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Abstract— Our research is concerned with the design of
a cost effective single stage direct acting electrohydraulic
valves for high flow rate and high bandwidth applications
by utilizing the instability caused by flow induced forces. In
our past research, we have demonstrated simple change in
valve geometry can be used to manipulate both transient flow
force as well as steady flow force for this purpose. In this
paper, with the goal of minimizing the steady flow forces
range, we present two optimal design methods over the space
of these design parameters: (1) the nominal optimal design
method, in which no uncertainty is taken into account; (2)
the robust optimal design method, in which the design must
be robust enough to model uncertainty and perturbations. By
representing the original problem as a LFT interconnection,
the robust design problem can be formulated into synthesizing
an optimal controller for an appropriate static plant with
an structured uncertainty. An algorithm is then presented
to transform the LFT into an appropriate robust control
problem and synthesize the controller. The case study shows
that unlike the nominal optimal solutions where viscosity effect
is exclusively utilized, the robust optimal solutions tend to take
advantage of both viscosity effect and non-orifice flux effect,
and in return provide the better performance over nominal
optimal solutions.

I. INTRODUCTION

In single stage direct acting electrohydraulic valves, the
main spools are stroked directly by solenoid actuators. They
have the the advantages over multi-stage electrohydraulic
valves in being low cost, easy to maintain and insensitive
to contamination. However, in the high flow rate and high
frequency applications, the force and power requirement
for the solenoid actuators become prohibitive due to the
significant flow induced forces. The approach we adopt is
to propose new valve geometries that utilize the fluid flow
force induced instability to enhance the spool agility without
increasing the requirements on the solenoid actuators. By
subsequently stabilizing the spool via feedback control, both
the dynamic response and flow rating of single stage valves
can be practically improved.

In our past research, we have demonstrated that simple
changes in valve geometry can be used to manipulate both
the transient flow force as well as the steady flow force
to induce spool instability. The unstable phenomena are
largely controlled by the following design parameters: 1)
the damping length L, 2) a geometry constant α determined
by the inner and outer radii of the chamber, and 3) the
non-metering orifice constant C determined by the angles
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of the non-orifice ports to the spool axis. Both the sign
and magnitude of the transient flow force induced damping
coefficient are directly associated with ±L [1], [2], [3],
the viscosity induced stable/unstable steady flow force is
manipulated by αL [4], and the non-orifice flux component
of the stable/unstable steady flow force is controlled by C
[5].

The problem that this paper addresses is how to choose
these design parameters L, C and α such that both the
steady flow force (that the solenoid actuator must act
against) and the entire valve dimension are minimized. In
addition, the design must be robust to model uncertainties,
flow ranges, and variation in operating conditions such as
operating pressures, temperature, fluid viscosity. It is shown
that the original non-convex nominal optimization problem,
can be decomposed into several simple convex optimization
problems.

The robust optimal design problem is posed as a min-max
optimization similar to that in a robust control theory. By
showing that the relationship between design parameters,
perturbations, and the objective function can be represented
as a linear fractional transformation (LFT) interconnection,
the valve design problem of finding the optimal set of
geometric parameters becomes equivalent to that one of
designing an optimal robust performance controller for an
appropriate static plant with an structured uncertainty. This
reformulation then enables us to apply an extension of the
result in [6] for static plants to our problem. The optimal
solution based on this approach is then compared to nominal
optimal solution. The study shows that in the presence of
perturbations, the unstable valve should utilize both the
viscosity effect and non-orifice effect to minimize the steady
force range. This is a different answer to the perturbation
free case, in which the viscosity effect is exclusively utilized
to zero out the steady flow forces over the full range of the
orifice opening.

The rest of this paper is organized as follows. In section
II, the nominal optimal design over the space of the design
parameters is addressed, without considering perturbations.
Section III presents the robust optimal design methodology.
In section IV, a case study of comparing the nominal
optimal design with the robust optimal design is provided.
Concluding remarks are presented in section V.

