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Coordinated Decentralized Adaptive Output Feedback Control of
I nterconnected Systems

Naira Hovakimyan, Eugene Lavretsky, Bong-Jun Yang and Antl@alise

ABSTRACT of incorporating neural networks into decentralized aigdapt
ontrol have have been reported in [12], [13] for design of
ate feedback controllers. Following [14]-[16], we assume
at the desired trajectories are known to all the contrs)le
e. the controllers share prior information about theialgp

nd we develop aredaptive output feedback synthesis

A decentralized adaptive output feedback control desig
is proposed for large-scale interconnected systems. It
assumed that all the controllers share prior informatio
about the system reference models. A linearly parameteriz

neural network is introduced for each subsystem to paytial . . .
cancel the effect of the interconnections on tracking pegpproach that achieves ultimate boundedness of tracking

formance. Boundedness of error signals is shown througj{rors' As Iroll [.1.4]’ I'[l'?]’ we W':! sayv\;mt the cton;rct)::ers
Lyapunov’s direct method. re engaged inmplicit cooperation. ile most of the

existing results in decentralized control literature rely
I. INTRODUCTION the definition of a robust controller for dominating the in-
] ) ) _ terconnections, we show through Lyapunov’s direct method
With the advent of complex engineering systems, intefy, 4t 4 linearly parameterized neural network, operatireg ov
est in design of decentralized controllers has especialfgference model states caartially cancel the intercon-
increased. The problem can be briefly formulated as gection effects. Ultimate boundedness of error signals is
control design for a system composed of sevesalam  ghown using Lyapunov’s direct method. This paper should
ically interconnected subsystems, such that the output okye yiewed as the extension of adaptive output feedback
each subsystem has to track a prescpecified reference g0l approach developed in [17] for centralized control

jectory, while no communication is allowed between thg, 5 decentralized setup, using the viewpoint of [14], [16]
controllers. The problem was first introduced in [1] forsg, gefinition ofimplicit cooperation.

weakly interconnected subsystems having regulated outputstpe paper is organized as follows. In Section Il we

with relative degree 1 or 2. In [2] a framework for modelgiate the problem formulation and assumptions about the
reference adaptive control has been developed under gpsystem dynamics. In Section 1l we present the approach
strictive assumptions, like positive definiteness of an Mang define the error dynamics. In Section IV, we define the
matrix involving unknown constants, relative degrees ofqanyive controller for each subsystem and derive assokciat
outputs being one or two, and matched uncertainties. Thegg,nds. Section V has a proof on ultimate boundedness
conditions were further relaxed in [3]-{10]. A detailedqs error signals of the large-scale system. In Section
review of the cited literature one can find in [11]. VI, we illustrate the theoretical results on non-minimum
Here we formulate and solve the problem of decenyhase system like three inverted pendulums. Throughout the
tralized adaptive output feedback control for a class gfanuscript bold symbols are used for column vectors, small

nonlinear subsystems with known relative degrees, subjeglters for scalars, capital letters for matricgis,|| denotes
to unknown interconnections with known upper bounds_orm unless otherwise noted.

We depart from attempting to obtain global results, and
restrict the synthesis approach to a domain over which the Il. SYSTEM DESCRIPTION ANDPROBLEM
interconnections and nonlinearities can be approximayed b FORMULATION

a linearly parameterized neural network. Similar attempts Let the large-scale system be composedhaktabilizable
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unknown functions, representing the modeling errors anapen-loop subsystem. The following bounds are assumed
interconnection effects, whild;, B;, b;, ¢; are matrices and to be known

vectors corresponding to the normal realization:

0 1 0
A = S S
| @iy G4y ai,.
r o ... 0
B = 0
L Ciy Cinrn
andb;, =[ 0 bi 1T, ;=11 0]7.
Assumption 2.1: The funCtlonSgl(azl,zl,...,a:m,zm)
are bounded for all = 1,--- ,m:
llg; () |<ZO‘1 :c , ;>0 2

