
Control of Nondeterministic Discrete Event
Systems for Bisimulation Equivalence

Changyan Zhou1, Ratnesh Kumar1, Shengbing Jiang2

1Department of ECE, Iowa State University, Ames, IA 50011
2GM R&D and Planning, Warren, MI 48090-9055

Abstract— In this paper we study supervisory control
for enforcing nondeterministic specifications. Given nondeter-
ministic models of system and its specification, we study the
design of a supervisor (possibly nondeterministic) such that the
controlled system is bisimilar to the specification. We obtain
a small model theorem showing that a supervisor exists if and
only if it exists over a certain finite state space, namely the
power set of Cartesian product of system and specification
state spaces. Also, the notion of state-controllability is intro-
duced as part of a necessary and sufficient condition for the
existence of a supervisor. In the special case of deterministic
systems, we provide an existence condition that can be verified
linearly in both system and specification states.
Keywords: Discrete event systems, supervisory control, non-
deterministic systems, bisimulation equivalence, controllability

I. INTRODUCTION

Discrete event systems (DES) are systems with dis-
crete states and are event-driven. Computer, communication,
manufacturing and traffic systems are examples of dis-
crete event systems. DES research deals with its modeling,
design, control, verification and testing, diagnosis, perfor-
mance evaluation, and optimization. Ramadge and Wonham
[13] initiated supervisory control of discrete event systems.
A DES is modeled as an automaton and its behavior
represented by the language of the automaton. A controller,
called a supervisor, is also modeled as another automaton
that exercises control by operating in synchrony with the
system under control. The control objective is to ensure
that the language of the controlled system is as desired.

Extensive research has been done for nondeterministic
systems [3], [11], [15], [8], [16], [9], [7], [6] using language
model as a means of specification. In this paper we study
supervisory control for achieving nondeterministic speci-
fications. Such specifications are useful when designing
a system at a higher level of abstraction so that lower
level details of system and its specification are omitted
to obtain higher level models that are nondeterministic.
Nondeterministic specifications are also meaningful when
the system to be controlled has a nondeterministic model
due to lack of information (caused for example by partial
observation or unmodeled dynamics).

This work was supported in part by the National Science Foundation un-
der the grants NSF-ECS-0218207, NSF-ECS-0244732 and NSF-EPNES-
0323379, and a DoD-EPSCoR grant from the Office of Naval Research
under the grant N000140110621.

While language equivalence is an adequate notion of
behavioral equivalence for deterministic systems, it is not
so for nondeterministic systems, and instead we use the
finest known notion of equivalence, namely the bisimulation
equivalence. Several other models such as failures model
[4], refusal-trace model [12], ready-trace model [1], etc.,
have been proposed in the literature for representing qual-
itative behavior of nondeterministic DES’s. A model more
refined than the language model, namely the trajectory-
model, has been used as specification in [3]. Authors
in [3] show how to transform their control problem of
nondeterministic setting to one of deterministic setting with
an added partial observability.

We use the notion of bisimulation equivalence as speci-
fications for nondeterministic systems. Bisimulation equiv-
alence is the finest known notion of behavioral equivalence
and it was first introduced in communicating systems by
Milner [10]. Choice of bisimulation equivalence is also sup-
ported by the fact that bisimulation equivalence specifica-
tion is equivalent to a specification in the temporal logic of
µ-calculus that subsumes the complete branching-time logic
of CTL∗ [2]. So if a supervisor is designed to ensure that
the controlled system is bisimilar to a specification system,
then this is equivalent to ensuring that the controlled system
satisfies the same µ-calculus or CTL* specification that is
satisfied by the specification system. On the other hand,
a language equivalence based control only guarantees the
satisfaction of a LTL (Linear Temporal Logic) specification
which is a strict subclass of µ-calculus and CTL*.

Control for achieving CTL* specification was studied by
Jiang and Kumar in [5], under the assumption that plant
model is deterministic. In this paper we allow both plant and
specification models to be nondeterministic. Furthermore,
our approach is quite different: In [5], the control problem
was reduced to a decision problem of CTL*, whereas our
results are based on the properties of the automata models
of the plant and the specification. Given nondeterministic
models of plant and its specification, we study the design
of a supervisor (possibly nondeterministic) such that the
controlled system is bisimilar to the specification system.

