
Resilience to Failures and Reconfigurations in the Supervision
Based on Place Invariants

Marian V. Iordache and Panos J. Antsaklis

Abstract— The supervision based on place invariants (SBPI)
is a very efficient technique for the enforcement of linear mark-
ing constraints on Petri nets. In this paper we first outline the
SBPI and the extension of the SBPI for liveness enforcement.
Then we discuss the qualities and limitations of these methods
from a fault tolerance/reconfigurations perspective.

I. I NTRODUCTION

The supervision based on place invariants (SBPI) [1], [2],
[3] constrains the markingµ of a plant Petri net (PN) to
satisfy specifications of the form

Lµ ≤ b (1)

whereL ∈ Z
nc×m, b ∈ Z

nc , Z is the set of integers,m
is the number of places of the PN, andnc the number of
constraints. This class of specifications is powerful enough
for many applications [3]. In particular, in the case ofsafe
PNs any state specification can be written in the form
(1) [4], [1] and the derivation of (1) from a Boolean
expression can be carried out rather easily [4], [2]. Further,
the problem of enforcing languages of PNs with distinct
labels can be reduced to the enforcement of (1) on an
enhanced plant PN [5]. This class of languages as well as
the languages corresponding to (1) are neither a subset nor
a superset of the regular languages.

The enforcement of constraints (1) was considered first
in [1]. In [6], the computation of the supremal controllable
subpredicate was applied to (1) for partially controllable
PNs. Computationally efficient but suboptimal methods for
the design of supervisors enforcing (1) have appeared in [3],
[7], dealing not only with partial controllability but also
with partial observability. There are also other approaches
for various subclasses of (1), such as in [8], [9], and
for marked graphs [10]. Unlike to the supervisory control
developments in the Ramadge and Wonham setting [11], the
issue of nonblocking supervision has not been considered
in the original papers proposing the SBPI. Instead, the
issues of deadlock prevention and liveness enforcement
have been dealt with separately in [12], [13]. Combining
specifications (1) with liveness enforcement has also been
considered in [14] for resource allocation systems. Software
tools implementing SBPI methods are available [15].

This paper aims to emphasize some remarkable qualities
of the SBPI in the context of faults and reconfiguarations.

The authors are with the Department of Electrical Engineering, Uni-
versity of Notre Dame, IN 46556, USA. E-mail: iordache.1, antsak-
lis.1@nd.edu.

The authors gratefully acknowledge the partial support of the Lockheed
Martin Corporation, of the National Science Foundation (NSF ECS99-
12458), and of DARPA/IXO-NEST Program (AF-F30602-01-2-0526).

We will discuss both the SBPI and also its extension to
liveness enforcement [13], [16]. This discussion applies
also to other extensions of the SBPI not considered here,
such as the enforcement of extended constraints [5] and
decentralized control [17]. We will show that the SBPI
designs can be robust under various circumstances when the
faults/reconfigurations are modeled as changes in marking
by token loss/gain or changes in the parameter “b” of
(1). We also show that in our setting the changes of
controllability/observability that are not critical to a SBPI
design can be easily identified.

The paper is organized as follows. In section II we
introduce the SBPI. Then, the extension of the SBPI
for liveness enforcement is outlined in section III. The
fault/reconfiguration properties are studied in section IV.

II. OUTLINE OF THE SBPI

The system to be controlled is calledplant, and is
assumed to be given in the form of a PNN = (P, T, F, W),
whereP is the set of places,T the set of transitions,F ⊆
(P × T)∪ (T ×P) the set of transition arcs,W : F → N

∗

the weight function, andN∗ the set of positive integers. The
SBPI provides a supervisor enforcing (1) in the form of a
PN Ns = (Ps, T, Fs, Ws) with

Ds = −LD (2)

µ0,s = b − Lµ0 (3)

whereDs is the incidence matrix of the supervisor,µ0,s the
initial marking of the supervisor, andµ0 the initial marking
of N . The places of the supervisor are calledcontrol places.
The supervised system, that is theclosed-loopsystem, is a
PN of incidence matrixDc = [DT , (−LD)T]T . Note that
the control places participate in the place invariants:

µs = b − Lµ (4)

Example 2.1 The PN of Fig. 1(a) adapts a PN model of [3]
of an unreliable machine [18], [3]. Assuming we desire to
enforce

µ1 + µ2 + µ5 ≤ 1 (5)

µ3 + µ7 ≤ 1 (6)

by (2–3) we obtain supervisor shown in Fig. 1(b), consisting
of the control placesC1 andC2. Note that for all reachable
markings we have the following place invariants

µC1 = 1 − µ1 − µ2 − µ5 (7)

µC2 = 1 − µ3 − µ7 (8)

This shows why the supervision is said to be “based on
place invariants”. 2

The optimality of the supervision design is summarized
in the following result from [3], [2]:

Theorem 2.1 [3], [2] If Lµ0 ≤ b then the PN supervisor
with incidence matrixDs = −LD and initial marking
µ0,s = b − Lµ0 enforces the constraintLµ ≤ b when
included in the closed-loop systemDc = [DT , DT

s]T .
Furthermore, the supervision is least restrictive.

Let µc be the marking of the closed-loop, and letµc|N
denoteµc restricted to the plantN . Let t ∈ T be a transi-
tion. t is closed-loop enabledif µc enablest. t is plant-
enabled, if µc|N enablest in N . The supervisordetectst
if t is closed-loop enabled at some reachable markingµc

and firing t changes the marking of some control place.
The supervisorcontrols t if there is a reachable marking
µc such thatt is plant-enabled but not closed-loop enabled.

In PNs with uncontrollable and unobservable transitions,
admissibility issues arise. Indeed, a supervisor designed
as in (2–3) may include control places preventing plant-
enabled uncontrollable transitions to fire, and may contain
control places with marking varied by firings of closed-
loop enabled unobservable transitions. Such a supervisor
is clearly not implementable. A supervisor is admissible,
if it only controls controllable transitions, and it only
detects observable transitions. The constraintsLµ ≤ b are
admissible if the supervisor defined by (2–3) is admissible.
When inadmissible, the constraintsLµ ≤ b are transformed
(if possible) to an admissible formLaµ ≤ ba such that

Laµ ≤ ba ⇒ Lµ ≤ b (9)

Then, the supervisor enforcingLaµ ≤ ba is admissible, and
enforcesLµ ≤ b as well.

Example 2.2 Assumet2 andt5 uncontrollable in Fig. 1(a).
Then µ2 + µ5 ≤ 1 is not admissible, as enforcing it may
attempt controlling either oft2 and t5. However, it can be
checked thatµ1 +µ2 +µ5 ≤ 1 is admissible andµ1 +µ2 +
µ5 ≤ 1 ⇒ µ2 + µ5 ≤ 1. 2

Note that there are “structural” conditions that are suffi-
cient for admissibility. They provide both a quick admissi-
bility test and a principle for the design of the transformed
constraintsLaµ ≤ ba. They can be seen as inequalities in
termsL and D. Thus, to ensure that the supervisor (2–3)
controls only the controllable transitions it is sufficient to
require [3], [7]:

LD(·, Tuc) ≤ 0 (10)

whereTuc is the set of uncontrollable transitions. Further, to
ensure that the supervisor (2–3) detects only the observable
transitions it is sufficient to require [3], [7]:

LD(·, Tuo) = 0 (11)

whereTuo is the set of unobservable transitions. Given (1)
and an initial markingµ0, (10) and (11) are only sufficient

(b)(a)

p

t 5 t 2

p7

C 1

C 2

t 1

t 7 t

6

1

2pp5

p3

t 3

t 6

p4p

4

t 5 t 2

t 3t 6
t 4

t 7

7

p1

t 1

2pp5

p6 p4

p3p

Fig. 1.

for admissibility. However, ifL is fixed andµ0 and b are
variables, we have the following optimality property.