II. NOMINAL OPTIMAL DESIGN

Fig. 1 is a critically centered four way flow control valve
under consideration. The resultant steady flow force that a
valve spool experiences is given by [5]:

Fsteady = sgn(Ao)CQ2 − 2
ρ cos θ

ccAo
Q2 − αLµQ (1)
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Fig. 1. Typical configuration of a four way direction flow control valve.
Two “Q” ports are connected to the load (hydraulic actuator), and Ps

is connected to the supply pressure, and Pt is connected to the return.
In a single stage valve the spool is stroked directly by solenoid actuators.
Damping length L is defined to be L := L2−L1. A geometry constant α
that is used to determine the viscosity effect of the steady flow forces can
be calculated by 4(2R2
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flux coefficient C := cin + cout varies according to the angles of the
non-orifice ports, those connecting the actuator are non-orifice ports in the
figure, to the spool axis.

where Q is the flow rate, ρ is the fluid density, θ is the
vena contracta angle, cc is the contraction coefficient, µ is
the fluid viscosity, L is the damping length, C is the total
non-orifice flux coefficient, and α is a geometry constant.
Ao is the orifice area whose sign coincides with the spool
displacement. For instance, Fig. 1 shows the case where
Ao > 0. In Eq. (1), the second term −2 ρ cos θ

ccAo
Q2 represents

the conventionally recognized steady flow forces [1]; The
third term −αLµQ stands for the viscosity effect that can
be manipulated by α and L; the first term sgn(Ao)CQ2

denotes the non-orifice flux effect that can be controlled by
C. C,L, α are the design parameters determined by the
valve geometry. Note that the second term itself cannot
generally be manipulated. Substituting the orifice equation
Q = cdAo

√
2P
ρ , Eq. (1) can be normalized as,

Fsteady = κC

(

sgn(A)A2 − (
κ0

C
+

κ1αL

C
)A

)

(2)

where κ =
2c2

dPA2

max

ρ , κ0 = 2ρ cos θ
cdAmax

, κ1 = µ
cdAmax

√
ρ

2P ,
in which Amax denotes the allowed maximum orifice area,
and the normalized orifice area A ∈ [−1, 1]. κ, κ0, κ1 are
constant provided that P and µ are not perturbed.

Next we need consider what is the appropriate objective
function to be optimized for the unstable valve design.
Ideally it is preferred that the steady state flow forces is
identically zero over the full range of the orifice open.
Therefore, The objective function could be so chosen that
the steady flow force range is minimized. Because Fsteady

is an odd function of A, the range is linearly associated with
max(Fsteady). In addition, the overall geometric dimension,
in particular the damping length L, should be restricted
within acceptable values. However note that in Eq. (2),
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Fig. 2.
Fsteady

κC
in a function of A ∈ [−1, 1].

L and α are always multiplied together. Once (αL)opt is
obtained, the values of L and Ri, Ro can be assigned so that
Loptαopt = (αL)opt can minimize the overall dimension of
the valve. Therefore, the objective function can be chosen
to be,

min
C>0,−αL>0

: max
A∈[−1,1]

: Fsteady, (3)

From Fig. 2 and Eq. (2), maxA∈[−1,1] Fsteady(A,αL,C)
occurs at one of the three situations, 1) A = 1, 2) A =
− 1

2 (κ0

C + κ1αL
C ), or 3) A = −1. Case 1) is applicable when

κ0

C + κ1αL
C ≤ 2

√
2 − 2, case 2) is applicable when 2

√
2 −

2 < κ0

C + κ1αL
C ≤ 2, and case 3) is applicable when κ0

C +
κ1αL

C ≤ 2
√

2 − 2. The domains Dom1, Dom2, Dom3 ⊂
{(αL < 0, C > 0)} in which the three cases are applicable
are shown in Fig. 2.

max
A

Fsteady =






κ(C − κ0 − κ1αL) case 1: if (L, C) ∈ Dom1,
κ(κ0+κ1αL)2

2C
case 2: if (L, C) ∈ Dom2

κ(−C + κ0 + κ1αL) case 3: if (L, C) ∈ Dom3

(4)

