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Abstract- Stabilizing manipulators during the transition
from free motion to constraint motion is an important issue
in contact task control design. In this paper, a Lyapunov-
based control scheme is introduced to regulate the impact
of a hydraulic actuator coming in contact with a
nonmoving environment. Due to the discontinuous nature
of friction model and the proposed control law, existence,
continuation and uniqueness of Filippov's solution to the
system are first proven. Next, the extension of LaSalle’s
invariance principle to nonsmooth systems is employed to
prove that all the solution trajectories converge to the
equilibria. The controller is tested experimentally to verify
its practicality and effectiveness in collisions with hard and
soft environments and with various approach velocities. ⋅

1 Introduction
One issue in robotic applications is a proper interaction
between the manipulator and the environment. The
manipulator should be able to follow a free space trajectory
and make a stable contact with the environment while the
energy of impacts is dissipated and the desired contact
force is achieved. Such tasks can be divided into three
modes of motion: free-motion, constraint-motion, and the
transition mode between the two. Despite the existence of
various control schemes for contact task problem, only a
few recent studies have dealt with the transition mode as a
separate mode of motion with special treatment.

Pagilla and Yu [1] proposed separate control laws for free
trajectory tracking, constrained motion and transition phase
between the two and experimentally studied the
performances of the system in slow/fast collisions. Xu et
al. [2] incorporated joint acceleration and velocity
feedbacks into an integral force control to suppress the
impact bouncings. Tarn et al. [3] used acceleration
feedback to control the transient force response and to
reduce the impulsive force and bouncings.

Contact task control of hydraulically actuated systems has
not yet received enough attention, much less the control in
the transient phase. This is mainly due to the highly
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nonlinear characteristics of the hydraulic systems. Also,
employing a proper impact model that incorporates the
realistic bouncing, local elastic deformations and energy
dissipations in the analysis contributes to the challenges of
the problem. Actuator friction due to piston-cylinder sealing
is another problem in hydraulic manipulations degrading the
system performance and making precise control difficult to
achieve. These non-idealities necessitate nonlinear control
design for impact control of hydraulic actuators.

In the present study, a Lyapunov-based transition control
algorithm is introduced that could effectively regulate the
possible impacts of a hydraulic actuator during the
transition phase from free to constrained motion. Upon
sensing a nonzero force, the controller positions the actuator
at the location where the onset of the force was sensed.
Measurements of the ram position, hydraulic line pressures,
supply pressure and the knowledge about the direction of
the valve spool displacement are the only requirements of
the control scheme. The controller does not require
continuous force or velocity feedback as they are difficult to
measure throughout the short transition phase. Although no
knowledge of the impact dynamics, friction effects,
servovalve dynamics, or hydraulic parameters is required
for control action, stability and effectiveness of the control
scheme considering all above factors is verified both
analytically and experimentally. Particularly, solution and
stability analyses of the system are conducted using the
Hertz-type contact model that incorporates the realistic
bouncings, local elastic deformations and energy
dissipations in the analyses.

Due to the discontinuous nature of the actuator friction
model and the proposed control law, the system is
nonsmooth. Here, existence, continuation and uniqueness of
the solution to the system are studied using Filippov
solution theories [4]. The extension of Lyapunov stability
theory to nonsmooth systems [5] is then employed to
guarantee the global asymptotic convergence of the systems
trajectories to equilibria. It is shown that the position steady
state error remains bounded in a small range adjustable by
selecting proper controller gains based on Lyapunov direct
method. For actuators with negligible friction, the system is
guaranteed to be asymptotically stable about its unique
equilibrium point located on the surface of the environment.
The controller is tested experimentally to verify its



practicality and effectiveness in collisions with different
environments and with various approach velocities.

2 Dynamic Model of the System
The system under study is composed of a hydraulic
actuator coming in contact with a non-moving environment
(Fig. 1). The equation of motion of the system is:

impfL FFAPxm −−=&&     (1)
where x is the piston displacement, Ff  is the friction force,
and Fimp is the impact force. Parameters m and A are the
mass of actuator’s moving parts and piston area,
respectively. PL=Pi-Po is the load pressure. For valves with
rectangular matched and symmetric orifice areas, PL
changes with time according to the following relation
(neglecting leakages) [6]:
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where x&  is the actuator velocity, w is the orifice area
gradient, cd is the orifice coefficient of discharge, ρ  is the
hydraulic fluid density, Ps is the pump pressure, and xsp is
the spool displacement. β4tVC =  is the hydraulic
compliance where Vt is the total actuator volume and β  is
the effective bulk modulus of the system.
The function )( spxsign  in (2) is defined as:







=
≠

=
0;0
0;

)(
sp

spspsp
sp x

xxx
xsign     (3)

The dynamics between the spool displacement, xsp, and
input voltage, u, is modeled as a first-order system which is
valid for applications operating at low frequencies [7]:
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 ksp and τ  are valve gain and time constant, respectively.

