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Abstract: In a robot image processing system along with 
the visual feedback or in a TV telecommunication system 
along with signal processing, pattern recognition is most 
often confronted with a large state space representation 
requirement due to the complexity of unexpected shape, 
color and motion as well as environmental disturbance. It 
is inevitable that raw signals are affected by Gaussian 
noises. This problem in the presence of random noises 
can be modeled as a LQG model modulated by a finite 
state Markov chain. The optimal solution is achieved by 
dynamic programming and associated HJB equations. 
For large-scale systems, averaging approach is necessary 
to obtain consistent solutions to Riccati equations, which 
is the nearly optimal control scheme. The mismatch from 
time scale separation should be minimized. As a result, 
maximum likelihood estimation is proposed to optimize 
the total mismatch, which is a generally consistent and 
asymptotic Gaussian. In this article, the total mismatch 
and the convergence property within stochastic nearly 
optimal control problem are illustrated by a set of multi-
dimensional numerical simulations and then maximum 
likelihood estimation scheme is derived and investigated 
on a basis of the multi-dimensional state space.  
Index Terms: Maximum Likelihood Estimation, Stochastic 
Optimal Control, Near Optimality 
 

I. INTRODUCTION 
The hybrid LQG (Linear Quadratic Gaussian) models 

modulated by a finite state Markov chain have been 
widely used for pattern recognition, signal processing, 
economy investment, telecommunication, etc. It can be 
optimized by dynamic programming and associated HJB 
(Hamilton-Jacobi-Bellman) equations. For a large-scale 
system, simplification schemes are needed to reduce 
computation complexity and to get consistent solutions 
to Riccati equations. As an example, economy modeling 
is a large dimensional state space problem due to market 
trends and various other economic factors. To reduce 
computation complexity, nearly optimal control scheme 
can be applied. The weakly irreducible states of Markov 
chains in each class are aggregated into a single state by 
the scheme. Discrete-event variables are associated with 
long-term Macro Economy. Continuous state variables 

represent the short-term dynamic Micro Economy. Then 
the hybrid stock models modulated by a continuous-time 
Markov chain can be optimized by nearly optimal asset 
allocation strategy [1, 2, 3, 4].  

By dynamic programming approach, a control problem 
for a class of stochastic diffusion systems can be studied 
and its transition smoothing effect is associated with the 
uncontrolled system. The corresponding HJB equation is 
solved by a fixed-point argument in a small time interval 
and it is extended to arbitrary time intervals by suitable 
priori estimates. The continuous time finite horizon 
optimal control problem can be investigated by Markov 
decision strategies. Its analytical solutions are of low 
computation complexity. A class of continuous Markov 
processes is described by a multidimensional nonlinear 
stochastic equation. Asymptotic convergence theorem is 
proved using Markov process and asymptotic normality 
theorem is formulated. A novel strategy by Bellman's 
principle of optimality and the short-time approximation 
is to obtain global solutions of stochastic optimal control 
problems. The Markov chain with a dependent transition 
probability matrix allows the systematic evaluation of 
transient and steady state responses. An excellent control 
performance can be eventually achieved [5, 6, 7].  

Maximum likelihood approach is commonly used to 
approximate the stochastic model in pattern recognition. 
It is affected by uncertainty in the regression matrix and 
random gaussian noise. A worst case likelihood of the 
measurement has been used to solve the optimization 
problem and applied to the parameter identification. For 
a non-parametric motion model attached to the image 
sequence, the maximum likelihood criterion leads to the 
best fitting model. Model complexity reduction can be 
achieved to supply an informative representation of the 
motion. The probability of misclassification and proper 
classification is calculated using conditional probability 
of the error and the priori probabilities. The maximum 
likelihood estimation with desired asymptotic properties 
presents the parameter value that maximizes conditional 
probability density function [8, 9, 10]. Thus it is to be 
used to obtain optimal estimation in stochastic nearly 
optimal control problems in this research.  



 

II. HYBRID PROBLEM FORMULATION 
Given a linear stochastic system in a finite time horizon: 

dx(t)=[A(α(t))x(t)+B(α(t))u(t)]dt + σdw(t)              (1) 
x(s)=x (s≤t≤T) 

where x(t) is the state vector (n1 × 1); u(t) is the control 
(n2 × 1); A(n1 × n1) and B(n1 × n2) are matrices with finite 
values; w(t) is the Brown motion vector, which is a unity 
vector with a Gaussian random element coefficient σ. 
Considering one stationary finite state Markov chain 
α(t)∈M={1, …, m}, of which the transition probability 
P(α(t)=j| α(s)=i) depends only on (t-s). 