Our main result is a small model theorem showing that a
supervisor for enforcing bisimulation equivalence between
the specification and the controlled system exists if and only
if it exists over a certain finite state space, namely the power
set of Cartesian product of the plant and the specification

state spaces. Also, a stronger notion of controllability, called
state-controllability, is introduced as part of the necessary
and sufficient condition for the existence of such a super-
visor. State-controllability is stronger than the “language-
controllability”, where the latter is a property of language
models, and the former is a property of the automata mod-
els. We present an algorithm of linear complexity for testing
state-controllability matching the complexity of testing the
language-controllability.

For the special case of deterministic plants we obtain
a necessary and sufficient condition for the existence of
a bisimilarity enforcing supervisor which can be verified
linearly in both plant and specification states. This happens
to be the same as the complexity of verifying the existence
of a supervisor when both plant and specification are
deterministic. Further, the specification model can itself be
used as a supervisor when the plant is deterministic.

The rest of the paper is organized as follows. Section
2 presents a motivating example. Section 3 presents no-
tations and preliminary background. Section 4 provides
some preliminary results needed for developing the theory
for bisimulation equivalence control presented in section
5. Section 6 extends the results of section 5 to general
nondeterministic state machines with multiple initial and
final states and with epsilon transitions. Section 7 discusses
the special case of deterministic plants. The paper concludes
with section 8.

II. A MOTIVATING EXAMPLE

In this section we give an example to illustrate some
of the issues that are prevalent when controlling a nonde-
terministic system.

Example 1: Consider an automatic check-out scanner in
a shopping center, a state machine model G of which is
shown in Figure 1. Initially, a customer presses the start
button to start the check-out process. Then it scans an
item, upon which, owing to a malfunction, the scanner
nondeterministically transitions to one of two states. In the
first state, the scanner allows the customer to either put the
item in a bag, or cancel; whereas in the second state the
only option offered is to put the item in the bag. Not giving
an option to cancel in the second state is unacceptable. A
reset button may be pressed in either of the states to return
to the first state. After this, the scanner waits for either a
request for a next item, or if there is no more items then a
request to pay. In the latter case, scanner returns to its initial
state, and in the former case it goes back to the state from
where check out process resumes. Since a customer must
pay at the end of the check-out process, the event “pay” is
deemed uncontrollable. All other events are controllable.

The specification R, also shown in Figure 1, is given
in order to restrict the plant to exhibit only an acceptable
behavior. According to the specification, after start and scan,
two possible states may be reached nondeterministically.
In both states, cancel is an available option which is what
we desire of the scanner, while put is an additional option

at the first state. The rest of the behavior is the same as
the one feasible in the scanner. Note that the “reset” event
does not appear in the specification state machine since
an occurrence or non-occurrence of it is immaterial to the
specification. This implies that the specification R is for the
plant G projected on to the event set Σ̂ := Σ − {reset},
denoted G ↑ Σ̂. Note that L(R) = L(G ↑ Σ̂), i.e., G ↑ Σ̂

0

1

3

4

scan scan
pay

q

q2

cancel
cancelput

next

start

q

q

qnext

put

1

scan

start

scan

pay
3

0

2

4

x

x

x
x

x

reset reset

putcancel

Fig. 1. The plant G (left) and specification R (right)

is language equivalent to R. Thus if we use language
equivalence as a notion of behavioral equivalence, then there
is no need to control. However, as mentioned above, G can
exhibit some behavior that is not acceptable (i.e., not always
giving the option to cancel after scan). We develop a theory
in this paper that lets us design a supervisor S such that
(G‖S)↑Σ̂ is bisimilar to R.

III. NOTATION AND PRELIMINARIES

Automata are used to model discrete event systems at
the logical level. A nondeterministic automaton is a 5-tuple,

G = (X,Σ, α,X0, Xm),

where X is the set of states, Σ is the alphabet of events,
α : X × (Σ ∪ {ε}) → 2X is the state transition function,
where ε is a label for “silent” or “unobservable” transitions,
X0 ⊆ X is the set of initial states, and Xm ⊆ X is the set
of final states.