The Hertz-type contact model is employed to represent the
real behavior of the system during impact [8]. The model
has been used by many researchers and incorporates the
realistic bouncings, local elastic deformations and energy
dissipations in the analysis:
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In (5), envx  is the position of the environment. n and H are
constants that depend on material and geometric properties
of the colliding bodies. p denotes energy loss (damping)
parameter during collision. Its value is related to the
coefficient of restitution and approach velocity.

Various experimental works have confirmed the Tustin’s
discontinuous friction model as a valid representation of
friction in many applications and hydraulic systems [9]:
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FC is the Coulomb friction, FS is the stiction force
(breakaway force), sx&  is a threshold velocity where the
downward bend in friction appears after the stiction force is
surmounted, and d is the viscous friction coefficient. At rest,
the friction ( )0sgn(SF ) is opposite to the net external force
and can acquire any value in the range of ],[ SS FF− . This
opposing static friction increases with the increase in the net
external force until it reaches the breakaway force, FS,
where the piston starts to slide and the friction drops due to
Stribeck effect.  The function )sgn(x&  is, thus, defined as:
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3 Controller Design
The goal of this section is to design a controller that rests
the hydraulic actuator on the surface of an unknown
colliding environment. Sensing the first nonzero force
denotes the impact occurrence and the environment
location, xenv, is recorded as the position of the implement at
that time.

The control scheme is designed based on the Lyapunov
direct method (detailed in Section 5):
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Kp and Kx are positive constant gains and )( 4esign is as
defined in (3). The proposed control law has the following
unique features:
i) It does not require measurement of the interaction

force (Fimp) feedback as it is not realistic to assume
that the interaction force is measurable and can be
compensated for, during short transition phase.

ii) No velocity feedback in the control law prevents
practical drawbacks in high stiffness collisions.

iii)  Measurements of the ram position, hydraulic line
pressures, supply pressure and the knowledge about
the direction of the valve spool displacement are the
only requirements of the controller. No knowledge of
the environmental characteristics, friction nature, or
hydraulic parameters is required for the control action.

Note that in practice, ( Lsps PxsignP )(− ) is seldom zero

since LP  is seldom close to Ps.  In the rare cases that it
becomes zero (e.g., due to any noise), it will be set to a
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Fig. 1 Schematic of hydraulic actuator-environment
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small positive number to avoid the problem of large control
output (a similar approach used in reference [7]).

In order to constitute the state space model of the system,
the vector of error states are defined as Teeee ),,,( 4321=e :

spLdes xePexexxe ===−= 4321 ,,, &     (9)
Combining equations (1)-(8) yields:
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where impF  in the error space is:
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The equilibria of the above system is obtained by equating
the right-hand side of (10) to zero:
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This leads to the following equilibria for the system:
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Note   that    [ ]SSS FFF ,)0sgn( −∈    represents    the
static friction at the equilibrium point. It is equal and
opposite to the net external force. Therefore, the
equilibrium point of the system could be every

T
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According to (14), if the actuator stops with no contact
with the environment, 01 <sse  and impF~ =0; thus, from

(12), we have 
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When the actuator remains at rest while in contact with the
environment, we have 01 >sse  and n

ssimp eHF 1
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Since the maximum value of )0sgn(SF  is SF , (16)
implies that decreasing xp KK would reduce the bound on
maximum possible position error sse1  in contact region.
The above discussion concludes that choosing a small

xp KK  can effectively counteract frictional effects in the
proposed impact control scheme and locate the actuator
end-effector in a close vicinity of the surface of the
environment. However, as will be seen in Section 5,
restrictions on the system’s Lyapunov function prevent
choosing the ratio arbitrarily small. It may also be useful to
note that in the absence of friction, the equilibrium point of
the system would be T0000 ),,,(e =eq .

Due to the discontinuity of the friction model (sgn function)
and the control law (sign function), the above control
system is nonsmooth and the solution analysis should first
be investigated. In the next section, Filippov’s solution
analysis [4] of the above system is presented.