The objective is to syntheS|z<e1ecentraJ|zed adaptive output
feedback control lawsw;, such thaty;(¢) tracks a smooth
bounded reference trajectoryy;, (t) with bounded errors
for all i = 1,---,m, under the assumption that th&
controller knows thelesired states of all the subsystenis=

”[(L.Z ZZ ]TH§5“ i=1--,m (7)
Remark 2.1: In [14], this problem formulation has been
addressed for linear subsystems, and, by a proper choice of

robustifying signal, it has been shown that global asyniptot
tracking can be achieved if the robustifying gain satisfies
a lower bound, depending upon the number of subsystems
and the apriori known bound on the interconnection effects.
In [15], these results have been extended to nonlinear
interconnections, modeled bynown nonlinear functions.
Moreover, output feedback has been formulated and solved
for the case of subsystems having regulated outputs with
relative degred. Our approach is different in two perspec-
tives: i) we formulate the problem in output feedb&ck
arbitrary relative degree by extending the results of [17]
for centralized control, ii) we use aadaptive signal for
overcoming the effect of interconnections on the tracking
performance. On the other hand it should be understood
that, due to results in [18], one cannot expect global result
while using dynamic output feedback compensators with
the class of nonlinear systems presented here.

IIl. CONTROLLERDESIGN, ERRORDYNAMICS

1,---,m, while having access only to its own measurement

Yi(t).

As in [14]-[16], we introduce the following assumption.
Assumption 2.2: The signalsy;, (¢) are assumed to be

generated by the followingtable linear closed-loop ref-
erence models

éli = AZEL + b’l”i yCiJ yli = é?&ll (3)
consisting of an open loop system
11'311. Aiwli + Bizli + biuli
,?'.’li = Ciacli + Dizli
yli = CiTSCl“ i=1,~-- ,m (4)
and a stabilizing dynamic compensator:
T, = Aczwm + be, (Ye; — y1,)
(75 = wcb—"_d (ycb_yi)a 121,,77’1,(5)
where
B Al — bidc,, C,LT B7 blcz;
~b.,cl 0 A,
&, = [ :clT zg mz 17, b, —
[bdl 0 b° 17, & = [cf 0 0], and y,

The control design for each of the subsystems will be
based on the logic of combining a linear controller, that
stabilizes the nominal linear model in the absence of inter-
connections, with a neural network (NN) that approximately
cancels the interconnection effects in the controllabtgyea
Towards this end, introduce the following control signal

U; = Ue, — Uqd,, Whereu,, is the output of the following
dynamic compensator

770@' = ACiTICi + b, (ycz' - yi)

Ue; = C(,Z:;T’c,', +d67’,(ycq, 7yi)7 2:17 , 1, (8)

wheren, € R", A, b, c.,,d., are introduced in (5),
and the adaptive signal., will be defined later. This
results in the following closed-loop subsystem dynamics:

éi = Abgz + b’f"i Ye; — Bi (uadi - fl) +9; (9)
Yi = ézrgi7 Z.:la"'7m> (10)
where ¢, = [z 2I nZ]T, b, = [b] 0 0T, g =
[0 gT 0]T. Following [15], define the error vectaE,; =

&, — &;, and write the tracking error dynamics for thié

subsystem:
E; = AE; + bi(uga, — [3)

whereC; = [ e 1 ]T separates the signals available for
feedback.

-9, ¥y, =CE;, (11)

is a bounded input of interest to track. The matrices

A;, B;,b;,c; are assumed to correspond to the normal

realization, as defined in (2), so thdimz;, = dimz;,

anddim z;, = dim z;. Notice that this choice of the open
loop system in (4) implies that the relative degree ofunction f(x)

the i*" open-loop reference model equals that of iHe

IV. NEURAL NETWORK APPROXIMATION OF
NONLINEARITIES AND ADAPTIVE CONTROL
Following [19], given arbitrary™ > 0 and a continuous
: R® — R™, defined on a compact set
R"™, there exists a set of bounded constant
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weights W, and a set of basis functiong(x), such that Through several algebraic manipulations and, using the