The optimization problems corresponding to the original
min-max problem in (3) in the 3 domains are:

min
(αL,C)∈Dom1

: κ(C − κ0 − κ1αL) (5)

min
(αL,C)∈Dom2

:
κ(κ0 + κ1αL)2

2C
(6)

min
(αL,C)∈Dom3

: κ(−C + κ0 + κ1αL) (7)

Notice that each of the subproblems (5)-(7) is convex. It
is because all the inequality constraints are linear, and are
the objective functions in Eqs. (5)(7). The Hessian matrix
of the objective function in (6) is positive semi-definite, so
the objective function is convex as well. These subprob-
lems can be easily solved independently according to the
Kuhn-Tucker sufficient condition. Because of convexity, the



Fsteady(Ao ≥ 0) = 0.25χC(1 + δA)2(P̄ + WP δP ) − 0.5χ0(1 + δA)(P̄ + WP δP ) − 0.5χ1αL(1 + δA)(µ̄ + Wµδµ)
√

P̄ + WP δP

Fsteady(Ao ≤ 0) = −0.25χC(−1 + δA)2(P̄ + WP δP ) − 0.5χ0(−1 + δA)(P̄ + WP δP ) − 0.5χ1αL(−1 + δA)(µ̄ + Wµδµ)
√

P̄ + WP δP

(8)

Fsteady = ± (0.25χP̄C − 0.5χ0P̄ − 0.5χ1

√

P̄ µ̄αL) + (−0.5χ0P̄ + 0.5χP̄C ∓ 0.5χ1µ̄
√

P̄αL)δA

± (−0.5χ0WP + 0.25χWpC − 0.5χ1µ̄WP DP αL)δP + (−0.5χ0WP + 0.5χWP C − 0.5χ1µ̄DP WP Lα)δAP

∓ 0.5χ1WµαLδµ ± 0.25χP̄CδAA ± 0.5χ1WP WµDP αLδPµ ± 0.25χWP CδAAP

− 0.5χ1

√

P̄WµαLδAµ − 0.5χ1DP WP WµαLδAPµ (9)

optimal solution for each subproblem is global in its feasible
set.

Denote the nominal optimal solutions by (αL)opt, Copt.
We will next discuss the case in which the operating
condition is perturbed.

III. ROBUST OPTIMAL DESIGN

A. LFT representation
In practice some operating conditions in Eq. (2) can be

varying within a certain range, like pressure drop across the
orifices P and the dynamic viscosity µ. On the assumption
of constant pressure supply Ps, the perturbation of P is due
to the varying load pressure. It is well known that µ can
dramatically change as a function of the temperature of the
hydraulic systems. Define P := P̄ + WP δP , and µ := µ̄ +
Wµδµ where P̄ , µ̄ are the nominal pressure and the nominal
dynamic viscosity, Wp,Wµ ∈ R+ are the corresponding
weighting functions, and δP ∈ Bδ and δµ ∈ Bδ are the
corresponding perturbations, in which Bδ := {δ ∈ R : |δ| ≤
1}. It is convenient to represent Ao as the perturbations, i.e.,
Ao = {Amax(0.5+0.5δA)}∪{Amax(−0.5+0.5δA)} where
δA ∈ Bδ . Hence, Fsteady can be expressed in Eq. (8) where
χ =

2c2

dA2

max

ρ , χ0 = 4cd cos θAmax, χ1 =
√

2Amaxcd√
ρ .

In addition, the mean value theorem gives that there exist
{P ∗ : P ∗ ∈ P̄ + WP δP } so that

√

P̄ + WP δP =
√

P̄ +
WP DP (P ∗)δP where DP (P ∗) is the derivative of

√
P at

P ∗. For simplicity, DP (P ∗) is denoted by DP . Then Eq.
(8) can be written as the form in Eq. (9), in which δij =
δiδj , δijk = δiδjδk, in which δm

m=i,j,k
∈ {δA, δP , δµ}. For

instance, δAP = δAδP , and δAPµ = δAδP δµ. Note that
± and ∓ reflect the different representations of Fsteady for
different range of Ao. The upper sign corresponds to Ao ≥ 0
while the lower sign to Ao ≤ 0.

