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Abstract—Reliability testing of large-scale systems is often 

infeasible or very costly.  Thus, when estimating system 
reliability, it is desirable to employ a method that uses 
subsystem tests, which are often less expensive and more 
feasible.  This paper discusses a method for calculating full-
system reliabilities based on subsystem tests.  The method 
does not require that subsystems be independent.  It accounts 
for dependencies through use of certain probability 
inequalities.  The inequalities provide the basis for valid 
reliability calculations while not requiring full-system tests or 
information on greater-than-pairwise subsystem failure 
modes. 

I. INTRODUCTION 

IT is often infeasible or very costly to assess the 
performance of complex systems through full-system 

tests.  Further, full-system testing may sometimes involve 
the destruction of expensive system assets.  There is a 
critical need for alternate approaches to estimating full 
system reliability or other performance characteristics, 
especially for systems that require non-destructive tests 
such as bridges, machines, aircraft, and satellites.  In 
addition to the need to minimize the number of full system 
tests is the desire to exploit valuable information from 
subsystem tests (which tend to be less expensive than full 
system tests) as a means of quantifying full system 
reliability. Of the various system performance 
characteristics, system reliability—the focus of this 
paper—is one that is usually difficult to quantify without 
the benefit of full system testing.  Many approaches exist 
for quantifying system reliability from subsystem tests (see, 
e.g., [1], [2], [3]).  These methods, however, assume that 
the subsystems are statistically independent or that the 
system configuration is completely specified.  Under the 
assumption of independence, reliability is calculated as the 
product of all the critical subsystem reliabilities.  
Independence is frequently not met in complex systems, 
which may contain many interdependent subsystems that 
interact in subtle and not-so subtle ways.  For such systems, 

reliability calculations that rely on independence will be 
misleading. 
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A simple example illustrates the point.  Suppose the 
system consists of component subsystems Si, i = 1, 2, 3, … 
, 20 which fail if some parameter iX  exceeds a specified 
threshold,  say.  Assume that the 2.5iX > iX ’s are zero 
mean, normal random variables with  for all i 
and  when .  The probability of 

system failure is 

var( 1X )i =

cov( 0.75, )i jX X = i ≠ j

{ }( i∩ )2.5 =1p P= − X ≤  .  If it 

were assumed, erroneously, that the X

0.042

i’s were independent, 
then we would obtain { }1p P∏ 2iX ≤ .5= −  = 0.117.  
Hence, in assuming independence, one would produce a 
probability of system failure that is greater than twice the 
true failure probability.  If a significant number of the 
subsystem-to-subsystem covariances were negative (rather 
than positive as in this example), then a reliability 
calculation based on the assumption of independence 
would underestimate the probability of failure.  Obviously, 
such errors can have potentially serious consequences in 
system design or analysis. 

We discuss a method of quantifying system reliability 
that overcomes the major shortcoming of previous 
approaches.  The method, called Inequality-Based 
Reliability (IBR), makes use of results from subsystem tests 
and (if available) full-system tests.  IBR combines 
estimates of two quantities to estimate system reliability: an 
estimate of an upper bound on the system failure 
probability (derived from the subsystem tests) and a point 
estimate of system reliability (computed from system-level 
tests).  The IBR estimate is a combination of these two 
estimates defined to minimize a certain mean-square error. 

The upper bound estimate—which provides an initial 
upper bound estimate on the system failure probability—
makes use of information about the probability of failure 
for the individual subsystems and the joint probability of 
failure for specified pairs of subsystems.  (The inequality 
does not require greater than pairwise failure probabilities, 
nor does it require that all pairs of subsystem interactions.)  
The use of pairwise information is what distinguishes IBR. 



 
 

 

II. PROBABILITY INEQUALITIES 
We present probability inequalities and results useful in 

defining the IBR estimate (Section 3).  Suppose that a 
system consists of  critical subsystems that have two 
states—operating or failure.  The system fails if one or 
more of its subsystems fails.  In other words, the sub-
systems can be viewed as being serially connected.  Let F

1m >

iF

(P−∪ ∩

i 
denote the event that subsystem i fails,  its probability of 

failure, and  the event of system failure.  The 
probability p of system failure is 

. 

ip

F =∪

1= =( ) c
i ip P F F )

)p

1

In general, , since the ’s are not 
assumed to be independent.  The exact expression for p 
contains sums and differences involving up to 2  joint 
probabilities 

(1
1 1m

ii
p

=
≠ − −∏

( )

i
F

m −

J ii J
P P F

∈
= ∩

ip ij

, where the index set J varies 

over all the non-empty subsets of 1, .  For 
complex systems, obtaining estimates of all the joint 
probabilities will usually be infeasible.  The IBR reliability 
estimate relies on upper bounds on p and requires, for its 
computation, at most pairwise failure probabilities; hence, 
it only involves the ’s and . 