Σ∗ denotes the set of all finite sequences of events in
Σ, called event-traces, and includes the zero length trace,
denoted ε. The ε-closure (denoted as ε∗(·)) of x ∈ X is
the set of states reached by the execution of a sequences of
ε-transitions from state x. By using ε-closure map, we can
extend the definition of transition function from events to
traces, α∗ : X ×Σ∗ → 2X , which is defined inductively as:
∀x ∈ X,α∗(x, ε) := ε∗(x);∀s ∈ Σ∗, σ ∈ Σ : α∗(x, sσ) :=
ε∗(α(α∗(x, s), σ)). The language generated (resp., marked)
by G, is denoted as L(G) (resp., Lm(G)). L(G) is the
sequence of events generated starting from the initial state,
i.e., L(G) = {s ∈ Σ∗ | α∗(X0, s) 6= ∅}, and Lm(G) is
the set of generated sequences that end in a marked state,
i.e., Lm(G) = {s ∈ L(G) | α∗(X0, s) ∩ Xm 6= ∅}. Given
Σ̂ ⊆ Σ, we use G↑Σ̂ to denote G obtained by replacing
each transition (x, σ, x′) ∈ X × (Σ− Σ̂)×X by (x, ε, x′).
For notational convenience, we define Σ = Σ ∪ {ε}. For

x ∈ X , we define Σ(x) := {σ ∈ Σ | α(x, σ) 6= ∅} to
denote the set of events defined at state x.

A DES, called a plant, is controlled to restrict it’s behav-
ior so as to prevent any undesirable behavior by dynamically
disabling certain controllable events [14]. Such a controller
is called a supervisor. The supervisor can be modeled as
another automaton operating in synchronous composition
with the plant. The synchronous composition of two au-
tomata G1 and G2, where G1 = (X1,Σ, α1, X01, Xm1)
and G2 = (X2,Σ, α2, X02, Xm2), is the automaton

G1‖G2 = (X1 × X2,Σ, α,X01 × X02, Xm1 × Xm2),

where for x1 ∈ X1, x2 ∈ X2, σ ∈ Σ,
α((x1, x2), σ) =
{

α1(x1, σ) × α2(x2, σ) if σ 6= ε

(α1(x1, ε) × {x2}) ∪ ({x1} × α2(x2, ε)) if σ = ε

Most prior work on supervisory control of DESs deals with
language equivalence between the controlled system and
the specification. However, in nondeterministic setting the
language can not distinguish the structural differences of
two automata that generate the same language. Numerous
notions of behavioral equivalence that are finer than the
language equivalence have been proposed. Bisimulation
equivalence is the finest equivalence among them, and has
been established as an appropriate notion of behavioral
equivalence for nondeterministic systems [17]. We first
introduce the concept of a simulation relation. For simplicity
of presentation we first consider nondeterministic state
machines with single initial state, all states marked and no
epsilon transitions. Extension to general nondeterministic
state machines is discussed in Section 6.

Definition 1: Given two automata G1 and G2 as defined
above, a simulation relation is a binary relation Φ ⊆
X1 × X2 ⊆ (X1 ∪ X2)

2 such that for x1 ∈ X1, x2 ∈ X2,
(x1, x2) ∈ Φ implies

σ ∈ Σ(x1), x
′
1
∈ α1(x1, σ) ⇒

∃x′
2
∈ α2(x2, σ) such that (x′

1
, x′

2
) ∈ Φ.

We write x1 vΦ x2 to denote that there exists a simulation
relation Φ with (x1, x2) ∈ Φ, read as x1 is simulated by
x2.

A bisimulation relation is a symmetric simulation rela-
tion. We write x1 'Φ x2 to denote that there exists a
bisimulation relation Φ with (x1, x2) ∈ Φ, read as x1 is
bisimilar to x2. We sometimes omit the subscript Φ from
'Φ when it is clear from the context. From the definition
of bisimulation relation and simulation relation, we easily
observe that x1 'Φ x2 if and only if x1 vΦ x2, x2 vΦ x1

and Φ is symmetric.
Next we give the definition for the simulation and bisim-

ulation relation between two automata.
Definition 2: Given two automata G1 and G2, G1 is

simulated by G2 (denoted as G1 vΦ G2) if there exists
a simulation relation Φ ⊆ X1 × X2 ⊆ (X1 ∪ X2)

2 with
(x01, x02) ∈ Φ, i.e., x01 vΦ x02. G1 and G2 are said

to be bisimilar (denoted as G1 'Φ G2) if there exists a
bisimulation relation Φ ⊆ (X1∪X2)

2 such that (x01, x02) ∈
Φ, i.e., x01 'Φ x02.

IV. BISIMILARITY PRESERVING STATE-MERGER

We show that when two bisimilar states of a state
machine are merged, the resulting state machine is bisimilar
to the original one.

The next lemma shows simulation and bisimulaiton rela-
tions preserve transitive property. For space consideration,
all proofs are omitted.

