. The expressiofiP; }(Zr))N %,
and performance criterion are related to the algebraic patves the behavior of the closed loop system.
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[1l. EXAMINATION OF THE MIMO MRAC PROBLEM law, the reference input signal is thenplicitly determined.

The adaptive control problem is usually divided intoln parti_cular, _thi_s means that any reference signal thusly
two parts [9], an algebraic part and an analytic part. Thdetermined will in gener'al depe_nd on hypotheS|zed. contrpl
algebraic part deals with a matching problem whereas tfi@W Parameters. That is, a different reference signal is
analytic part deals with the updating of controller parame2SSociated, in general, with each candidate controlles. Th
ters in such a way that the solution of the matching problerff®St o be considered will have the form

is attained. y—HI[r]|% .
Wl i e 2o
T

Notice that the size of the reference signal has not
een take in consideration in the MIMO MRAC, since a
Frfect matching is expected due to the hypotheses imposed
h the plant. An explanatory reasoning could be that for
hat case the optimal cost would be equal to zero and,
consequently, the size of the denominator in the above

: . : o expression would be irrelevant. Let us notice however, that
ture is parameterized by a variable which is an upper

. o h function minimized is n nvex, what migh
bound on the maximum of the observability indices o{ € cost function to be ed is not convex, what might

o ead to the existence of several local minima, which might
the plant. For the problem qf fitting MIMO controllers tg be a problem for gradient algorithms.
data, on the other hand, since we do not have a priori
plant information, the class of candidate controllers will IV. PROBLEM FORMULATION
be simply indexed by a parameter The data will tell us A The System
whether a given controller of this class corresponds to a

good or a bad match.

A. The Algebraic Part

An examination of the algebraic part of the MIMO
MRAC problem is useful for the specification of the class o
candidate controllers to be used and for the specification
the model to be followed in the formulation of the problemt
of fitting MIMO controllers to data.

For the MIMO MRAC ([3],[4],[5]), the “controller” struc-

Regarding the model to be followed, for the multivariable r(t) u(t) yit)
model reference control problem ([3],[4],[5]) the model to — | Controller?’ Plant &
be followed is given by a matrix r Pe Zp
1
a0
H (S) _ (sta)2 1 ﬁ"i ’ . Fig. 1. Feedback control system.
W Consider the system in Figure 1. As in [7], we omit any

arrows on the block diagram in Figure 1. This illustrates
wheredH;j(s) <ri—1 anda s arbitrary, but fixed a priori. a departure from the usual input/output setting, from the
The matrixH(s) corresponds to the Hermite normal formprocessor point of view. For the fitting controllers to data
of the plant P(s) € 0™™, i.e. there exists a plar®(s) € problem which we are about to formulate,these remarks
O™M such that the following property is satisfied indicate that we are interested in relations involving aign
P(s) = H(S)U(s) inst_ead of functions. More sp_eciﬁcally, notice that reja_ti
’ define sets and subsets, which may be used to define the
with U(s) € 0™™ and limU(s) = Kp. feasible region in an optimization problem. Let us notice,
S however, that this does not preclude the a posteriori use of
For the fitting controllers to data problem, on the othean identified controller in an input/output setting.
hand, we can specify the above model to be followe

d .
but the above statement should be modified to K.(s) B. The Universum

corresponds to the Hermite normal forfor someplant ~ Let (r,y,u) € U whereU = % x & x % = Z,¢. Here
P(s) € OM<m» % = 2y is the set of reference signal®, = g;‘g and

_ U = fzr‘e“ are sets of plant signals, amgd = n. 4 ny +ny.
B. The Analytic Part In this paper we focus on the case=ny =n, =m.

For the fitting controllers to data problem, the analyti
part of the MIMO MRAC problem is substituted by ancc' The Data-Set o o
optimization problem. The cost to be minimized is different The Pplant information imposes restrictions only on the
from the cost used in a fitting models to data problem, sind@@St values of the signais andy. Thus the data set is
it takes in consideration the norm of the reference signa@iven by
Notice that this is important in light of the fact that for the 7 _ _
MRAC problem, the equations that determine the control Ze =% €Pr(U) 1Y =Yoata U= iatal
law constitute a parameter relation between plant signai@r some
and the reference signal. So, given plant data and a control (Ydata Udata) € Pr(# x % ).
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D. The Performance (Cost) Index The class of controllers considered is given by

For the multivariable model reference control problem{(uﬂ*@c(e)) | 6 € ©}, where
([31,[41,[5]) the model to be followed is given by a matrix Be(8) = {(r,y.u) |r = 6Tw(u,y)} and
1
(sta)1 (1) © is the set of Bmx m matrix of real-valued constant
H(s) = (sta)y2-1 (sta)2 ’ ' parameters.
. ' ; V. PROBLEM SOLUTION
(sta)m