the following representation holdsz € D: f(x) = mean value theorem, one can obtain
T *
Kezéﬁ)ngcteigﬁ)s, lle(x)|| < €*. Thus, one can model the o, — fi = Wichi(Yz) CWTEYIY - (18)
T whereY = [z7 2T ... &7 2717 is comprised of the
i@z, @, 2m) = Wil (V) +a(Y) - (12) tracking erro[rslof ;II the subsysti:‘rrﬁii = aclip— T, 2=
using the following input vector Y = 2z, — z;), ¢,(Y™) is the bounded derivative of the basis
[T 2T ... 2T 2717 ¢ D < Rmt 7= and function in an intermediate poiit™ =Y,; + (1 — MY,
a vector of the radial basis functiong,(Y) = 0<AX<1, andW;= W, - W, is the parameter error
[0, (Y) -+ ¢in (Y)]T, where N; is the number vector. From the definition of; andY it follows that
of basis functions to be used by thé" subsystem, j=m
¢ (V) = e VY l'/20, Y, s the vector of V)< > I (19)
centers of the basis functions used by the subsystem, j=1

having the same dimension a¥, o;, specifies the
width of the k** basis function in thei*® subsystem,
and |e;| < €, [[W;] < W. Since our interest is in
decentralized design, the states of other subsystems
not available to individual controllers, therefore the ubp * . )
vector Y cannot be used in designing adaptive element{lis end, 'erdUC?T the ~cTom~chJS|te ~er;orT vector
Based on the assumption that the controllers share prigr = |ET --- ET E, .- E, W, --- Wm} €
information about their reference models, the adaptiv@2(ni+-+nm)  RNi+-+Nm and consider the following

. 'th .
control signal for thei’* subsystem can be des'gnedpositive definite function V(¢) _ A ¢TT¢, where

following the same logic as in [15], T = blockdiag[Py -+ Py Py - Py LFY oo 1R,
o T Further, notice that the RBF network approximation

tad, = Wi $:(Y1) (13)  can be defined over arbitrarily large compact <@t

where the vector Y; is defined as Y; — Based on the definition of the compact $8t, and the
[F 2F - &l 2T T having the states of all the boundedness ofr., and n., in the subspace of the

1 1 m m . . .

subsystems replaced by their corresponding referenaessta@fror variables consider the following compact m% of

when compared t& . Notice that due to boundedness ofpossible initial errors:Qg = { [ET -~ EL]| €

reference model states there exists al3ein the extended Rm+tnn . Y €D, Y, €Dy, o € Do, 1, € Dm}-

space such thaY; € D,. The adaptive laws folV; are .
similar to those in [20]: In the expanded space of the error variable
¢ € R2mtdnm) » RNi++Nm  consider the largest

V. STABILITY ANALYSIS

In this section we show through Lyapunov’s
gliéect method that the error signalsE;, E;, W,
] = 1,---,m, are ultimately bounded. To

Wi = —F20,(Y)E, Pb; + kW] (14) level set of
LT
in which P; is the solution of the Lyapunov equation V() =¢T¢ (20)
ATP; + PiA; = —Q; for someQ; > 0, and Fy, k; > 0 corresponding té EX .- E” |7 € Qg and introduce
are adaptation gains, whilE; propagates according to the the |argest ball that lies inside this level set:
following dynamics:
Br ={¢ | <]l < R} (21)

Bi=AiBi + Ki (9~ 9:), 9 = Cils, (15 Let o be the minimum value oW (¢) = ¢T'T¢ on the
whereK; is a gain matrix, and should be chosen such thdtoundary ofBg:

A; — K;C; is asymptotically stable, whilé = 1,--- ,m. A o2y

Lot A = A, ~ KiCh. By — BBy i—1..m = Hgl‘glRV(c) = R*Anin(T) (22)
Th.en where Apin(T) is introduced for the minimum eigenvalue
E; = A,E; + b;(uga, — f;) —G;, i=1,---,m (16) of T. Introduce the set