Theorem 2.2[16] The supervisor of (2–3) is admissible for
all µ0 and b ≥ Lµ0 iff L satisfies (10–11).

Note that a design robust to variableµ0 andb can be of
interest in the context of failures and reconfigurations. One
fact that has not been noticed before is that admissibility
conditions of the same type as (10–11) can be found for the
more general PNs that label the PN transitions with events
in a setΣ, similar to the labeling of state machines in the
superviosory control setting of [11]. Such a “labeled” PN is
defined asN = (P, T, F, W, λ), whereλ : T → Σ∪ {ε} is
the labeling function andε the null event. In this setting, a
supervisor controls/observes events rather than transitions.
Let Σuc/Σuo denote the set of uncontrollable/unobservable
events. (Naturally,ε ∈ Σuc and ε ∈ Σuo.) Then the
admissibility conditions can be written as:

∀t1, t2 ∈ T, λ(t1) = λ(t2) ⇒ LD(·, t1) = LD(·, t2) (12)

∀t ∈ T, λ(t) ∈ Σuc ⇒ LD(·, t) ≤ 0 (13)

∀t ∈ T, λ(t) ∈ Σuo ⇒ LD(·, t) = 0 (14)

Note that (12–14) can be written compactly asLA ≤ 0, for
some matrixA. This means that methods findingLa andba

subject to (9) and (12–14) are readily available. Indeed, the
methods of [3], [9] findingLa andba such thatLa satisfies
(9) and (10) or (9–11) can be applied also here, by replacing
(10) with LA ≤ 0.

This indicates that the SBPI can approach very general
supervisory settings. Compared to what has been considered
in the PN literature [19], the setting of [20] is harder
to incorporate here. It involves disabling/enabling groups
of transitions, as opposed to individual transitions, while
each transition being observable. Here, this would lead to
nonlinear admissibility constraints.

III. L IVENESSENFORCEMENT

As shown in the previous section, several qualities of
the SBPI are as follows. First, it allows the design of

supervisors enforcing (1) under very general settings. Sec-
ond, the design can be carried out independently of the
initial marking andb, the free-term of (1). This quality
is of interest in the context of faults/reconfigurations, as
it shows the design can be easily adapted to changes in
marking and certain changes in the specifications. However,
the SBPI enforcement does not ensure the supervision will
avoid deadlocks. This section proposes an approach that
enhances (1) with additional constraints of the same type
such that liveness specifications are satisfied. Because this
approach relies too on the admissibility constraints (10)
and (11), the additional constraints produced are admissible,
while the design is still independent of the initial marking.
However, if willing to give up this quality, we could use
another approach to generate the additional constraints, such
as the liveness enforcement approach for fully observable
and bounded PNs of [21].

Given a PNN of initial markingµ0, a transitiont is live
if for all reachable markingsµ, there is an enabled firing
sequence that includest. GivenT ⊆ T , (N , µ0) is T -live
if all t ∈ T are live. Further,(N , µ0) is live if T -live (i.e.,
all transitionst are live).

Example 3.1 Note that the PN of Fig. 1(b) is not live,
and not even deadlock-free: the sequencet1, t2, t7 leads to
deadlock. Here, the supervisor causes deadlock, as the plant
in Fig. 1(a) is live. This section will consider enhancing a
specificationLµ ≤ b with additional constraintsL′µ ≤ b′

such that the resulting supervised system is live. 2

A procedure for the design ofT -liveness enforcing
supervisors has been proposed in [16], [13]. This is the
input of the procedure:

1) A PN N and the setT ⊆ T ;
2) The sets of uncontrollable and unobservable transi-

tions,Tuc andTuo;
3) Optionally, the set of reachable-marking constraints

(RMC) Gµ ≤ h.

Note that the RMC describe constraints that the reachable
markings are known to satisfy. Formally, given a set of
initial markings of interestMI , the RMC satisfy that
∀µ0 ∈ MI ∀µ ∈ R(N , µ0): Gµ ≤ h, whereR(N , µ0)
is the set of reachable markings of(N , µ0). The RMC is
an optional argument, and its implicit value corresponds to
N

m (all possible markings). The output of the procedure is
the following:

1) Two sets of constraintsCµ ≤ d and C0µ ≤ d0,
describing the supervisor.