The research aims at designing an unstable valve with a
better robust performance. In order to facilitate the robust
analysis and synthesis, we adopt an approach to represent
the original problem by its equivalence, the interconnection
of the linear fractional transformation (LFT), as shown in
Fig. 3. That is to say, all perturbations are included in ∆,
and all the control variables, C,L, and α, are manipulated
into a controller K. From Fig. 3, the closed-loop perturbed
system is given by

e = Fsteady = Fl(Fu(M,∆),K) · d (10)
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Fig. 3. LFT interconnection of the perturbed closed-loop system

in which we choose ∆ :=
diag(δA, δP , δµ, δAP , δAµ, δPµ, δAA, δAAP , δAPµ) ⊂
B∆ ⊂ R9×9 where B∆ := {∆ : σ̄(∆) ≤ 1},
K := [C αL] ∈ R1×2, d := 1 ∈ R, M is a
real compatible matrix with the form as follows:

M :=





M11 M12 M13

M21 M22 M23

M31 M32 M33



 ∈ R(9+1+2)×(9+1+1).

Then

M33 = 02×1 M32 = 02×1 (11)
M12 = 19×1 M23 = 1 (12)

M21 = [ −0.5χ0P̄ ∓0.5χ0WP 0 −0.5χ0WP 01×5 ]
(13)

M11 = −M13KM31 (14)
M22 = S + M23KT (15)
M31 =

[
M31,A M31,B M31,C

]
(16)

where

S = [∓0.5χ0P̄ ] (17)

T = ±[ 0.25χP̄ − 0.5χ1

√
P̄ µ̄ ]T (18)

M31,A =
[

0.5χP̄ ±0.25χWP 0

−0.5χ1

√
P̄ µ̄ ∓0.5χ1µ̄WP DP ∓0.5χ1

√
P̄Wµ

]

M31,B =
[

0.5χWP 0 0

0.5χ1µ̄WP DP −0.5χ1

√
P̄Wµ ∓0.5χ1WP WµDP

]



M31,C =
[

±0.25χP̄ 0 ±0.25χWP

0 −0.5χ1WP WµDP 0

]

M13 can be arbitrarily chosen. Then Eq. (9) will be exactly
represented by Eq. (10).

The robust performance criteria for a given controller K
is

γ(K) := min

{

γ| sup
∆∈B∆

σ̄(Fl(Fu(M,∆),K)) ≤ γ

}

(19)
The optimal value over all controllers is denoted by γopt.

Once we obtain the suboptimal value γ ≥ γopt and the
controller Krob, so that γ(Krob) = γ, the optimal design
parameters Crob, Lrob, αrob of maximizing the system ro-
bustness can be retrieved back from Krob.

B. Synthesizing the optimal controller Krob

As aforementioned, we formulate the optimal design
problem of finding the optimal set of geometric parame-
ters into one of designing an optimal robust performance
controller for an appropriate static plant with an structured
uncertainty. Next, we will discuss how to synthesize the
controller. In [6], the authors present a method to synthesize
a controller for a static plant. Nevertheless, its robust
performance index is of the different form from Eq. (19).
In addition, the assumption that the static matrix M must
be independent of K is not valid in our problem. Therefore,
we cannot directly use the algorithm proposed in [6]. We
present a theorem for synthesizing the controller, and the
corresponding proof is followed.