Lemma 1: Given G, consider x1, x2, x3 ∈ X .
1) If x1 vΦ x2 and x2 vΦ′ x3, then x1 vΦ′′ x3.
2) If x1 'Φ x2 and x2 'Φ′ x3, then x1 'Φ′′ x3.
We use G〈x,x′〉 to denote the automaton G in which two

states x, x′ ∈ X have been merged to form the merged state
〈x, x′〉.

Theorem 1: Given an automaton G, if x, x′ ∈ X are such
that x ' x′, then G ' G〈x,x′〉.

V. SUPERVISORY CONTROL FOR BISIMILARITY

In this section, we study the control of a nondetermin-
istic plant to ensure bisimilarity of the controlled plant and
the given specification. The set of events is partitioned into
uncontrollable and controllable events: Σ = Σu∪(Σ−Σu).
The events in Σ−Σu can be disabled when desired, while
those in Σu are events that the supervisory controller cannot
disable. This is ensured by requiring the supervisor to be
Σu-compatible. Unless otherwise stated, we will use G =
(X,Σ, α, x0), R = (Q,Σ, δ, q0), and S = (Y,Σ, β, y0)
to denote the plant, the specification, and the supervisor,
respectively.

Definition 3: A supervisor S is said to be Σu-compatible
if each uncontrollable event is defined at each state of S.
In the deterministic setting, the controllability of specifica-
tion language L(R) with respect to plant language L(G)
and uncontrollable event set Σu is defined as: L(R)Σu ∩
L(G) ⊆ L(R). This definition of “language-controllability”
requires the following extension to the nondeterministic
setting where instead of language models, automata models
are used for plant and specification.

Definition 4: Given plant automaton G and specification
automaton R with L(R) ⊆ L(G), we say R is state-
controllable with respect to G and Σu if

s ∈ L(R), σ ∈ Σu such that sσ ∈ L(G)

⇒ ∀qs ∈ δ(q0, s), σ ∈ Σ(qs).
The following lemma establishes a type of equivalence

between Σu-compatibility and state-controllability.
Lemma 2: Suppose S is state-controllable with respect

to G and Σu. Define S′ as S augmented with self-loops at
each state on undefined uncontrollable events at the state.
Then S′ is Σu-compatible and G‖S ' G‖S ′.

We next present our main result on existence of supervi-
sor S for plant G such that G‖S is bisimilar to specification
R.

Theorem 2: Given nondeterministic G and R, there ex-
ists a Σu-compatible supervisor S such that G‖S ' R if
and only if there exists a state-controllable automaton T

with state space 2X×Q such that G‖T ' R.
Remark 1: From Theorem 2, an exhaustive search can

be performed to determine the existence of a supervisor
S over the state space 2X×Q, the complexity of which is
O(22

|X|×|Q|

). Since there may exist more systematic ways
of searching for a desired S, the tightness of the upper
bound complexity remains open.

A condition in Theorem 2 is that of state-controllability.
We present below an algorithm of polynomial complexity
for verifying state-controllability of an automaton R with
respect to a plant G.

Algorithm 1: Algorithm for testing state controllability
of R = (Q,Σ, δ, q0) with respect to G = (X,Σ, α, x0).

1) Construct R by augmenting R with a new state called
dump, and by adding transitions at each state of R

on each undefined uncontrollable event at that state
to the dump state, i.e., R = (Q ∪ {dump},Σ, δ, q0),
where ∀q ∈ Q, σ ∈ Σ :

δ(q, σ) =

{

δ(q, σ) if σ ∈ Σ(q)
dump if σ ∈ Σu − Σ(q)

2) Obtain G‖R.
3) R is state-controllable with respect to G if and only

if there does not exist x ∈ X such that (x, dump) is
reachable in G‖R.

Remark 2: The complexity of the algorithm for testing
state-controllability of R with respect to G is O(|X|×|Q|),
i.e., it is linear in the number of states of both G and R.
This complexity is the same as that of testing language-
controllability in the deterministic setting.

VI. EXTENSION TO GENERAL NONDETERMINISTIC
SETTING

In this section, we extend our earlier results on su-
pervisory control for bisimulation equivalence to allow for
general NSM models that can consist of marked states,
multiple initial states, and ε-transitions. The definition of
simulation relation can be extended as follows.