2) A boolean variableLR, where LR = TRUE in-
dicates least-restrictive supervision.1 (LR is set by
checking sufficient conditions for least-restrictive su-
pervision; in principle, the supervision could be least-
restrictive also whenLR = FALSE).

1For the simplicity of the presentation,LR has not been included in the
procedures of [16], [13]; however, it is implemented in the package [15].

3) A boolean variableTERM , where TERM =
TRUE indicates successful termination.

The role of the constraintsCµ ≤ d and C0µ ≤ d0 is
described in the following theorem from [16], [13].

Theorem 3.1 If the procedure terminates andTERM =
TRUE, thenCµ ≤ d is admissible and(N , µ0) supervised
according to Cµ ≤ d is T -live for all initial markings
µ0 ∈ MI satisfyingC0µ0 ≤ d0 and Cµ0 ≤ d.

Note that MI = N
m when no RMC is given. On

the other hand, when an RMC is given, the supervisor
design may rely on it, and soT -liveness enforcement is
not guaranteed forµ0 /∈ MI .

As Theorem 3.1 shows, the initial marking is a variable,
not a given input, just as in the SBPI. In this context, this is
what “least restrictive supervision” means. The supervisor
defined byCµ ≤ d andC0µ ≤ d0 is least restrictive if for
all initial markingsµ0

- if Cµ0 6≤ d or C0µ0 6≤ d0, no T -liveness enforcing
supervisor of(N0, µ0) exists.

- if Cµ0 ≤ d andC0µ0 ≤ d0, the supervisor enforcing
Cµ ≤ d is the least restrictiveT -liveness enforcing
supervisor of(N0, µ0).

Note that if the procedure terminates and certain sufficient
conditions are satisfied, the supervisor given byCµ ≤ d
and C0µ ≤ d0 is guaranteed to be least restrictive. In
particular, whenT = T (full liveness enforcement),N
is fully controllable and observable (Tuc = ∅ and Tuo =
∅) and the procedure terminates, the procedure generates
the least restrictive liveness enforcement supervisor, if a
liveness enforcing supervisor exists.

Example 3.2 As shown before, enforcing the specification
(5–6) on the PN of Fig. 1(a) leads to deadlock. To add
new constraints that ensure liveness, we start with the PN
of Fig. 2(a), corresponding to the closed-loop of Fig. 1(b).
Consider applying theT -liveness enforcing procedure with
T = T (full liveness desired),Tuo = ∅ andTuc = {t2, t5}.
Due to (7–8), the RMC areµ1 +µ2+µ5 +µ9 = 1 andµ3+
µ7 + µ8 = 1. The procedure terminates with the following
constraintsCµ ≤ d:

µ1 + 2µ2 + µ5 + µ7 + µ8 + µ9 ≥ 2 (15)

µ1 + µ2 + µ3 + 2µ5 + µ8 + µ9 ≥ 2 (16)

and the following constraintsC0µ ≤ d0

µ3 + µ4 ≥ 1 (17)

µ6 + µ7 ≥ 1 (18)

In view of the RMC,µ8 and µ9 can be substituted, and
then (15) and (16) become

µ2 − µ3 ≥ 0 (19)

µ5 − µ7 ≥ 0 (20)

The supervised PN is shown in Fig. 2(b), while Fig. 2(c)
shows the original plant supervised with (5–6) and the
additional constraints (19–20) for liveness enforcement.2

The procedure of [16], [13] does not have guaranteed
termination. In practice, the termination issue can be mit-
igated by using “transformations to EAC-nets” instead of
“AC-nets” [16]. However, the total elimination of this issue
is a matter of further research.

