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Abstract— The use of the sum of squares decomposition
and semidefinite programming have provided an efficient
methodology for analysis of nonlinear systems described by
ODEs by algorithmically constructing Lyapunov functions.
Based on the same methodology we present an algo-
rithmic procedure for constructing Lyapunov-Krasovskii
functionals for nonlinear time delay systems described
by Functional Differential Equations (FDEs) both for
delay-dependent and delay-independent stability analysis.
Robust stability analysis of these systems under parametric
uncertainty can be treated in a unified way. We illustrate
the results with an example from population dynamics.

I. INTRODUCTION

Significant progress has been made in the stability
analysis of linear autonomous time-delay systems (TDS)
using time-domain (Lyapunov) and frequency domain
methods [6], [3], [8], [10]. In general there are two types
of Lyapunov methods: using Lyapunov-Krasovskii (L-
K) functionals and Lyapunov-Razumikhin (L-R) func-
tions. In the linear case these are constructed by solving
Linear Matrix Inequalities (LMIs) [4] with a worst-case
polynomial time complexity. The L-R LMI criteria are
in general more conservative than the L-K ones [6].

This algorithmic procedure is used for bothdelay-
dependentand delay-independentstability analysis, a
classification based on the persistence of stability as
the delay is increased. In the linear case, the structures
of general quadratic Lyapunov-Krasovskii functionals
necessary and sufficient for delay-dependent and strong
delay-independent stability analysis are known [6], [1].

On the other hand, the stability analysis of nonlin-
ear time delay systems is far more difficult and L-
R functions are usually constructed ‘manually’ in this
case [11]. Even in the case of systems described by
ordinary differential equations, the stability analysis of
nonlinear systems has always been a challenging task.
It is not until recently [16], [15] that a methodology has
been proposed to analyze such systems by algorithmi-
cally constructing aLyapunov functionas a certificate
for stability of the zero equilibrium using the Sum of
Squares decomposition and SOSTOOLS [18].

Work financially supported by AFOSR MURI, NIH/NIGMS AfCS
(Alliance for Cellular Signalling), DARPA, Kitano ERATO Systems
Biology Project, and URI “Protecting Infrastructures fromThem-
selves”.

A. Papachristodoulou is with Control and Dynamical Systems,
California Institute of Technology, Pasadena, CA 91125, USA. Email:
antonis@cds.caltech.edu

In this paper we present an extension of this method-
ology to the construction of Lyapunov-Krasovskii func-
tionals for time-delay systems. The functionals that
we use have structures that are similar to the com-
plete functionals used for delay-independent and delay-
dependent stability analysis of linear systems but they
have kernels that arepolynomials. This allows the use of
the Sum of Squares decomposition to check the resulting
stability conditions through the solution of LMIs. The
methodology reduces to the standard LMI conditions
when the system under consideration is linear and the
functional has quadratic kernels. The same methodology
can be used to analyze robust stability of nonlinear time
delay systems under parametric uncertainty.

The structure of this paper is as follows. In Section II
we present the general setting, the problem formulation
and the algorithmic methodology that we propose to
use. In Section III we show how it can be applied to
solve the problem as it was stated in Section II. In
Section IV we present how robust stability analysis can
be performed using the same methodology; we apply the
theory developed to the stability analysis of a predator-
prey system in Section V that concludes the paper.

The notation we will be using is standard, and is
the one that is used in [8].Rn is an n-dimensional
real Euclidean space with norm| · |. For b > a denote
C([a, b], Rn) the Banach space of continuous functions
mapping the interval[a, b] into R

n with the topology of
uniform convergence. Forφ ∈ C([a, b], Rn) the norm of
φ is defined as‖φ‖ = supa≤θ≤b |φ(θ)|, where| · | is a
norm in R

n. Also Cγ = {φ ∈ C : ‖φ‖ < γ}.

II. T HE GENERAL SETTING

We will be concerned with autonomous Retarded
Functional Differential Equations (RFDEs) given by

ẋ(t) = f(xt). (1)

wheref : Ω → Rn, Ω ⊂ C, ‘ ˙ ’ represents the right-
hand derivative andxt ∈ Ω, xt(θ) = x(t + θ), θ ∈
[−r, 0]. Definitions of stability of the equilibriumx∗ of
this system satisfyingf(x∗) = 0 can be found in [8].

Assessing the stability properties of the equilibrium
of (1) can be done usingtime-domainmethodologies
by constructing either a Lyapunov-Razumikhin (L-R)
function or a Lyapunov-Krasovskii (L-K) functional. L-
R functions attempt to assess stability of an infinite-
dimensional system using finite-dimensional tools; the
results are conservative even in the linear case [6].



On the other hand, the Lyapunov-Krasovskii theorem
can be seen as a generalization of the Lyapunov theorem
for the case of systems described by ODEs, in which the
existence of a positive definite functionV (x) defined in
a region of the zero equilibrium with a negative definite
derivative proves its asymptotic stability.