2,

( )jF= ∩

,…

,  1

m

,i jip P F m≤ ≤

Upper bounds, for the probability of a union of sets, 
which depend on at most pairwise intersections, were 
derived in [4], [5], [6] using graph-theoretic results.  We 
briefly summarize the relevant results. 

Consider the set { }{ }, : , 1 ,j i j i j= ≠ ≤T i  consisting 

of all possible edges between the vertices 

m

{ }1, 2, , m… .  A 
subset of T is a graph. 

Proposition: ([4], [5]) Suppose  is a graph, then τ
 

  (1) 
{ }

,
,

ii
i j

p p
τ∈

≤ −∑ ∑ i jp

m )

 
if and only if  satisfies: τ

i) for each i , there is a 1, ,= … ( j j i≠  such that the 

edge { },i j  belongs to  (i.e., each vertex is connected to 
at least one other vertex different from itself), and 

τ

ii)  contains exactly  edges (i.e., the graph 
contains no cycles). 

τ 1m −

A graph satisfying conditions (i) and (ii) above is a 
spanning tree in { }1, 2, , m… , which, by definition, is a 
graph that consists of exactly  branches such that at 
least one edge is incident on each vertex.  The proposition 
states that inequality (1) holds only for spanning trees. 

1m −

From (1) we have the following upper bounds for p ([4], 
[5]): 

 

 
( )

,
,

min ii
i j

p p
τ τ∈

i jp
  ≤ − 
  
∑ ∑  (2) 

 
where the minimum are taken over all spanning trees in 
{ }1, 2, , m… . 

In most applications, estimates of the probability 
 will only be available for some pairs of events.  

It is of interest, then, to consider the following inequalities, 
each of which requires only a subset of the pairwise 
probabilities for computing the least upper bound in (2): 

( i jP F F∩ )

 
 ( )2i ii i

p p m
<

≤ − jj
p∑ ∑   ([7]) (3) 

 
 , 1i ii i

p p p +≤ − i∑ ∑    ([5]) (4) 
 

 maxi ii j
p p

≠
≤ − ji j

p∑ ∑    ([8]) (5) 

   ([9]). (6) 
2
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m

i ii k ii
p p

<=

≤ −∑ ∑ kp

p

 
All the inequalities (1) – (6) improve on the well-known 

Bonferroni inequality ii
p ≤∑  due to the subtraction of 

non-negative terms. 
It is easy to see that (4) holds.  Indeed, the index set 

consisting of { }, 1 , 1, ... , 1i i i m+ =

( ),
maxi i ji i

i j
p p

τ τ∈

  − ≤ 
  

∑ ∑

−

1i ii
p

i jp

, is a spanning tree, 

hence , from 

which (4) follows.  We show next that the other bounds—
(3), (5), and (6)—are greater than or equal to the least 
upper bound in (2).  In particular, we have the following 
result: 

, ,ip +−∑ ∑

Proposition: Let . The 

bounds (3), (5), and (6) satisfy: 
( )

*
,

,
min ii

i j
p p

τ τ∈
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∑ ∑
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Proof: To prove (i), note that the graph 
{ }{ }, : 1, ... , ,i j i m i j= ≠

jj
p

 is a spanning tree for each j, 
hence 
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This inequality implies 
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which, when averaged over j = 1, …, m, yields 
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The preceding inequality and the identity 

 complete the proof of (i). 2ij ijj i j i j
p

≠
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Last, to prove (ii), note that the index set consisting of 

{ }, , 2, ... ,ii k i m=

1 ik i≤ < 2, ..i =

*
,
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i i ki
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, is a spanning tree if for each i, 
, , in which instance 

.  If, in addition k

., m

i is chosen so that 
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ii i ki
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 from which the result 

follows.  

2, ... ,i =

,i k,
2 2

m m

i
i i

p
= =

∑ ∑ x p

Given an estimate  of  and  of , , 
we can form an upper bound estimate  by substituting 
the estimates in the right-side of (2) (or (3) through (6) and 
taking the smallest of the three bounds).  Typically,  
would be computed simply as the ratio 

ˆ ip ip ˆ ijp ijp 1 ,i j m≤ ≤

ˆ ip

ˆUBp

{ } { } # failures  # trials  for subsystem i.  The estimation of 
the joint probabilities  is typically more challenging and 
problem-dependent.  Usually their derivation will involve 
physical modeling and system identification together with 
subsystem tests.  In particular, failure detection and fault 
isolation methods ([10], [11], [12], [13]) may provide a 
means of estimating such joint probabilities.  Further, fault 
isolation methods are valuable in providing a means for 
determining the specific cause of a failure. 