Theorem 1: Given γ > 0, there exists K satisfying

γ(K) < γ (20)

where γ(K) is defined in Eq. (19), if and only if ∃z > 0
satisfying

λmax

[
V⊥

(
R(γ)T ZR(γ) − γ2Z

)
V T
⊥

]
< 0 (21)

and

λmax

[
UT
⊥

(
R(γ)Z−1R(γ)T − γ2Z−1

)
U⊥

]
< 0 (22)

where R(γ) :=

[
0 γM12

M21 S

]

, U :=

[
0

M23

]

, V :=
[

M31 T
]
, Z := {diag(zIn1

, In2
)|z ∈ R, z > 0},

U⊥, V⊥ are chosen so that
[

U U⊥
]

and
[

V
V⊥

]

are both

invertible; and UT U⊥ = 0, V V T
⊥ = 0.

Proof: First, we choose ∆̃ = ∆/γ, and M̃ based on
M as

{M̃ : M̃12 = γM12, M̃ij = Mij for ij 6= 12} (23)

It is easy to show that we can formulate the original robust
performance in Eq. (19) into

γ(K) = min

{

γ| sup
σ̄(∆̃)≤1/γ

σ̄(Fl(Fu(M̃(K, γ), ∆̃), K)) ≤ γ

}

(24)

where ∆ and ∆̃ have the different maximum singular value.
Again, this problem cannot be solved by the algorithm in
[6] because M̃(K, γ) is dependent on K.

Next, we know that this standard robust performance
problem can solved by its upper bound [7] though. That
is,

γ(K) = inf
Z

σ̄(Z1/2Fl(M̃(K, γ),K)Z−1/2) (25)

where Z := {diag(zIn1
, In2

)|z ∈ R, z > 0}. We have

Fl(M̃(K, γ),K) =

[
M11 γM12

M21 M22

]

+

[
M13

M23

]

K(I − M33K)−1
[

M31 M32

]
(26)

Substituting Mij in Eq. (26) with Eqs. (11)-(15) yields that
Fl(M̃,K) is a linear function of K,

Fl(M̃,K) =

[
0 γM12

M21 S

]

︸ ︷︷ ︸

R(γ)

+

[
0

M23

]

︸ ︷︷ ︸

U

K
[

M31 T
]

︸ ︷︷ ︸

V

(27)

Finally, we substitute Fl(M̃,K) in Eq. (25) with Eq. (27),
and it is easy to show that the theorem holds.

Eq. (21) can be equivalently written as
λmax(zΨ1 + Ψ2) < 0 where Ψ1 =

V⊥

[
−γ2In1

0
0 γ2MT

12M12 − In2

]

V T
⊥ and Ψ2 =

V⊥

[
MT

21M21 − In1
MT

21S
ST M21 ST S − γ2In2

]

V T
⊥ . Similarly,

Eq. (22) can be written as λmax(z−1Φ1 + Φ2) < 0

where Φ1 = UT
⊥

[
−γ2In1 0

0 M21M
T
21 − In2

]

U⊥ and

Φ2 = UT
⊥

[
M12M

T
12 − In1 M12S

T

SMT
12 SST − γ2In2

]

U⊥. The

maximum eigenvalue is a convex function of its argument
that is affine in z or z−1 in this case. It has been proven
in [7] that the z sets satisfying Eqs. (21) and (22) are
open intervals in the real line. Therefore, we can choose a
γ to check if the intervals intersect, and to minimize the
intersected interval.

Once z, γ are obtained, K can be synthesized by the
following algorithm that can be derived on the basis of [6]

T1 :=(UT
⊥Z−1U⊥)−1/2UT

⊥R(γ)V T
⊥ (V⊥ZV T

⊥ )−1/2

T2 :=(UT ZU)−1/2UT R(γ)V T
⊥ (V⊥ZV T

⊥ )−1/2

T3 :=(UT
⊥Z−1U⊥)−1/2UT

⊥R(γ)V T (V Z−1V T )−1/2

Q1 := − T2(γ
2I − TT

1 T1)
−1/2T1(γ

2I − T1T
T
1 )1/2T3

Q2 :=Q1 − (UT ZU)−1/2UT ZR(γ)Z−1V T (V Z−1V T )−1/2

K :=(UT ZU)−1/2Q2(V Z−1V T )−1/2 (28)