Let Ω ⊂ Cγ , defineV : Ω → R a continuous function
and letV̇ denote theUpper Right Dini Derivative. Then
we have the following theorem [10]:

Theorem 1:(Lyapunov-Krasovskii) LetΩ ⊂ Cγ .
SupposeV : Ω → R is continuous and there exist
nonnegative functionsa(s) andb(s) such thata(s) → ∞
ass → ∞, anda(0) = b(0) = 0 such that

a(|φ(0)|) ≤ V (φ), V̇ (φ) ≤ −b(|φ(0)|) ∀ φ ∈ Ω. (2)

Then the solutionx = 0 of (1) is uniformly stable. If,
in addition, b(s) is positive definite, then the solution
x = 0 of (1) is uniformly asymptotically stable.

Just as in the case of ODEs, this is a powerful
theorem as it answers questions about stability without
requiring a solution to (1). At the same time, however,
no methodology exists to construct these functions. In
particular, there are two questions that arise. Firstly, what
should be the structure ofV , and secondly, how one can
check the two Lyapunov conditions (2)algorithmically.

To answer the first question we can use the structure
of completeLyapunov functionals in the case in which
the RFDEs are linear (which is known) to guide the
choice ofV in the case in whichf is non-linear. Just as
in the case of ODEs with polynomial vector fields where
a good choice would be apolynomial V , in the case
of polynomial FDEs, we will be constructing Lyapunov
functionals that havepolynomial kernels, sacrificing
non-negativity ofV with the non-negativity of its kernel.
Non-polynomial FDEs can be handled in a way similar
to non-polynomial ODEs [15].

To answer the second question, we propose a method-
ology based on the Sum of Squares decomposition [16].

Definition 2: A multivariate polynomialp(x), x ∈
R

n is aSum of Squares(SOS) if there exist polynomials
fi(x), i = 1, . . . ,M such thatp(x) =

∑M
i=1 f2

i (x).
An equivalent characterization of SOS polynomials is
given in the following proposition.

Proposition 3: [16] A polynomialp(x) of degree2d
is SOS if and only if there exists a positive semidefinite
matrix Q and a vectorZ(x) containing monomials inx
of degree≤ d so thatp = Z(x)T QZ(x).
In general, the monomials inZ(x) are not algebraically
independent. ExpandingZ(x)T QZ(x) and equating the
coefficients of the resulting monomials to the ones in
p(x), we obtain a set of affine relations in the elements
of Q. Sincep(x) being SOS is equivalent toQ ≥ 0,
the problem of finding aQ which proves thatp(x) is an
SOS can be cast as a semidefinite program (SDP) [16].
If the monomials in the polynomialp(x) haveunknown
coefficients then the search for feasible values of those

coefficients such thatp(x) is nonnegative is also an SDP,
a fact that is important for the construction of Lyapunov
functions and other S-procedure type multipliers. Con-
structing the equivalent SDP can be quite involved when
the degree of the polynomials is high, but this has been
automated in SOSTOOLS [17], [18].

In the next sections we will deliberately be using the
SOS decomposition to test nonnegativity and we will be
formulating Lyapunov and S-procedure type SOS condi-
tions for analysis of time-delay systems. We will then be
searching for polynomials that satisfy those conditions
using semidefinite programming and SOSTOOLS.

III. STABILITY OF RFDES USINGSOSTOOLS

In this section we present the methodology for assess-
ing the stability properties of RFDEs through the con-
struction of Lyapunov-Krasovskii functionals using the
Sum of Squares decomposition, for delay-independent
and delay-dependent stability analysis. In all that will
follow, we assume without any loss of generality that
the equilibrium of interest is at the origin.

A. Delay-independent stability

Delay-independent stability for nonlinear systems has
been investigated deeply under Lyapunov-Razumikhin
conditions [12]. In [20] connections between appropri-
ate Lyapunov-Razumikhin conditions and Input-to-State
Stability small-gain are made, and relaxed Razumikhin-
type conditions guaranteeing global asymptotic stability
are derived. In [2] a relationship between a criterion
obtained using a Lyapunov-Krasovskii functional and
the delay-independent small gain theorem is established
for a special class of nonlinear time-delay systems.

In this paper we concentrate on Lyapunov-Krasovskii
functionals. Finding the proper structure involves some
guessing, particularly for nonlinear systems. Here we
consider the following Lyapunov functional for the non-
linear system given by (1):

V (xt) = V0(x(t)) +

∫ 0

−r

V1(x(t + θ))dθ (3)

where by V0(x(t)) we denote a polynomial inx(t)
of bounded degree, instead of just quadratic. Stability
conditions can then be summarized as follows:

Proposition 4: Let 0 be an equilibrium of (1), and
let there exist polynomialsV0(x(t)), V1(x(t+ θ)) and a
positive definite functionϕ(x(t)).