IV. FAULT /RECONFIGURATION PROPERTIES

A. Changes in marking

Changes in marking could model failures or certain re-
configurations. For instance, in a model of a manufacturing
system, loss of tokens could refer to machine breakdown,
while gain of tokens to new machines being added to the
system. Let∆µ denote the marking change by either gain
or loss of tokens. In this section we deal with two questions:
“When needs a marking change∆µ be detected?” and
“How should the supervisor be updated when a marking
change∆µ is detected?” Note the following. Given a
specificationLµ ≤ b:

1) If L∆µ 6≤ 0, the change should be detected, or else
the specification may be violated.

2) If L∆µ ≤ 0 andL∆µ 6= 0, the only effect of an un-
dected change may be overly restrictive supervision.

3) If L∆µ = 0, the change of marking has no effect on
the supervision.

4) If ∆µ is detected, the marking of the control places
should be updated according toµs = µs −L∆µ (see
equation (4)). There are two cases

a) if µs 6≥ 0, the supervisor needs redesign.
b) if µs ≥ 0, no redesign is required, as Theo-

rem 2.1 can still be applied.
The same remarks apply also to the supervisors generated
by the liveness enforcement procedure, where we have to
considerCµ ≤ d and C0µ ≤ d0 instead ofLµ ≤ b and
Theorem 3.1 together with Theorem 2.1.

Example 4.1 We consider here the manufacturing example
of [12], which is shown in Fig. 3. There, to prevent
deadlock, the following constraints were generated:

µ1 + µ6 ≥ 1 (21)

µ4 + µ7 ≥ 1 (22)

µ3 + µ4 + µ5 + µ7 + µ8 ≥ 2 (23)

2µ1 + µ3 + µ4 + 3µ5 + µ6 + µ7 + µ8 ≥ 5 (24)

where (21–23) correspond toCµ ≤ d, being implemented
by C1 . . . C3, and (24) toC0µ ≤ d0. We illustrate the
remarks 1, 2, and 4 for the markingµ shown in Fig. 3:

1) If p1 loses one token (a machine breaks down and
becomes unusable), thenC∆µ 6≤ 0. If the change
goes unnoticed, the marking ofC1 (which, by (21)
must satisfy the invariantµC1 = µ1 + µ6 − 1) is
not decremented. Thus, the sequencet13t13t1t2 stays
enabled. Firing it leads to a marking that violates (21)
(creating a local deadlock too.)

2) If p1 gains one token (e.g. a broken machine is fixed),
then C∆µ ≤ 0 and C∆µ 6= 0. If the change goes

unnoticed, the marking ofC1 is not incremented.
Therefore, the supervision becomes more restrictive,
as the sequencet13t13t13t13t1t1t2t2, which is legal
under the new circumstance, is not allowed byC1.
However, the specification remains enforced.

4. In case 1 above, the marking ofC1 is to be updated as
µC1 → µC1 − 1, and in case 2 asµC1 → µC1 + 1. In
both casesµC1 ≥ 0, and so no redesign is necessary
(cf. Theorem 3.1 and Theorem 2.1). 2

Changes in marking may render a specification infeasible.
For instance, when a manufacturing system has lost enough
many resources, it can no longer be live. In such situations
attempting to redesign the supervisor is useless, as no
solution exists. Two alternatives are possible: relaxing the
specification, which is considered in section IV-C, and
reconfiguring the system. In the PN literature, the latter
approach has been used in [22] to remove the resources
involved in deadlocked parts of the system and use them in
other parts of the system that could continue their operation.
In [22], faults are modeled by loss of tokens, as in this
section.

We have assumed the initial marking to be known.
In the literature, the SBPI has been adapted to the case
when the initial marking is unknown in [23], based on
marking estimation. This suggests also that the case in
which faults are not detected could be approached in the
same framework.

B. Actuator/Sensor failures

We include here the failures that cause changes in the
sets of uncontrollable and unobservable transitionsTuc and
Tuo. Thus, an actuator failure would increase the set of
uncontrollable transitions, while a sensor failure the set of
unobservable transitions. LetT ′

uc andT ′
uo be the newTuc

andTuo after a failure has occurred. Two questions arising
here are: “Which faults need to be detected, to ensure proper
operation of the supervisor?” and “Which faults require
supervisor redesign?”