A
We immediately note that for arbitrary positive definite Qo ={C€Br | V() <a} (23)
Qi > 0 there exists a unique solutioh; = PT > 0 such Assumption 5.1: Let
that AiTPi + P;A; = —Q;. The error dynamics in (11) can

be expressed as: R > v/ Amax(T) /Amin(T) (24)
E, = AE, +b, [WiTqbi(Yz) B Wde)i(Y) . B where A,.x(T") is introduced for the maximum eigenvalue
g, — C.E,. 7) Of T» while y = max <\/ S\ B\ Amm(A>>'
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in which D £ diag [ 64 Om |, 0 Amin (Q:) — Now introduce the following Lyapunov function for the
2maidmax(Pi) — (me; + 1)|| Piby|| — (2||P bj|| + whole system:
0, ¢* - Q4 )\max( )+)\de( Nz) > 0, D é o

% (o ) ; YoV (26)
dlag[ 91 em ] - )\IHIH(Q'I) 2m051 max ( )* i1

* b, N — il A

(me} + 1) (17:0all + “Z) ”7'”,?1(“)“ > 0.A =" J16n, using the notations from Assumption 5.1, the upper
dlaAg[ A A ] A =5 = pilled (YOl > 0. pound reduces to:
0 2 3L (5 W72 (20 Pibu 10) 6Pt O () o
Amax(P)) Y321 87), 67 £ W@ (Y7, i 2 11 Pibi + V=2 Vis

P;bi]|.
Theorem 5.1: Let Assumptions 2.1, 2.2 and 5.1 hold.

If the initial errors lie in Q,, defined in (23), then all

the signalsk;, E;,W;,i = 1,--- ,m, in the closed loop

system are ultimately bounded.

Proof. Consider the following Lyapunov function candidate

for each of the subsystems:

Dint [— (/\min(Qi) — 2ma Amax (P;)
~(m; + 1)1 Pbll) | Bl = 03] B
“NlWill2 + I @Rl + i)

s (Amax(P) + Amax (P2)) |15 ]+

Regrouping, this can be written:
D Vi<
=1

> [ - OlBl =GB — N Wl2] +w
i=1

. T . 1. -
ViE;, E;,W,) = E'P,E, + E, B,E, + §WiTFi‘1Wi

Substituting the adaptive laws from (14) implies: (27)
~E[Q.E; - E?QzEz
28, Pbi[W{(Y")Y -

"/i =
61} +2E] Pg,

+2E;TF(PZ-BZ- + Pb;) [W?d)i(Yz) Following an argument similar to that in [12],
N 7. . .1 define the vectorsE 2 [ ||E| 1E.] 17,
+WTI(Y*)Y — €| +2E; Pg; — ki |[W,W,| A ~ . 7 A
i i } i [ } E 2 [ By 1Enl ], W 2

Notice that using the bound in (7), the upperbound in (2? W | Wl }T Then the expression in

can be represented: (27) can be put into the following form:

Jj=

gl < ailll Bl + 8]
1

j=

(25) V < —E'DE-E DE-W AW +u
) The following upper bound
Then using (19), the following upper bound can be derived:

. V< )‘mln( )||E||2 )‘min(D)”EHz
Vi € Anin( @) B3> = Amin Qi) || 41> 2
. ] m —Amin (A )HWH tw
w2 (18] + |1B:]) | Pibil [¢ PIE ] | A
implies that either of the following conditions
20 Amax (P) | B3| 3252 [IIEj||+ﬁj] —
2 By | [||v~vi||||¢>7;<Yl>|| + 67 LI IES | + €] L= N D)
20X (PO B2l S (1B + 3] — ks [WW e
Completing the squares twice and regroupong, the following ~ mu;
upper bound can be derived: W > o (M)

Vi < = (Amin(Qi) = 2maiAmax(P2) — (e}
D)L )I1Bil12 = (A (@) = 2metidmax(P)
—(met + D (IPbill + i) — il g (V)| )| Bl

will render V < 0 outside the compact set

By ={C[lI<l <~}

Let I" be the maximum value of the functidri(¢) on the
boundary ofBB,:

(28)