Definition 5: Given G1 = (X1,Σ, α1, X01, Xm1), G2 =
(X2,Σ, α2, X02, Xm2), a simulation relation is a binary
relation Φ ⊆ X1×X2 ⊆ (X1∪X2)

2 such that (x1, x2) ∈ Φ
implies

1) σ ∈ Σ, x′
1
∈ α∗

1
(x1, σ) ⇒ ∃x′

2
∈ α∗

2
(x2, σ), such that

(x′
1
, x′

2
) ∈ Φ;

2) x1 ∈ Xm1 ⇒ x2 ∈ Xm2.
A bisimulation relation Φ ⊆ (X1 × X2)

2 is a symmetric
simulation relation. Definition of simualtion and bisimula-
tion relations for two automata in the general setting is given
as follows.

Definition 6: Given G1 and G2 as in Definition 5, G1 is
simulated by G2 (denoted as G1 vΦ G2) if there exists a
simulation relation Φ ⊆ X1 × X2 ⊆ (X1 ∪ X2)

2 such that
x01 ∈ X01 ⇒ ∃x02 ∈ X02 such that (x01, x02) ∈ Φ, i.e.,

X01 vΦ X02. G1 and G2 are said to be bisimilar (denoted
as G1 'Φ G2) if there exists a bisimulation relation Φ ⊆
(X1 × X2)

2 such that X01 'Φ X02.
We say that G1 ' G2 with respect to Σ̂ ⊆ Σ if G1↑ Σ̂
' G2↑ Σ̂. All results of the previous two sections hold for
the setting of this section, including the following extension
of the small model theorem.

Theorem 3: Given plant G and specification R, there
exists a Σu-compatible supervisor S such that G‖S ' R

if and only if there exists a state-controllable automaton T

with state space 2X×Q such that G‖T ' R.
Now we revisit the motivating example.

y y

y

start

pay

y

0

1

0 ,

1

0

cancel

put cancel

y

y next
2 ,

, 1

2 ,

scan

3

4

2

5

6

reset reset

scan
2 , 2 , 3 , 2 2 , , 3 ,3 3

2 3

qx

x q

x q x q x q x q

x qx q

4 , 4x q

y

y

y y

y y

y

0

1

2 3

4 5

5

(){ }

(){ }

({) ()}() (){ }

()}{

({)}

(){ }

y

Fig. 2. Supervisor S (left) and labeling of its states (right)

start

0 0

1 1

y

y

y3

cancel

pay

scan

2

y23 y2 3

y5

scan scan scan

3

x

x

x x x

x

x2y2

ε ε εε

x2y4

x4y6

cancel

next

put

Fig. 3. Controlled system (G‖S)↑Σ̂

Example 2: We need to find a Σu-compatible supervisor
S such that (G‖S)↑Σ̂ 'R, where Σ̂ = Σ−{reset}. Such a
supervisor S is shown in Figure 2. (S is state-controllable,
and can be made Σu-compatible by adding appropriate un-
controllable event self-loops.) The synchronous composition
of G and S is drawn in Figure 3. The following bisimulation
relation Φ exists between (G‖S)↑Σ̂ and R:

Φ = {(x0y0, q0), (x1y1, q1), (x2y2, q2), (x2y3, q3),

(x3y2, q2), (x3y3, q3), (x2y4, q2), (x2y5, q3),

(x4y6, q4), (q0, x0y0), (q1, x1y1), (q2, x2y2),

(q2, x3y2), (q3, x2y3), (q3, x3y3), (q2, x2y4),

(q3, x2y5), (q4, x4y6)}.

Thus, the controlled system is bisimilar to the specification
with respect to Σ̂. States in S can be labeled by elements of
2X×Q as guaranteed by Theorem 2 (shown in Figure 2). A
state (x, q) ∈ X × Q belongs to the label of a state y ∈ Y

of S if (x, y) appears in G‖S (i.e., exists a common trace
from x0 to x in G and from y0 to y in S so (x, y) is a
reachable state of G‖S), and (x, y) is bisimilar to state q of
R. All states of S with identical labels may be merged to
obtain the state machine T stated in Theorem 2. T is same
as S in this case, and so G‖T = G‖S.

VII. SPECIALIZATION TO DETERMINISTIC PLANT

In this section, we study the specialized case when
plant is deterministic. It turns out that for a deterministic
plant, whenever a supervisor exists, the specification itself
can serve as a supervisor, i.e., G‖R ' R, which leads to
a polynomial complexity result for the existence as well as
the synthesis of a supervisor.