The performance index is to be minimized: 

where E is the expectation given α(s)=α and x(s)=x. Let 
i=α(t);. M(i) (n1 × n1) is symmetric nonnegative definite 
matrix; N(i) (n1 × n1) and D (n1 × n1) are symmetric 
positive definite matrices. 
 

To decompose a large dimensional system into a 
number of simple structure subsystems, a very small 
parameter ε>0 is introduced to display a two-time-scale 
behavior. The generator Qε consists of both a rapidly 
changing part and a slowly varying part.  
      Qε = Q1/ε  + Q2                                                       (3)  
where Qεf(.)(i) = Σqεij(f(j)-f(i)), for suitable f(.) (i≠j). If 
the process α(.) in (1) and (2) is replaced by αε(.), we 
have the performance index Jε (s, α, x, u(.)), where αε

)

(.) 
and w(.) are independent. 

A generator Q is weakly irreducible if vQ = 0 and 
Σ1

mvi=1 has a unique nonnegative solution v=(v1,…, vm). 
If v is strictly positive, then the generator Q is strongly 
irreducible. The solution v is referred to as the stationary 
distribution. The irreducibility is to classify the groups of 
states in which the fast transitions take place. 
 

III. OPTIMAL CONTROLS 
The optimal LQG control is accomplished by dynamic 

programming approach with the related HJB and Riccati 
equations for 0 ≤ s ≤ T, i=α(s)∈M with v(T, i, x) = xTDx. 
The solution to the HJB equations is:  
vε(s, i, x) = inf u(.)Jε(s, i, x, u(.)) = xTKε(s,i)x+qε(s,i)  (5) 
 

Let Kε be a symmetric matrix (m×m) and qε is a scalar 
function. The Riccati equation for Kε (Kε(T, i)=D) is:  

T

-1 T

K (s,i)  - K (s,i)A(i) -A (i) K (s,i) - M(i)  
K (s,i)B(i)N (i)B (i) K (s,i) - Q K (s, .)(i)               (6)

ε ε ε

ε ε ε ε

= +&
 

The equation for qε (qε(T, i)=0) is: 

The optimal control has the following formulation: 
 uε,*(s, i, x) = -N-1(i)BT(i) Kε (s, i)x                                (8) 

 

The Riccati equations turn out to be extremely difficult 
to solve for most large-scale systems. The averaging 
approach with approximation schemes and the solutions 
to correspondent hybrid nearly optimal control problems 
has been derived analytically [1, 2], which will also be 
partially interpreted in the consecutive section VI. Multi-
dimensional numerical solutions are now in necessity for 
various real world applications. 
 

The closed loop state feedback is expressed as: 
dx(t)=[A(i) -B(i)N-1(i)BT(i)Kε(s, i)]x(t)dt+ σdw(t)       (9) 
It gives rise to a linear stochastic differential equation. 
 

IV. SAMPLING THE STOCHASTIC DIFFERENTIAL 
EQUATION BY OPTIMAL FEEDBACK CONTROL 

( , , , (.)) { ( ) ( )

[ ( ) ( ( )) ( ) ( ) ( ( )) ( )] }    (2)     

T

T T T

s

J s x u E x T Dx T

x t M t x t u t N t u t dt

α

α α

=

+ +∫ For computer-controlled systems, like data processing 
and pattern recognition, discrete-time control model can 
be derived using sampling. Equation (9) is simplified as: 
dx(t)= AC x(t)dt+ σdw(t)                                             (10) 
where AC=A(i)-B(i)N-1(i)BT(i)Kε(s, i).  

Assuming the optimal control signal is a constant over 
one sampling time and given that small sampling instants 
are {tk: k=0,1, …}. Integration of (10) over one sampling 
time is expressed as: 

1
1 1( ) ( )

1( ) ( ) ( )   (11)k
C k k C k

k

tA t t A t s
k k t

x t e x t e d w sσ+
+ +− −

+ = + ∫
1

1( )( ) ( )k
C k

k

t A t s
k t

v t e d w sσ+
+ −= ∫Define a random variable . 

It has zero mean since w(t) has zero mean. v(t1) and 
v(t2) are uncorrelated when t1≠t2. Thus the discrete-time 
random sequence {x(tk), k = 0,1,…} can be described by 
stochastic difference equation (12). 

1( )
1( ) ( ) ( )                          (12)C k kA t t

k k kx t e x t v t+ −
+ = +

where v(tk) is a unity uncorrelated vector with coefficient 
σ and zero mean, i.e. v(tk) = σw(tk). The covariance is 
expressed as follows. 