The design based on the admissibility conditions (10–11)
has the following qualities:

1) The admissibility conditions allow a quick (or online)
identification of critical faults, where a fault is critical
if it requires redesign. Indeed, givenDs = D+

s −D−
s

the incidence matrix of the supervisor and the input
and output matricesD+

s andD−
s , note that:

a) (10–11) are not affected byt becoming unob-
servable ifD+

s (·, t) = D−
s (·, t).

b) (10–11) are not affected byt becoming uncon-
trollable if D−

s (·, t) = 0.

Note that when (10–11) remain satisfied, the supervi-
sor does not need redesign.

2) The conditions (10–11), if not satisfied after the
failure, indicate also which part of the supervisor
needs update.

(c)(b)(a)

p2

1pC 3 4C

7p
2t5

p

6p 4p

4t6t
3t

3p
5

t

6t
3t

3p
5p p2

1p

t

8p

9p

1t

6p 4p

7t 4

6p 4p

7t 4t6t
3t

t

7p
2t5t

8p

9p

1

3

t

1t

 2C

 1C

7p
2t5t

7

p
5p p2

1p 3C 4C

Fig. 2.

(a) (b) (c)

OUT

IN
PARTS

PARTS

PARTS

OUT PARTS IN

DISCARD

OUT

PARTSPARTS IN

WA 4WA 3WA 1

WA 2

MA 1 MA 2 MA 3

()()()

))

)

(()

(

(

22 2

3

2

2

2

3

2 2

p

14t

11p

13t

9p

2t

15t

13p

1t

p

9t

10p

5t

 3C

 1C

7t

6t

8t

7

11

8p5p

7p6p

1p

4p

311 t

10t

8p

4p

12t

6p

p12

3p

1p

2
p

15t

8t

9t

10p

t

10t
7t

6t
5

135pp2

11p

14t

9p

t

6p

p12

3p

1p

5p
3t

 2C

4t

p

t

8p

7p4p

13t12t

4t

3t

2t
1

Fig. 3.

3) The update for safety constraintsLµ ≤ b (but not
for liveness enfocement!) may be feasible online, as
there are efficient algorithms that can find admissible
Laµ ≤ ba satisfying (9) subject to (10–11); see [3],
[7], [24].

In addition, note also that in our approach
4) No update is required when the observations oft and

t′ become indistinguishable ifDs(·, t) = Ds(·, t′).
5) The supervisor operates properly, whether the faults

that are not critical are detected or not. However, the
critical faults need to be detected.

Example 4.2 We illustrate here the points 1, 2, and
4 on Fig. 1(b) and the constraints (5–6). Note thatC1

corresponds to (5) andC2 to (6).
1) Since none oft2 and t5 is connected to either ofC1

andC2, the fault leading tot2 andt5 uncontrollable or
unobservable is not critical. Also, sinceC1, C2 /∈ •t6,
the fault leading tot6 uncontrollable is not critical.

2) If t7 becomes uncontrollable, only the implementation
of (6) is affected.

4) If the observations oft6 andt3 become indistinguish-
able, the supervisor is not affected, ast6 andt3 have
the same effect onC1 andC2: bothC1 andC2 receive
one token when either oft6 or t3 fires. 2

C. Changes in desired constraints

Changes in the specification may arise in various situa-
tions, for instance, in the context of the supervisor redesign
of section IV-A. It may be that after certain faults the
specification has become infeasible, and so it needs to be
relaxed in order to be able to redesign the supervisor. The
changes may involve both the specificationLµ ≤ b and the
liveness specification. We do not consider here the latter,
as it could hardly be handled online by our approach. For
changes in the specificationLµ ≤ b there are two cases:

1) A specificationLµ ≤ b is replaced byL′µ ≤ b′.
2) A specificationLµ ≤ b is replaced byLµ ≤ b′ (only

b changes.)