= (5 = lles (YOI W12 4+ 252 211 Pib
+110)97 + i (Amax(P2) + A z)) J1E;11 D2 max V=" Apa(T) (29)
+%(Wi*)2 + (21| Pibs | + 1) (62‘)2 Assumption 5.1 ensures
o (P P0) ST be@v-tico, @
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Thus, if the initial error¢, = ¢(0) belongs toQ,, then (M + m)is + ml,fs cos O3 — ml,02sinfs = wuz — s9
there exists a time instamg (¢,), such that¢(¢) will enter

the set(2, att. and remain inside it for alt > t¢. This mly, cos 033 + (I + mlf})e}j —mgl,sinfs = 0
implies ultimate boundedness ¢f completing the proof. . ,

Remark 5.1: The results obtained above can be exWheréui,us,us are input forces to the carts(N)/ is the
tended to the case where the modeling errors also d&@ss of the cart (kg is the mass of the rod(kg),
pend upon the control signal, i.e. in (1) one can havl® the distance from the pivot on the cart to the center
Fi(wis @1, 21, .-, Ty, 2, SUBjECE tODf; /u; # 0. Notice pf gravity of the rog(ha}f of full Iength)(m)[(: %mlf)) _
then that the adaptive signal will be introduced to cancel | theé moment of |2nert|g of the rod with respect to its
function f; (i (uaq, (-), -) of itself. To avoid this algebraic center of mass (kon ),'g is the grawtauonal accelera}tlon
loop, one way of implementing this is to use a one steﬁ(g'mlseé)% k is the spring constant (N/mjis the damping
delayed value of the control signal(t — d), whered > 0 constant (\Nsec/m),sy = k(zy — 21) + c(d2 — d1), 52 =
is sufficiently small. k(xs — x2) + c(&35 — 42) are interconnection forces due

Remark 5.2: Assumption 5.1 may be interpreted as plac!® SPrings and dampers. The parameter values e

ing both upper and lower bounds on the adaptation gain%'.g’m = 0'187l1,7 :_0'3(_)5’9 =98k =1lc = 2 x 107
A Our control objective is to regulate the displacements of

A A .

Let 7 = max(/\“‘ax(}?i))' ZA = min(Anin(F7)), /\~ = the cartsz; while balancing the inverted rods on the carts
maxX(Amax(F:); Amax(Fi)), A = min(Amin(Fi), Amin (%)), without velocity measurements. The open loop subsystem
i=1,---,m. Then an upper bound for the adaptation gaing, (4) is derived after the dynamics are first linearized with
results wher2\y > 1 and2)\y > 1, for which the relation respect to equilibrium position; = 6; = 0, and then put

in (24) reduces toy < R?/(2*)). A lower bound for into a normal form by the transformation;, = x;, z;,, =

the adaptation gains results wheay < 1 and2237 j L, &i,21, = 0,21, = & + 0, The linear subsystems, for
for which the relation in (24) reduces to> ~"/(2R*A). ; _ 19 3 is described by the following system matrices:
Notice that the upper bound for the adaptation gain has

R in the numerator, while the lower bound h&sin the A — [ 0 1 } B = [ 0 0 } b = { 0 }

denominator. Therefore? can be selected sufficiently large 00 -0 -

to ensure thaty < 7. 0 -1 0 1
- Cz:|: lp:|7Di:|:i 0:|,c7,:|:1:|
VI. SIMULATIONS

We consider three inverted pendulums mounted on carts, (31)
as depicted in Figure 1. The carts are connected by sprinlie constants\/ = 0.815, 7 = 0.21 represent parameter
estimates forM,m respectively. Further, in this linear
model, the inverted rod is treated as a lumped mass located
on its center of mass, i.el, = 0. Putting each subsys-
tem into normal form leads to the following modelling
errors and interconnection effects defined in (¥): =

M . 12 0. _ 3 1 0 cos O
m(m + mlp91 blI; 61 4717'Lg S ?1 COS 61 +
cosb; .. _ 1p. 1 ...
UL’ M42’ k ui’ T)-I—T?Lg@—lt g: - lp 1'22 391+lpz12
M % M % ! ¢ v l'isinoi— llxiﬁisinﬁi - 1191
P P P
¢ O« wherer, = s1, ™0 = —$1 + s, T3 = —so. The 7; terms