1 1 1( ) (2( ( ), ( )) ( ) ( )
T

k C k C k

k

t A t s A t tT T
k k t c cE v t v t E e dw s dw t eσ + + +− −= ∫∫  

 
V. DERIVATION OF MAXIMUM LIKELIHOOD FUNCTION 

Let L(k, i) and λ(k, i) represent likelihood estimator 
and log-likelihood function. Given a fixed sampling time 
h (h = tk+1-tk, k = 1, 2, …), the discrete-time random 
sequence is simplified as: 
x(k+1) = Ah(k, i) x(k) + v(k)                                       (13) 
where   1( , )( ) ( , )( , ) C k k CA k i t t A k i h

hA k i e e+ −= =
Assuming observation of x is contaminated by another 

stationary Gaussian noise sequence µ(k) with zero mean.   
z(k) = x(k) + µ(k)                                                        (14) 

where µ(k)= (ξ-1)v(k-1).  Now we have: 
z(k+1)=x(k+1)+µ(k+1)=Ah(k, i)x(k)+v(k)+µ(k+1)  
=Ah(k, i)z(k)+ ξv(k)-Ah(k, i)µ(k)                                (15) Tq (s, i) -tr( K (s, i)) - Q q (s, .)(i)                            (7)ε ε ε εσσ=&

where z(k) is the estimation of x(k) with mean value z .  
z (k+1)=E[z(k+1)|z(k)]=Ah(k, i)z(k)                         (16) 
 



 

The conditional multivariate probability density 
function of z(k+1) can be determined, which has the 
conditional mean z (k+1) and covariance matrix ∑.  

where, z(k) (n1 × 1) is the state vector with independent 
elements; Σ (n1×n1) is the covariance matrix; Σ-1 is the 
inverse of  matrix Σ and ∆Σ is the determinant of Σ. 
Using zero covariance property of Gaussian Markov 
process, Σ is a diagonal matrix since all its covariance 
elements are zero and all of the diagonal terms are 
variances of states. 

By zero covariance property in Gaussian process, 
Σ ii= E{[z i(k+1) - z i(k+1)]2|z i(k)} 
    =E[ξ2vi

2(k)+µµi(k)Ah(i,:)Ah
T(:, i)µµi(k)] 

    = ξ2 [σ 2 + ||Ah(:, i)||22] 
Σ ij=E{[z i(k+1) - z i(k+1)][z j(k+1)- z j(k+1)]}=0   
∆Σ =ξ2n1 Π1

n1 [σσ 2+ ||Ah(:, i)||222 ]                                    (18)  2

where Σii is a diagonal term, Σ ij is the i-j th element of Σ, 
Ah(i,:) is the ith row of matrix Ah. Covariance matrix Σ is 
diagonal and positive semi-definite. Its determinant is 
determined by (18). The logarithm of the multivariate 
probability density function (19) can be easily derived. 

Maximum likelihood estimation of multi-dimensional 
state is defined as the joint density. For all independent 
events, the joint probability density function is a product 
of the individual joint probability density functions. For 
n1 independent state, the joint density is expressed as: 
fz[z(k+1)| z(k)] = Π1

n1 fzi[zi (k+1)| zi (k)]                      
As a result, the likelihood function is: 

L(k, i) = Π1
n1 fz [zi(k+1)|zi(k)]                                      (20)  

Correspondently, the log-likelihood function is: 
λ(k, i) = -ΣΣ1

n1log fz[zi(k+1)|zi(k)]                                 (21) 
Since logarithm function is monotonically increasing, 

a multi-component vector that maximizes log-likelihood 
function will also maximize likelihood function. 
 

 

Maximum likelihood estimation produces a variable 
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value that maximizes the probability density function. It 
is equal to the value that in some sense best agrees with 

the sampling data.  To maximize log-likelihood function, 
this differentiable problem is to be solved by standard 
differential calculus. Maximum likelihood estimation is 
described by a set of differential calculus equations.  

n1

∇λ=Σ∇log fz[zi(k+1)| zi (k)]=0                                (24) 1

 1

1 ( ) ( )
2

/ 2 1 / 2

1[z (k+1)|z (k)] e     (17)
(2 )

T
i i i iz z z z

z i i nf
π

−− − Σ −

Σ

=
∆ where ∇ is the gradient operator. Intuitively, the optimal 

solution point has a same Mahalanobis  distance to all 
mean element values of multi-dimensional state vector. 
The objective then is to find out if nearly optimal control 
for state space reduction is of convergence property. It is 
to be shown by numerical simulations.  
 