4  Solution Analysis
According to (10), the discontinuity surface of the system
is one of the following three surfaces:

where the subscript and superscript denote the dimension
and the number of the discontinuity surfaces, respectively.
The surface 2

1S  is the intersection of the surfaces 3
1S  and

3
2S . The detailed proof of existence and continuation of the

solution is not presented for the sake of brevity. The
uniqueness analysis of the Filippov’s solution is next carried
out for the discontinuity surface, 3

1S . The discontinuity

surface 3
1S  divides the solution region into:
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Defining the vector functions f+ and f- as the limiting values
of the right-hand sides of (10) in +Ω  and −Ω , the
projections of f+ and f- along the normal to the discontinuity
surface, 3

1S , are:
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Thus, according to Filippov [4], the uniqueness of the
Filippov's solution for equations (10) is guaranteed. The
uniqueness analysis for 3

2S  can be in a similar way.

Uniqueness analysis of 2
1S  requires heavier mathematical

machinery and is not detailed.

5 Stability Analysis
In this section, the extension of LaSalle’s invariance
principle to nonsmooth systems is employed to prove that
all the solution trajectories converge to the equilibria. Two
positive smooth regular functions are constructed for
contact and noncontact phases of motion. Each function
guarantees the convergence of the system trajectories to the
system’s largest invariant set, proven to contain only the
points belonging to equilibria. Combination of both
functions results in a continuous composite regular
function.
Noncontact region: In the noncontact region, the scalar
function Vn is defined as:

which is positive as long as 0>− CKAK xp . This leads to
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on the control gains. The derivative of Vn is
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which is continuous and negative semi-definite throughout
the noncontact region.
Contact region: In contact region )01(&)0( 21 >+> pee ,
the positive scalar function is defined as:
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Differentiation of the above regular function yields

which is continuous and negative semi-definite in the
contact region. The overall composite regular function, V,
can now be constructed as:
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Note that, transition between contact and noncontact regions
of motion is dependent on two conditions. When 01 >e  and

)1(2 pe −> , the system enters the contact region and when
01 ≤e  and/or )1(2 pe −≤ , it transfers to the noncontact

region. However, for any positive approach velocity, p is
normally a positive small value and -1/p is negative and
large. Thus, the condition on )1( 2ep+  does not normally
contribute to the judgment of noncontact to contact state
change and the state change is judged by only the sign of
displacement state error, e1. The only case where the
condition 01 2 >+ ep  can be lost while 01 >e  is when the
control force is relatively larger than the impact force and is
applied in the opposite direction of the impact force. This
rare case is excluded from the stability analysis. Thus, V is a
continuous function throughout the solution region.

Derivative of V is derived from combining nV&  and cV&  in
(23) and (25) that were shown to be continuous and
negative semi-definite throughout the solution region except
the discontinuity surfaces. On the discontinuity surface, 3
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Equations (28) imply that the convex set described in (27)
only contains negative elements. Thus, on the surface 3

1S :

                                                                                          (29)
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We can now conclude that V& is negative semi-definite in
both regions of contact and noncontact motion as well as
on the discontinuity surface, 3

1S . Similar proof can be

derived for the derivative of V on 3
2S  and 2

1S  but is not
presented for brevity. Therefore, according to the extended
LaSalle’s invariance principle to nonsmooth systems, every
solution trajectory in Ω  converges to the largest invariant
set, M, as ∞→t . It is next proven that the largest
invariant set, M, contains only the equilibria. This is
proven by contradiction. Let R be the set of all points
within the solution region Ω  where 0=V& . According to
(23) and (25), 0=V&  requires that for all the points in R,

02 =e  and 04 =e . Thus, both 2e&  and 4e&  are zero. Let M
be the largest invariant set in R and contain a point where
at least one of the error states, 1e  or 3e  is not equal to the
values shown in (14). According to equations (10b) and
(10d), this will result in 02 ≠e&  and/or 04 ≠e&  which
necessitates the solution trajectory to immediately move
out of the set R and certainly set M. But, this conclusion
contradicts the initial assumption that M is the largest
invariant set in R. Thus, both error states 1e  and 3e  can
only be equal to the values shown in (14) and every
solution trajectory in Ω  converges to the largest invariant
set M containing only the system’s equilibria.