There are two other possibilities:

A. liveness requirements are present

B. no liveness requirements are present
By combining the cases 1 and 2 with A and B we have four
possibilities. Note that 1B may be approachable online, due
to the efficient methods of [3], [7], [24]. Further, case 2B
involves the following. Letµs = µs + b′− b be the updated
marking of the control places (see equation (4)). Then:

1) If µs ≥ 0, no supervisor update is necessary (Theo-
rem 2.1).

2) If µs 6≥ 0, the supervisor needs to be redesigned.
Case 2A can be treated online whenLµ + µs = b is not
included in the RMC. Then, nothing changes in the live-
ness enforcing supervisor: we only need to check that the
updatedµs together with the plant marking satisfyCµ ≤ d
andC0µ ≤ d0. On the other hand, the case whenLµ+µs =
b is included in the RMC is considerably more difficult, as
the RMC may affect the design of the liveness enforcement.

D. Incorporating failures/reconfigurations in the model

Certain failures or reconfigurations may be incorporated
in a PN model. An example is the manufacturing system
from [12] shown in Fig. 3. A reconfiguration/failure sit-
uation incorporated in the model is as follows. When a
machineMA3 is idle, it corresponds to a token inp7. A
machineMA3 can be used in the work areasWA3 (p4)
and WA4 (p8). However, a failure is possible when the
machine is inWA4, which is modeled by the uncontrol-
lable transitiont10. When the failure occurs, the part the
machine was working on is discarded (t9) and the machine
reallocated (t10) to be used inWA1 or WA2.

The SBPI can naturally approach such models by mod-
eling failures/reconfigurations as uncontrollable (and/or un-
observable) transitions. However, for deadlock prevention
and liveness enforcement, one needs procedures that can
deal with irreversible processes in the model. For instance,
in Fig. 3, the transitionst5, t9, and t10 can fire only
finitely many times, regardless of the initial marking. The
T -liveness enforcement procedure we have proposed meets
this need, as we can include inT only the part of the system
we are interested in making live. For instance, we can
exclude fromT transitions modeling failures. Further,T
can be adjusted automatically during the supervisor design
process to remove transitions that cannot be made live [16].

V. CONCLUSIONS

In this paper we have discussed the SBPI and some
related approaches relying on the SBPI, with application
to the context of systems with faults and reconfigura-
tions. We have shown these approaches to have some
remarkable qualities that may lead to robust designs, in
which only minor updates, if any, are required in case of
faults/reconfigurations. Thus we have shown that some of
the faults/reconfigurations that can be handled particularly
well are those modeled by (a) token loss/gain; (b) certain
changes in the form of the constraints; (c) certain changes
in the controllability/observability of the system. This per-
formance is due to the following: (i) the supervisor design

is independent of the initial marking of the system and also
of the “b” parameter of the specification; (ii) the versatility
of the structural admissibility conditions.

REFERENCES

[1] A. Giua, F. DiCesare, and M. Silva, “Generalized mutual exclusion
constraints on nets with uncontrollable transitions,” inProc. IEEE
Internat. Conf. Syst., Man, Cybern., 1992, pp. 974–979.

[2] E. Yamalidou, J. O. Moody, P. J. Antsaklis, and M. D. Lemmon,
“Feedback control of Petri nets based on place invariants,”Automat-
ica, vol. 32, no. 1, pp. 15–28, 1996.

[3] J. O. Moody and P. J. Antsaklis,Supervisory Control of Discrete
Event Systems Using Petri Nets. Kluwer, 1998.

[4] E. Yamalidou and J. Kantor, “Modeling and optimal control of
discrete-event chemical processes using Petri nets,”Computers and
Chemical Engineering, vol. 15, no. 7, pp. 503–519, 1991.

[5] M. V. Iordache and P. J. Antsaklis, “Synthesis of supervisors en-
forcing general linear vector constraints in Petri nets,” inProc. 2002
Amer. Contr. Conf., 2002, pp. 154–159.

[6] Y. Li and W. Wonham, “Control of Vector Discrete-Event Systems II
- Controller Synthesis,”IEEE Trans Automat. Contr., vol. 39, no. 3,
pp. 512–530, 1994.