IV. CASE STUDY

In this section, a case study is presented in order to com-
pare the solution sets from the nominal optimal method with
ones from the robust method. Suppose the supply pressure



WP Wµ (αL)rob Crob γ

0 0 −1.1435 × 106 5.82 × 10−9 0.0156
0.01P̄ 0.01µ̄ −1.1431 × 106 4.54 × 103 4.3
0.125P̄ 0.125µ̄ −1.062 × 106 7.29 × 105 51.6
0.25P̄ 0.25µ̄ −0.707 × 106 2.83 × 106 91.8
0.375P̄ 0.375µ̄ −0.458 × 106 4.31 × 106 116.7
0.5P̄ 0.5µ̄ −0.315 × 106 5.18 × 106 134.8

TABLE I
ROBUST OPTIMAL SOLUTION SETS AND THEIR CORRESPONDING

ROBUST PERFORMANCES TO VARIOUS PERTURBATION.

Ps = 5.15 × 106Pa(800psi) and the load pressure Pl =
1.38 × 106Pa(200psi), then the nominal pressure differ-
ences across both orifices are P̄ = 2.07 × 106Pa(300psi).
Mobil DTE Oil 970391 is used in the hydraulic system.
The nominal dynamic viscosity µ̄ = 0.0375kg/m/s at
40◦C and ρ = 871kg/m3. The other variables are chosen
conventionally as cd = 0.6, Amax = 1.5 × 10−4m2,
θ = 69◦. On the assumption that Ps is constant, the pressure
drop P can be perturbed due to the variation of the load.
Suppose we know WP ≤ 0.5P̄ . In addition, the hydraulic
system experiences the temperature fluctuation. Based on
[1], we have the approximate equation of the viscosity w.r.t.
the temperature,

µ = µ0e
−λ(T−T0) (29)

where T0 is the reference temperature, and µ0 is the
dynamic viscosity at T0, e.g. we can set T0 = 40◦C and
µ0 = µ̄. The constant λ = 0.0311(◦C)−1 can be specified
from the data sheet of Mobil DTE Oil. Suppose that the
temperature varies within 27◦C ∼ 60◦C, then we can
ensure Wµ ≤ 0.5µ̄. The comparison of the solutions by
optimal design and robust design is presented as follows,

1) Apply optimal design approach in section II. We
have Copt = 1.1 × 10−12, (αL)opt = −1.1435 ×
106. The minimum of the objective function is
5.16 × 10−7.

2) Robust design is implemented as well, according
to the algorithm in section III. For various WP

and Wµ where WP ≤ 0.5P̄ and Wµ ≤ 0.5µ̄, the
optimal sets (αL)rob and Crob are obtained, as
can be seen in Table I. The corresponding robust
performances γ(Krob) ≤ γ are also calculated.

There are several observations that can be obtained in
Table I. (1) Under the condition of zero perturbation (WP =
0 and Wµ = 0), the robust optimal solution sets are almost
exactly same as the ones from the nominal optimal method.
This directly verifies the validity of the robust design algo-
rithm. Once the perturbation is applied, however, the robust
optimal sets start to divert from the nominal optimal values.
As shown in Table I, only 1% of the operating condition
variation change the optimal solution dramatically, as well
as the performance. (2) The extent to which the robust
optimal solutions diverge from the nominal solutions is
determined by the degree of the uncertainty. In Table I, as
the weighting functions of uncertainties (WP ,Wµ) increase
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Fig. 4. The contour of ||Fsteady ||∞ with respect to P ∈ [0.75P̄ , 1.25P̄ ]
and µ ∈ [0.75µ̄, 1.25µ̄] for the corresponding robust solution (C, αL) =
(2.83 × 106,−0.707 × 106). The worst case performance is suprob :=
sup
P,µ

(||Fsteady ||∞) ≈ 70.0.