Theorem 4: Given a deterministic plant G and a pos-
sibly nondeterministic specification R, there exists a Σu-
compatible supervisor S such that G‖S ' R if and only
if

1) R is state-controllable, and
2) L(R) ⊆ L(G).
Remark 3: From Theorem 4, the complexity for check-

ing the existence of a supervisor for enforcing bisimilarity
for a deterministic plant is O(|X| × |Q|), which is linear
in the number of states of plant and specification. This
is the same as the existence complexity when both plant
and specification are deterministic. Moreover, when the
existence conditions are satisfied, the specification itself
serves as a supervisor, i.e., the complexity of synthesiz-
ing a supervisor is linear in the specification states. It is
interesting to note that when specification is deterministic
but plant is nondeterministic, the complexity of existence
is again polynomial [3]. In contrast, we have shown the
situation is different when both plant and specification are
nondeterministic.

VIII. CONCLUSION

In this paper, we extended the prior work on supervi-
sory control in deterministic as well as nondeterministic
setting by allowing both plant and specification to be
nondeterministic, and requiring control specification to be
bisimulation equivalence of specification and controlled
plant. We have shown that the bisimilarity is preserved
under the merger of bisimilar states. We extended the
controllability concept in language setting to a stronger
notion, called state-controllability, as part of the necessary
and sufficient condition for the existence of the supervisor
and provided a polynomial complexity test for it. We
obtained a small model theorem showing that a supervisor
exists if and only if it exists over a certain finite state
space. We also obtained a necessary and sufficient condition
for the existence of a bisimilarity enforcing supervisor for
the special case of deterministic plants. In this case, the

complexity of verifying existence using our condition is
linear in both the plant and specification states. Also, in this
case, the specification can itself be used as a supervisor,
implying the size of supervisor is linear in the size of
specification.

REFERENCES

[1] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Ready-trace
semantics for concrete process algebra with the priority operator.
The Computer Journal, 30(6):498–506, 1987.

[2] M. Hennessey and R. Milner. Algebraic laws for nondeterminism
and concurrency. Journal of ACM, 32:137–161, 1985.

[3] M. Heymann and F. Lin. Discrete-event control of nondeterministic
systems. IEEE Transactions on Automatic Control, 43(1):3–17,
January 1998.

[4] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,
Inc., Englewood Cliffs, NJ, 1985.

[5] S. Jiang and R. Kumar. Supervisory control of discrete event systems
with CTL∗ temporal logic specification. In 2001 IEEE Conference
on Decision and Control, pages 4122–4127, FL, December 2001.

[6] S. Jiang and R. Kumar. Supervisory control of nondeterministic
discrete event systems with driven events via masked prioritized syn-
chronization. IEEE Transactions on Automatic Control, 47(9):1438–
1449, 2002.

[7] R. Kumar and M. Heymann. Masked prioritized synchronization for
interaction and control of discrete event systems. IEEE Transactions
on Automatic Control, 45(11):1970–1982, 2000.

[8] R. Kumar and M. A. Shayman. Non-blocking supervisory control
of nondeterministic systems via prioritized synchronization. IEEE
Transactions on Automatic Control, 41(8):1160–1175, August 1996.

[9] R. Kumar and M. A. Shayman. Centralized and decentralized super-
visory control of nondeterministic systems under partial observation.
SIAM Journal of Control and Optimization, 35(2):363–383, March
1997.

[10] R. Milner. A Calculus of Communicating Systems. Springer Verlag,
1980.

[11] A. Overkamp. Supervisory control for nondeterministic systems.
In Guy Cohen and Jean-Pierre Quadrat, editors, Lecture Notes in
Control and Information Sciences 199, pages 59–65. Springer-Verlag,
New York, 1994.

[12] I. Phillips. Refusal testing. Theoretical Computer Science, 50:241–
284, 1987.

[13] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of
discrete event processes. SIAM Journal of Control and Optimization,
25(1):206–230, 1987.

[14] P. J. Ramadge and W. M. Wonham. The control of discrete event
systems. Proceedings of IEEE: Special Issue on Discrete Event
Systems, 77:81–98, 1989.

[15] M. Shayman and R. Kumar. Supervisory control of nondeterministic
systems with driven events via prioritized synchronization and trajec-
tory models. SIAM Journal of Control and Optimization, 33(2):469–
497, March 1995.

[16] M. A. Shayman and R. Kumar. Process objects/masked compo-
sition: An object oriented approach for modeling and control of
discrete event systems. IEEE Transactions on Automatic Control,
44(10):1864–1869, 1999.

[17] Y. Willner and M. Heymann. Supervisory control of concurrent
discrete-event systems. International Journal of Control, 54(5):1143–
1169, 1991.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrA17.5
	Page0: 4488
	Page1: 4489
	Page2: 4490
	Page3: 4491
	Page4: 4492