A. The Set of Optimal Controllers

wheredH;j (s) < ri —1 anda is arbitrary, but fixed a priori. .
Theorem 5.1:The set of parameter matric&' (1),

Before introducing our performance index, let us define
the norm to be used. O*(r)=arg min &{S(b) |be P(P1(2r)N%B:(0
Definition 4.1: Given a constanto > 0, we define @) geR2nm<m (0] (P70 (00}
the exponentially-weighted truncatet, inner-products s given by
<X,y > and norm||x||; by

6
a [T —20(1—t),,T __ __ _ .
<xy>2 e T ioxnd @ eqmol[E, . . oa]Fo| |-
0+
||X||ré\/<X,X>T- 3 "
e
A —26 B
» | | arg_min (ZANO-20 BIOHCW, 1
Definition 4.2: Let the performance (cost) index be given Per2? 6 D(1)6
by
where
() 8 ly=HUTl/ Il i A(T) App(T) - Au(T)
r((Ly,u)) = 07 I M+ yT:O A T A T . A T
o, otherwise. A(T) = 21.( ) 22,( ) _ 2”_1( ) ;
E. The Class of Candidate Controllers Ani(T)  Ame(T) - Amm(T)
The class of candidate controllers is similar to the one Bi(1)
used in multivariable model reference adaptive control | Ba(1)
(31,[41,[5]) and also similar to the one used in the [9] BO=| “ 7 |,
and [10] for the SISO case. In order to define the class Bm(T)
of candidate controllers, we first define a vector of filters as
in ([7],[11]). Notice that we define a vector of filters, and D1a(7) o - 0
not just a vector of time-domain filtered signals as in [9] D(1) = 0 Do) - 0
and [10]. Let us define: 0 — 2" Y by : S ’
0 0 Dmm(T)
A 0O - 0 .
0O 0 - A . m
I 0 . 0 / g 201 > Hij[Waatd (Hi [Waatd) " dt,
01 -0 0 i=max(j.1}
0. |d )
0 0 - |
Bi(1) = /e‘z"” Hij [Wyatg dt,
(v(q))(O) - 0 (5) ]( ) 0 ZYdata,l IJ[ data]
where (A1) is an asymptotically stable system in control- Cc(r) = /T g 20(1-1) ydata)/datadt
lable canonical form, with 0
- _ —20(1—t)
A(s) = det(s|— A) ©) Dij () = 0 e WdataWdata [ dt for i = Js

0 otherwise and
for some monic Hurwitz polynomial (s) of degreen— 1.

Let us also define Wgata = W(Udata Ydata) (8)

w(uy) = (u" v,y Vi) (7)  provided that]|Ugatallr + [|Yaatallr 7 0.
4501



Proof. Let us prove, first, thaP;(P;1(2;) N %.(0)) is a
unitary set (i.e., it has one and only one point):

2t = {(rny,u) €Pr(U) |
Y = Ydata, U = Udata}
Pri(2) = {(nyueU|

Pz(Y) = Ydata, Pt (U) = Udata}

P (Z0)N%(6) = {(ryu)eU|
Mo[r] = 6Tw(u,y),

Pz(Y) = Ydata, Pt (U) = Udata}

Pr(PrH(20)N%c(6)) = {(ry,u)€Pr(U)]
Mo[r] = QTWdataa

Y = Ydata, U = Udata}-

where wyata is defined by the equatioi8) and by the

equations(4) to (5).

Thus Pr(P;1(2;) N %.(0)) is a unitary set, which im-
plies that we can restrict ourselves to the problem of finding

the set of parametei®*(1) such that

(1) = afgmin{fr(b)IbEPr(Pfl(.@r)ﬂ%c(e))}

in{ |Ydata—H[6 Wdata]”rz}'

= argm
6€o HQTWdata”r
Let us definebs, ..., 6y by
6
o7 =
6,
Then T
6, Wyata
r = 60" Wyata=

GrI\Wdata

and, consequently,

¥ 111 H1j (6] Waatd]

5 T4 Hinj (6] Waata)

(H[)THIr]

= 3 Hij [6] Waatal (Hit [67 Waata]) T
i=1j=1I=1

= S 6] Hij [Waata] (Hil [Wata]) " 6

I
I
s

Il
T
IM3 M3 |
55

3

ZHU [Waatal (Hil [Wdata]) )6

m

™M 3
=

D
"
—~

i=max{j,l}

Hij [Waata (Hil [Waatd)T) 6,

ygataH [l = ZYdatal Z Hij [ 9 Wy ata]

- 6 Zydatal Hij [Waatal

6] S YaataiHij[Waata-
; i i; ataiMij|Wdata)

Let us define
61

92| ' |, andA(r), B(1), C(1), D(1),
Om

as in the statement of the theorem. We can, then, state that
the following equality holds

=T = ~aT

lyaata— H[0 Woardlc* 8 A(1)8— 28 B(1)+C(1)
||9TWdata||T2 ETD(T)E

From this equality and the expression 9, the thesis follows.