[7] J. O. Moody and P. J. Antsaklis, “Petri net supervisors for DES with
uncontrollable and unobservable transitions,”IEEE Trans Automat.
Contr., vol. 45, no. 3, pp. 462–476, 2000.

[8] H. Chen, “Control synthesis of Petri nets based on s-decreases,”
Discrete Event Dynamic Systems: Theory and Applications, vol. 10,
no. 3, pp. 233–250, 2000.

[9] G. Stremersch,Supervision of Petri Nets. Kluwer, 2001.
[10] P. Darondeau and X. Xie, “Linear control of live marked graphs,”

Automatica, vol. 39, no. 3, pp. 429–440, 2003.
[11] P. Ramadge and W. Wonham, “The control of discrete event systems,”

Proc. IEEE, vol. 77, no. 1, pp. 81–98, 1989.
[12] M. V. Iordache, J. O. Moody, and P. J. Antsaklis, “Synthesis of

deadlock prevention supervisors using Petri nets,”IEEE Trans. Robot.
Automat., vol. 18, no. 1, pp. 59–68, Feb. 2002.

[13] M. Iordache and P. Antsaklis, “Design of T-liveness enforcing
supervisors in Petri nets,”IEEE Trans Automat. Contr., vol. 48,
no. 11, pp. 1962–1974, 2003.

[14] J. Park and S. Reveliotis, “Liveness-enforcing supervision for re-
source allocation systems with uncontrollable behavior and forbidden
states,”IEEE Trans. Robot. Automat., vol. 18, no. 2, pp. 234–240,
2002.

[15] M. V. Iordache and P. J. Antsaklis, “Software tools for the supervisory
control of Petri nets based on place invariants,” University of Notre
Dame,” Technical report isis-2002-003, Apr. 2002.

[16] M. V. Iordache, “Methods for the supervisory control of concurrent
systems based on Petri net abstractions,” Ph.D. dissertation, Univer-
sity of Notre Dame, 2003.

[17] M. V. Iordache and P. J. Antsaklis, “Decentralized control of Petri
nets,” in Proceedings of the Workshop on Discrete Event Systems
Control, of the International Conference on the Application and
Theory of Petri Nets (ATPN 2003), 2003, pp. 143–158.

[18] A. Desrochers and R. Al’Jaar,Applications of Petri nets in Man-
ufacturing Systems: Modelling, Control and Performance Analysis.
IEEE Press, 1995.

[19] L. E. Holloway, B. H. Krogh, and A. Giua, “A survey of Petri
net methods for controlled discrete event systems.”Discrete Event
Dynamic Systems, vol. 7, no. 2, pp. 151–190, 1997.

[20] L. Holloway and B. Krogh, “Synthesis of feedback control logic for
a class of controlled Petri nets,”IEEE Trans Automat. Contr., vol. 35,
no. 5, pp. 514–523, 1990.

[21] K. He and M. Lemmon, “Liveness-enforcing supervision of bounded
ordinary Petri nets using partial order methods,”IEEE Trans Automat.
Contr., vol. 47, no. 7, pp. 1042–1055, 2002.

[22] F.-S. Hsieh, “Reconfigurable fault tolerant deadlock avoidance con-
troller synthesis for assembly production processes,” inProc. IEEE
Internat. Conf. Syst., Man, Cybern., 2000, pp. 3045–3050.

[23] A. Giua and C. Seatzu, “Observability of place/transition nets,”IEEE
Trans Automat. Contr., vol. 47, no. 9, pp. 1424–1437, 2002.

[24] F. Basile, P. Chiacchio, and A. Giua, “On the choice of suboptimal
monitor places for supervisory control of Petri nets,” inProc. IEEE
Internat. Conf. Syst., Man, Cybern., 1998, pp. 752–757.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrA17.3
	Page0: 4477
	Page1: 4478
	Page2: 4479
	Page3: 4480
	Page4: 4481
	Page5: 4482