7 ’/’<)/ /C/ <,<), 7
R imply that the spring and the damper are not considered in

the open loop model. The term) means that the modelling
Fig. 1. Three inverted pendulums on three carts error also depends on the control signal as in Remark 5.1.
Note that the interconnections between the two carts and
and dampers. In each subsystem, we assume that the p@s& modelling errors contain velocity terms which are not
tion of the cart{;) and the angle of the penduluégf are  measured. This implies that the existing adaptive output
measured and the cart is regulated by input forcg@sThe  feedback approaches in the decentralized control litexatu
equations of motion for the system are described as followsych as the ones developed in [8], [21] and many others,

(M + m)is +ml,,é1 cos 0, —mlpéf sinfy, = ug+ sy although establlshlng globall results, cannot be applied.
Moreover, regulation ofr; using u; to the carts renders
! 0. 7 12\i L sng — 0 the control problemnonminimum phase -linearization of

mlp cos 0121 + (I +mly )0y —mglpsiny = each subsystem about vertical-up position leads to urestabl

. ) Zero \/%. These issues make the control problem even

(M + m)iy 4+ mlyby cos Oy — mly03 sinfy = uy — s1 4+ 52 more challenging. The dynamic compensator in (8) for each
) subsystem is designed as a LQG controller based on the

miy, cos Oads + (I + le)GQ —mgl,sinfy, = 0 open loop model in (31), in which two measured outputs
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VIl. CONCLUSIONS

A methodology is presented for adaptive output feedback
decentralized control design under the assumption that the
reference trajectories are known to all subsystems. A lin-
early parameterized neural network is used to model the in-
terconnection effects on-line. Boundedness of error signa
is shown using Lyapunov’s direct method. The methodology

(@) z1 (b) z2 (c) 3

Fig. 2. Comparison of the cart displacements without and wdiptve
signalugg, -

(1]
(2]

(3]

(4]
(5]
(6]

(a) 01 (b) 62 (c) 03

(7]

Fig. 3.
Ugd,; -

Comparison of the rod angles without and with adapsigaal

(8]
(9]

x;,6; are available for control design. The error observer in
(15) is designed to have the smallest eigenvalud ofqual  [10]
approximately five times the smallest eigenvalue Af

The basis functions have the following structure for threg1)
subsystemsp;, (Y;) = ¢ Y1 Yie P20 o5 =1 =
1,2,3, k=1,...,N;, whereN; = N3 = 7,Ny = 9. The [12]
centersY’;, are randomly selected over a grid of possible
values for the vectoy’;. All of the NN inputs are nor-
malized using an estimate for their maximum values. Sinc%3]
the dynamics of the first and third carts are coupled only
through the dynamics of the middle cart, and the modellin
error contains a control signal, we choose the NN input vec-
tors asY' | = [uy @y, au,, 21, 21, T1y, T1,, 0000007,
Yl:'; = [ug @y, a1, 00 21, @1, 21, 215, 21, 215, 00]7,
qu; =[uz 0000, w1, 00w, 1, 21, 21,,]", Where [16]
Y, represents the NN input vector for the ith subsystem.
Adaptation gains are chosen ak; = 0.51,k; = 0.05. [17]
Figure 2 compares output tracking performances when the
reference commang.,,7 = 1,2, 3 is a square wave signal
of magnitude 0.15m and 0.05 Hz. The pendulum anglé
are shown in Figure 3. The initial conditions are:(0) =
#1(0) = 0, 61(0) = —30°, 61(0) = —10°/sec, z2(0)
#2(0) = 0, 02(0) = 30°, 62(0) = 10°/sec,23(0) =
23(0) = 0, 63(0) = 20°, 65(0) = —10°/sec. Without
adaptive control compensation, the system goes unstable.
When each control is augmented with an adaptive term, ”ﬁﬁ
three carts are in synchronous motion with the pendulums
balanced, implying implicit cooperation for output tracgi

4]

[15]

1
S

[19]

[20]

is applicable to non-minimum phase subsystems.
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