The above discussion concludes that as long as
ACKK xp > , the control system (10) is guaranteed to

converge to the system’s equilibria. On the other hand, it
was earlier shown that in order to decrease the position
steady-state error, we have to decrease xp KK .
Therefore, in the presence of friction, the smallest possible
range of the system’s position steady-state error would be
when xp KK  is equal to AC .

When the system has negligible friction, the only
discontinuity surface of the system is S:={e: e4 = 0} and the
system has the unique equilibrium point T)0,0,0,0(=eqe .
Stability analysis can, then, be conducted using the
positive-definite Lyapunov function defined in (26) with
condition (22) on the control gains. The new derivative of
the Lyapunov function would be:

which is negative and semi-definite. Similar to the analysis
of the system with friction, it can be proven that V&  is also
negative on the discontinuity surface, S. Therefore, based

on the theorem outlined in [5], the equilibrium point of the
system, T)0,0,0,0(=eqe , is asymptotically stable.

6 Experimental Verification
Experiments   were   conducted   on    an    electrohydraulic
actuator test rig and metal and wooden blocks were used to
represent different environmental stiffnesses.

6.1       Test Rig
The hydraulic circuit consists of an actuator controlled by a
Moog D765 servovalve, mounted on a reinforced steel
table. The servovalve can flow 34 L/min at 3000 psi and has
a rise time of 2 ms. It uses a mechanical feedback spring
with a linear variable differential transformer (LVDT) that
measures the position of the spool. A rotary encoder with a
resolution of 1024 counts/revolution (linear resolution of
0.0011 in) establishes the relative position of the actuator.
An S-beam type load cell detects the first nonzero contact
force between the actuator and the environment. The hard
and soft environments are resembled by metal and wooden
blocks bolted to an I-beam mounted to the test station base.

6.2 Experimental Results
In all experiments, the actuator accelerated from free space
given a step input control signal and struck the environment.
Upon sensing a nonzero force for the first time, control was
switched to the proposed control law (12) until the actuator
was stabilized on the surface of the environment. The
position corresponding to the first nonzero force was taken
as the position of the environment surface. Similar supply
pressures, Ps =1900 psi was used in each set of experiment
and the sampling time of the system was approximately 2
ms. The approximate hydraulic compliance of the test rig
was estimated as C=7.14x10-5 psiin3 . Knowing A=0.98

in2, the control gains were chosen as Kx=1.3 psiinV  and

Kp=1.4×10-5 3psiV which satisfied (22). Given the
approximate value of FS, which was experimentally
determined as 314.72 lbf, the steady-state position and
pressure differential errors were calculated to be in the
range of [ ]33

1 1045.1 ,105.3 −−−∈ xxsse in and
[ ]325 ,1353 −∈sse psi for the aluminum block, and

[ ]33
1 104.2 ,105.3 −−−∈ xxsse  in  and [ ]325 ,2233 −∈sse psi  for

(30)

actuator

force sensor
environment

Fig. 2 Schematic of the experimental test rig.
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the wood block [see (14) and (16) for calculation of the
bounds]. Note that for aluminum block H=3.32×106

lbf/in1.5, and for the wood block H=0.84×106 lbf/in1.5.
Figures 3 and 4 show the responses when the actuator hits
the above two types of environments with low (3 in/s) or
high (8 in/s) approach velocities. They clearly verify that
the proposed controller is capable of stabilizing the
actuator around the surface of the environment regardless
of the environment stiffness and the magnitude of the
approach velocity. It is also seen that the final state of the
system in all trials is, indeed, where ,0=spx 0=x& , and x
is in a close vicinity of the surface of the environment.

7 Conclusions
A Lyapunov-based discontinuous controller was developed
for hydraulic actuators to regulate the impacts during
transition phase from free-space to constraint motion. The
scheme does not require force or velocity feedback as they
are difficult to measure throughout the short transition
phase. Stability and effectiveness of the control scheme
considering realistic Hertz-type impact model, practical
friction model, hydraulic nonlinearities, and servovalve
dynamics were verified both analytically and
experimentally. The extension of LaSalle’s invariance
principle to nonsmooth systems was employed to prove
that all the solution trajectories converge to the equilibria
with position steady state errors bounded in a small range
adjustable by selecting proper controller gains based on
Lyapunov stability analysis. Experiments confirmed that
the proposed controller could stabilize the actuator during
the transition from free to constrained motion.
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Fig. 3     Low velocity response (3 in/s);
wooden block        , metal block        .

Fig. 4    High velocity response (8 in/s);
wooden block        , metal block        .
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