O

B. Matrices Properties

Property 5.1: The null space oD(T) is contained in the
null space ofA(t) and in the null space d8"(T).
Proof. We have that

D(1)6=0
= Djj(1)6; =0
= QJ-TD“'(T)QJ'ZO
2
= ||9;-WdataHr =0
2
= |[Hij[6] Waardl[l-” =0

which implies that

Property 5.2: The matriceD(t) and

S o]

are symmetric and positive semi-definite.

Proof. A simple inspection reveals that these matrices are
symmetric. The positive semi-definiteness of these matrice
follows by observing that

HIE 40
= |lyaata— H [0 Waatd [I> > O

QT Z||9 Wdata”r >0
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O as in ([3],[4],[5]). We obtain(Yqata, Ugata) by closing the
loop with the initial controller associated to the matrix of
These properties together with the theorem proved implyarameters

that the optimization problem derived from the problem [ —4 0 ]
of fitting MIMO controllers to data can be reduced to an
L2 i o 0 -1/2
optimization problem derived from a problem of fitting
SISO controllers to data. This problem is solved in [7]. 0 0
VI. EXAMPLE 0 0
6(0) =
Let us choose 0 0
L0
R 0 o
0 s
0 0
as in ([3],[4],[5]). Let us also choosA =-1,1 =1 and
0 = 0.01 The filter w defined in section IV-E is then 0 0

given byw(u,y) = (u", g5 [u"],y", 5 [y"])" and the class ([3],[4],[5]) and the initial plant state given by= 0. Thus

of candidate controllers is given by(U, %c(6)) | 6 € ©}, e are able to use our theory to compute a new controller
where Z(8) = {(r,y,u) | r = 6Tw(u,y)} and 8isa8x2 parameteB(t) based on the data available at any given time
matrix of constant parameters . For purposes of this t — ¢ Controller adaptation is achieved by repeating this
simulation let “the true but unknown plant” be given by theoperation periodically as time evolves and(yqata Udata)
following noisy state space realization of the plant given i gccumulates, in order to update the controller parameter

([31.141.[5]) 6. Using this procedure to update the controller parameter
X = ApX+Byu+0.01n, vector B(t) every 2 secondsstarting at timet = 2, we
obtained the simulation results shown in figures 2 and 3,
y = GCpx _
whereym, = HJr].
where
0 1 0 0 0 0 0] “r T T a0
02 - ¥y,
o o 1 o0 O o0 O of e ,
2 3 30 0 0 0 /ﬁl :
A, =/ 0 0 0 0 1 0 O], 1
0 0 0 0 0 1 0 08, 10 2 P 20 (50 " P 70 P % 100
o o o o O o0 1 0
| 0 0 0 -2 -5 -6 -4 | i
- O O - s 0
00 M
0 10 2 % 2 5 % 70 % % 100
1 0 time(seconds)
Bp=| 0 0], Fig. 2. Simulation Results
00
0 0 VIl. CONCLUDING REMARKS
The problem of fitting controllers to data was examined
L0 1] for one class of MIMO controllers used in model reference

problem lead to an optimization problem where a best
1001 3 3 1 2nmx m matrix is looked for. The solution to this problem
np is a vector of uncorrelated normally distributed randonwas shown to be reduced to the solution of a problem
signals with mean zero, variance one and standard deviatigfiere a best @r? x 1 vector is looked for, which is
one. Let the reference signal solved in [7] when dealing with the identification of SISO
. . . controllers.Thus the problem was solved and an algorithm
— Sin(5t) +sin(7t) + sin(10t) Vi > 0. for fitting MIMO controllers to data was obtained. This
sin(6t) + sin(8t) + sin(9t) B algorithm was applied to a noisy realization of a plant and

[0 1 1 -4 -7 _7 _2] adaptive control ([3],[4],[5]). The formulation of the MI®
p - .
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8(1.1) — a1
8(2,1) 4 - 86,1)
- - 831 )
8(4,1) 3 6(8,1)

0 20 40 60 80 100 0 20 40 60 80 100
time(seconds) time(seconds)

— 812 N — 85,2
- 622 N - 062)
(3,2) off —— — - - -8(72)
(

4.2) ! 6(8.2)

o
P~ —m = 6
8
o

-3 -15
0 20 40 60 80 100 0 20 40 60 80 100
time(seconds) time(seconds)

Fig. 3. Simulation Results

a reference model which appeared in the model reference
adaptive control literature ([3],[4],[5]). Simulation selts
were provided which illustrated the applicability of the
method. On the theoretical side, it was shown that the
formulation of the problem of optimally fitting controllets

data illustrated a unifying link between the design of model
reference adaptive control for SISO linear systems and the
design of model reference adaptive control for MIMO linear
systems.
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