VI. RECURRENT AND TRANSIENT STATES APPROXIMATION 
The states of the Markov chain can be divided into a 

number of groups so that it fluctuates rapidly among 
different recurrent states within the same group but it 
jumps slowly as transient states among different groups. 

Suppose Q1 has a block-diagonal form and it controls 
the rapidly changing part.  
Q1 = diag(Q1

1,…, Q1
L), Q1

k∈Rmk x mk and Σmk=m. 
Σq1ij= 0, for i=1, 2, … ,mk 

11 12
2 2

2 21 22
2 2

      (25)
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Q
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Q2 is generator and it controls the slowly varying part. 
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Q2 = (q2ij)mxm  and Σq2ij= 0, for i=1, … , m 
 
All states in Mk are coupled strongly as a single state 

through matrix Q2 and transitions from Mk to Mj, k≠j are 
weekly possible. By aggregating all states in Mk as one 
state k, an aggregated process {αc(.): αc(t)=k} is obtained 
when αε(t)∈Mk. αε(.) converges weakly to α(.) by:  

Q= diag(v1, …, vL)Q2diag(Im1, …, ImL)             (26) 
where vk is the stationary distribution of Q1

k, k=1, …, L 
and In = (1, … ,1)T∈Rn. 
 

Consider transient state Markov chain cases.  
Q1r=diag(Q1

1,…,Q1
L), Q10=(Q1*

1,…,Q1*
L), for k=1,… , L.  

Q1
k is a generator, Q1*∈ Rmkxmk, Q1*

k ∈ Rmkxmk, Σmk=m.  
The state space of the underlying Markov chain is:  

M=M1∪…∪M L∪M* 
={S11,…,S1m1,…,Sl1,…,Slml, S*1,…, S*m*}  

1

1

 1

1( ) ( )
2

1/2 1/2
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where M*={S*1,… S*m*} consists of the transient states.  
 

Suppose for k=1, 2, …, L; Q1
k is weakly irreducible.  

Q 1*
 has eigenvalues with negative real parts.  

Q2
11∈R(m-m*)x(m-m*),Q2

12∈R(m-m*)xm* 
Q2

21∈Rm*x(m-m*), Q2
22∈ Rm*xm* 

Define Q* = diag(v1,…, vL)(Q2
11I+ Q2

12(am1,…,a mL)), 
where I=diag(I m1, … ,I mL) and 
Imj=(1,…,1)T∈ Rmjx1, for j=1, … , L,  
a mj= (a mj(1),…,a mj(l))= -Q1* 

-1 Q1*
j I mj.  

 

1 1

|| ]

n T −

These recurrent state and transient state approximation 
schemes will be applied to the nearly optimal control 
simulation using the dynamic programming approach.  



 

Similarly, in a two-time-scale system introduced by a 
small parameter ε, the reduced state vector xε*, solution 
matrix Kε* of limit Riccati equations and value function 
of nearly optimal control vε* are to be solved. The 
convergence property is to be presented by numerical 
simulations on a multi-dimensional basis. 
 

VII. NUMERICAL SIMULATIONS 
Numerical simulations are conducted in this section. 

For optimal control problem, xε is the state, Kε is the 
solution matrix of Ricatti equation, vε is the value 
function, Jε is an expected quadratic performance index. 
Parameter ε is set to 0.05. For a nearly optimal control 
problem, xε*, Kε*, and vε* are the correspondent terms.  
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         Fig. 1 Elements of Markov Chain Generator Matrix 

 

0 2 4 6 8 10 12
0

2

4

6

8

E xponentially  Dis tributed Tim e Func tion

A
lp

ha

M orkov P roc ess  S am ple P ath (Optim al Control) - Tim e

0 50 100 150 200 250
0

1

2

3

4

5

E xponentially  Dis tributed Tim e Func tion

A
lp

ha
*

M ork ov P rocess  S am ple P ath (Nearly  Optim al Control) - Tim e

 
Fig. 2 Sample Paths of Markov Process in both Optimal 

Control and Nearly Optimal Control Problems 
 
 

Various sample paths are shown in Fig. 1 to Fig. 5. An 
eight-th dimensional system is simulated where Markov 
chain α∈ M={1, 2, …, 8} and also A(i) and B(i) are 
defined accordingly. Fig. 1 shows sample paths from 
different elements of probability matrix. The comparison 
has been made between Markov processes of the optimal 
control trajectory and nearly optimal trajectory in Fig. 2.  
There is a two-time-scale behavior in this hierarchical 
approach. As a result, time scales of two plots in Fig. 2 
are different. The difference is owing to the small time 
scale parameter ε = 0.05. In following simulations, the 
matrices of M, N and D are all selected as symmetric 
positive definite.  
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Fig. 3 Sample Paths of State Vector in Optimal Control 

and Nearly Optimal Control Problems 
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Fig. 4 Sample Path Mismatch of Solution Matrices 

 of Riccati Equation and Limit Riccati Equation 
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Fig. 5 Sample Paths of Performance Index,   