ˆ ijp

Remark: Although the bound in (5) is sharper than (3), it 
is easier to derive uncertainties and confidence intervals for 
(3) than (5), since it does not involve finding a maximum. 

III. THE IBR METHOD 

A. Computation of the Estimate  
We now describe the IBR estimate.  The approach 

recognizes the practical reality when one may have at least 
a few full system tests that contain valuable information to 
be combined with the subsystem tests.  It is not necessary, 
however, to have full-system tests to implement the 
approach.  If full-system test results are available, the IBR 
estimate here is a weighted combination of the upper bound 
estimate  and the estimate  based on full-system 
testing.  (The estimate  is usually computed simply as the 

ratio of number of failures to the number of tests.)  In the 
absence of full system testing—i..e.,  is unavailable—

 is defined to be the IBR estimate. 

ˆUBp p̂
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p̂
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τ λ
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λ

p

τ
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*λ

2 .

p p

(

Fix a spanning tree,  say, and let  denote the bound 
on the right-side of (1).  (For brevity,  will sometimes be 
suppressed.)  Assume that  and  are derived from 
independent data.  For each , , let  

.  For each , the quantity 

 is an (upper bound) estimator of 
.  The IBR estimate of  (based on ,  and, hence, 
) is obtained by suitably choosing .  In particular, the 

IBR estimate is defined to be , 

where  is chosen so that  minimizes the mean 

square error , over all  such that 0 1 .  
In particular, as will be shown 
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where ( )* 2 2 2

UB UBλ σ σ σ= +

( )2p−

, , and  
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( 22 ˆUB UB UBpσ −

ˆE p=

)

)
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B. Discussion 
In this subsection, we provide justification of the loss 

function for defining the IBR estimate.  According to the 
foregoing, the IBR estimate is the estimate of the form  

that minimizes the mean square error .  What 

typically is of interest in practice is the error , 
where p is the true system reliability.  However, this latter 
quantity depends on the bias term ( , which is 
unknown. 

p̂λ

( )2p

( 2ˆE p pλ λ−

ˆE p

)2
UBp p−

λ −

We can establish a bound on the error in using 
rather than  to define the IBR 

estimate. 
( 2pλ λ− ( 2ˆE p pλ −

Proposition: Let  minimize  and let 

 be the IBR estimate of p.  Then 
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Proof:Observe that  
, which implies 

ˆ ˆp p p pλ λ λ− = − + −

( )( ) ( ˆ1 UBp p p pλ λλ= − − + −
λ

)

)2
λ

)

 
( ) ( ) ( )2 2 2ˆ ˆ1 UBE p p p p E p pλ λλ− = − − + − . 

 
If   minimizes , the last identity implies 

that 

**λ ( 2ˆ λE p p−
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Since ( ) , we also have 21 λ− ≤

 
 . ( ) ( ) (2 22 ˆ ˆ* * **UB λ λ λ

p p E p p E p p− + − ≥ −

 
Consequently, 
 

( ) ( ) ( ) ( ) ( )2 2 2 2**ˆ ˆ  1** * * UB UBλ λ λ
E p p E p p p p p pλ− − − ≤ − − ≤ − 2 .

 
Note that the right most term in the above is simply the 

square of the error in . UBp

C. Properties of the Estimate 
We establish a connection between the IBR estimate 

 and the method of least squares by deriving the 

optimal value  of .  For the connection between IBR 
and least squares we prove the following result. 

( )*p̂λ τ
*λ λ

 
Proposition: Let  and  be unbiased, independent 

estimates of  and , respectively.  Then, 
p̂

UBp

ˆUBp

p

(i) , where the ’s belong 

to a specified set of J of spanning trees. 

( )( ) ( )*ˆmin minp E p pλτ τ
τ≤ ≤ *λ τ
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(ii) If  is the IBR estimate , then *p̂λ

(
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* 2 2
UBλ σ σ= +

2 ˆE pσ =

2
UBσ

( )2p−

, where  and 
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(2 ˆUB UBE pσ = )2
UBp−

Proof:  The proof of (i) is omitted since it is 
straightforward.  Now consider (ii).  First, 
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where the last identity follows from the independence of  
and .  Using the method of Lagrange multipliers, it can 
be shown that the right-side of (8) attains its minimum at 

p̂
ˆUBp

( )* 2
UBλ σ 2 2

UBσ σ= + . 
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