from (0,0) to (0.5P̄ , 0.5µ̄), the optimal set (αL,Crob)
diverts from the nominal optimum (−1.1435 × 106, 0) to
(−2.75×105, 4.43×106) monotonically. Physically speak-
ing, under the nominal operating condition, the unstable
valve tends to exclusively utilize the viscosity effect to
zero the steady flow forces in the full range of the orifice
open. However, once confronted with the perturbations, the
optimal solutions of compensating the steady flow forces
should take into account both the viscosity effect and the
non-orifice flux effect simultaneously. (3) We can compare
the robust performance for various perturbations. For zero
perturbations, note that the steady forces are nearly zero
for the full range of orifice opening. However, regardless of
robust optimal design effort, γ always increases for enlarged
perturbations. That is to say, there is always a larger steady
flow force range for the larger uncertainty event though this
range has already been minimized. This should not be a
surprising result.

In order to visualize the benefit of the robust design
method, Monte Carlo simulations are conducted. We con-
sider a scenario where the uncertainty weights are WP =
0.25P̄ and Wµ = 0.25µ̄. Then the pressure drop across
the orifice P and the dynamic viscosity µ are randomly
selected within the range, as can be seen in Figs. 4-6. Given
P and µ, ||Fsteady||∞ can be computed from Eq. (4). The
contour of ||Fsteady||∞ in the (P, µ) domain are plotted for
various design parameters. Specifically, the robust optimal
solutions (Crob, (αL)rob) are used in Fig. 4, while the
nominal optimal solutions (Copt, (αL)opt) are used in Fig.
5. We also consider another group of parameters by which
the valve is designed to be stable, namely αL > 0, as shown
in Fig. 6. The worst case performances sup

P,µ
(||Fsteady||∞)

are considered. The fact that suprob < supopt < supstbl

where suprob, supopt, supstbl are defined as the worst case
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performance for the cases in Fig. 4,5, and 6 respectively,
confirms that (1) nominal optimal solution does not provide
the best performance under the perturbations, thus necessi-
tating the robust design algorithm; (2) the stable valve has
much worse performance, greater than 3 times in this case,
than the unstable valve. Therefore, the unstable valve tends
to be more robust than the stable valve.

In addition, the worst case scenario calculated from
the robust algorithm in Section III-B, is (P, µ) =
(1.25P̄ , 0.75µ̄), which coincides very well with the Monte
Carlo simulation results using the robust solution, as shown
in Fig. 4. Nevertheless, note that the worst case performance
value of the Monte Carlo simulation suprob ≈ 70.0 is about
80% of the robust performance value provided by the robust
optimal design method, namely γ = 91.8 in Table I. This

can be explained by the fact that the diagonal elements in
the constructed perturbation matrix ∆, which is defined in
Section III-A, are partially correlated, but the worst case
perturbation of the robust optimal method would not take
it into account, thus being infeasible. The conservative γ
yields a reasonable upper bound though.

V. CONCLUSION

Unstable valve is designed for improving the response
performance of single stage electrohydraulic valves in the
high frequency applications. In this paper, based on our
previous research effort of precisely modeling the flow
forces in a valve, we present the optimal methods concern-
ing unstable valve design. The nominal optimal method is
proposed to facilitate design under the nominal operating
conditions. Furthermore, we pay more attention to realize
the robust optimal design with taking into account pertur-
bation. We formulate the robust optimal design problem
of finding the optimal set of geometric parameters into
designing an optimal controller to optimize the robust
performance of a static plant with structured uncertainty.
The case study shows that (1) unlike under the nominal
condition where the steady forces can be totally neutralized
by using the viscosity effect, we should depend on both
viscosity effect and non-orifice flux effect to optimize the
steady flow force range if the uncertainty in the system
is expected; (2) the robust design method is effective to
synthesize a group of design parameters, which can provide
the optimal performance that is generally not provided by
the nominal optimal solutions.

The robust optimal design method has currently been
utilized to design the prototype of an unstable valve. The
further effort will be made to investigate the lumped system
of the unstable valve and solenoid actuators, and to design
the controller to optimize the overall performance.
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