State Differences, Value Function and Cost Function  
Due to Nearly Optimal Control 

 
The sample paths for the correspondent state vectors 

are illustrated in Fig. 3. Fig. 4 shows the trajectory 
differences on some elements from solution matrices. 
Sample paths of cost function and various comparison 
terms regarding convergence property of nearly optimal 
control approach are plotted in Fig. 5, respectively. The 
results are in fact convergent. All the associated error 
bounds are calculated in Table 1. 
  

Table 1 Error Bounds 
 

ε Kε-K*| xε-x* vε-v* Jε-vε 
0.05 0.0277 0.0049 6.8049 7.9004 

 
VIII. CONCLUSIONS 

 
This article focuses on the mismatch estimation in 

stochastic nearly optimal control of a linear quadratic 
Gaussian model, where maximum likelihood estimation 
is employed. For a large scaled system, simplification 
schemes are in need to be applied for the computation 
reduction where a time scale partition is involved at the 
same time. Mismatch is consequently generated using 
averaging schemes in stochastic nearly optimal control. 
To eliminate approximation mismatch to an acceptable 
level, maximum likelihood estimation is proposed and 
satisfied results are achieved. Numerical simulations are 
also conducted and investigated in multi-dimensional 
stochastic optimal control systems in order to testify the 
schemes for feasibility and convergence. 
 

 

REFERENCES 

[1] Q. Zhang, G. Yin, "On Nearly Optimal Controls of 
Hybrid LQG Problems, IEEE Transactions on 
Automatic Control", Vol. 44, No. 12, pp. 2271-
2281, 1999 

[2] Q. Zhang, G. Yin, "Hybrid Stock Investment Models 
and Asset Allocation", Proceedings of the 41th IEEE 
Conference on Decision and Control, Las Vegas, 
USA, December, pp. 389-394, 2002 

[3] G. Yin, Q. Zhang, H. Yang, K. Yin, “A class of 
Hybrid Market Models: Simulation, Identification 
and Estimation”, Proceedings of the American 
Control Conference, pp. 2571-2576, Anchorage, 
May 8-10, 2002 

[4] G. Yin, Q. Zhang, “Continuous Time Markov Chain 
and Application: A singular Perturbation Approach”, 
New York: Springer-Verlag, 1998 

[5] L. Crespo, J. Sun, “Stochastic Optimal Control of 
Nonlinear Systems via Short-Time Gaussian 
Approxima-tion and Cell Mapping”, Nonlinear 
Dynamics 28: pp. 323-342, 2002 

[6] J. Krawczyk, A. Windsor, "An Approximated 
Solution to Continuous-Time Stochastic Optimal 
Control Problem through Markov Decision Chains", 
Computational Economics, No. 9710001, 1997 

[7] Sandra Cerrai, "Optimal Control Problems for 
Stochastic Reaction-Diffusion Systems with Non-
Lipschitz Coefficients", SIAM Journal on Control 
and Optimization, Volume 39, No. 6, pp. 1779-
1816, 2001 

[8] G. Calafiore, L. Ghaoui, “Worst Case Maximum 
Likelihood Estimation in Linear Model”, 
Automatica, 37 (4), April, 2001 

[9] D. Allard, C. Fraley, “Non Parametric Maximum 
Likelihood Estimation of Features in Spatial Point 
Processes using Voronoi Tessellation”, Journal of 
the American Statistical Association, 92(1485-
1493), 1997 

[10] F. Pentini, V. Parisi, F. Zirilli, “Global Optimization 
and Stochastic Differential Euqations”, Journal of 
Optimization Theory & Applications”, V.47, No.1, 
1985 

[11] Richard Duda, Peter Hart, Pattern Classification and 
Scene Analysis, John Wiley & Sons Inc., 1973 

[12] Karl J. Astrom, Bjorn Wittenmark, Computer 
Controlled Systems–Theory and Design, 3rd Edition, 
Prentice Hall, 1997 

[13] Simon Haykin, Neural Network: A Comprehensive 
Foundation, 2nd Edition, Prentice Hall, 1999 

 


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrA14.5
	Page0: 4388
	Page1: 4389
	Page2: 4390
	Page3: 4391
	Page4: 4392