1) V0(x(t)) − ϕ(x(t)) ≥ 0,
2) V1(x(t + θ)) ≥ 0,
3) dV

dt = ∂V0

∂x(t)f + V1(x(t)) − V1(x(t − r)) ≤ 0.
then the equilibrium is globally delay-independent sta-
ble.

Proof: The first two conditions guarantee that
V (xt) is positive definite, asV (xt) ≥ ϕ(x(t)) > 0.
By the third condition, the derivative ofV is also non-
positive;V is a Lyapunov functional and the equilibrium
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is stable. Since the delay size is not explicit in the
conditions and no state-space restriction is made,V is
a Lyapunov functional for allr and so the system is
globally delay-independent stable.

In order to use Proposition 4 with SOSTOOLS, first
construct the polynomialsV0 andV1 in their arguments.
If the degree ofV0 is m, then construct

ϕ(x(t)) =

n
∑

j=1

m/2
∑

i=1

ǫijxj(t)
2i,

m/2
∑

i=1

ǫij ≥ γ, (4)

for j = 1, . . . , n with ǫij ≥ 0 and γ a fixed posi-
tive number, to guarantee the positive definiteness of
ϕ(x(t)). The three conditions in Proposition 4 are then
converted into Sum of Squares conditions, for example:

V0(x(t)) − ϕ(x(t)) is SOS. (5)

The other two conditions are constructed similarly. The
resulting SOS program can be solved using SOSTOOLS.

The above procedure generalizes the linear case in
which V0 = x(t)T P0x(t) andV1 = x(t+θ)T P1x(t+θ).
Other Lyapunov structures may have better properties.

Remark 5:An alternative structure would be the one
introduced by P.-A. Bliman in [1]. Denoting

zk(t) = [x(t), x(t − r), . . . , x(t − (k − 1)r)],

then the type of Lyapunov-Krasovskii functionals con-
sidered in [1] in the single delay case are

Vk(xt) = V0(zk(t)) +

∫ 0

−r

V1(zk(t + θ))dθ

whereV0 andV1 arequadratic in their arguments.
Remark 6: Global asymptotic stabilitycan be tested

in a similar manner, by constructing apositive definite
function ϑ(x(t)) as in (4) and requiring that

−
dV (xt)

dt
− ϑ(x(t)) is SOS.

Example 7:Consider a very simple example:

ẋ1 = −x1(t) + x2
2(t − r), ẋ2 = −x2(t)

This system is delay-independent stable, and we prove
this by constructing a Lyapunov functional of the form
V with V0 and V1 polynomials of bounded degree -
note that nowx(t) = [x1(t), x2(t)]

T . WhenV0 andV1

are second order polynomials, no certificate is found.
However, when their order is increased, a certificate of
stability is obtained. In fact the two conditions become

V (xt) = x2
2(t) +

3

4
x2
1(t) + (0.5x1(t) + x2

2(t))2 +

∫ 0

−r

x4
2(t + θ)dθ.

− V̇ (xt) = (x1(t) + x2
2(t) − x2

2(t − r))2 + 2x2
2(t)+

+ x2
2(t)x2

2(t − r) + 2(x2
2(t) +

1

4
x1(t))2 +

14

16
x1(t)2.

To get this certificate, only a handful of SOSTOOLS
commands are required.

Nonlinear systems may have more than one equilibria.
In this case we have to use the regionΩ in Theorem 1.
For this, we define the set:

Ω = {xt ∈ C : ‖xt‖ = sup
−r≤θ≤0

|x(t + θ)| ≤ γ}.

In particular this means that|x(t + θ)| ≤ γ, ∀ θ ∈
[−r, 0], where | · | is the ∞-norm. This is a set of
inequalities which can be adjoined in a way similar
to the S-procedure. Suppose for concreteness that one
wants to use the Lyapunov functionalV (xt) given by (3)
to prove stability for a system described by (1)locally,
i.e. under the additional constraint that

|x(t + θ)| ≤ γ, ∀ θ. (6)

In particular this gives rise to the following conditions:

h1i := (xi(t) − γ)(xi(t) + γ) ≤ 0,

h2i := (xi(t − r) − γ)(xi(t − r) + γ) ≤ 0.

Then we have the following result:
Proposition 8: Let 0 be an equilibrium of system

(1), and let there exist SOS multiplierspi(x(t)),
q1i(x(t), x(t − r)) andq2i(x(t), x(t − r)) such that:

1) V0(x(t)) − ϕ(x(t)) +
∑

i pih1i ≥ 0 with ϕ(x(t))
positive definite

2) V1(x(t + θ)) ≥ 0,
3) −dV

dt +
∑

i(q1ih1i + q2ih2i) ≥ 0.
Then the equilibrium isdelay-independentstable.

Proof: The proof is similar to the proof of Propo-
sition 4. Whilex(t) satisfiesh1i ≤ 0 andpi(x(t)) is a
SOS we have:

V (xt) = V0(x(t)) +

∫ 0

−r

V1(x(t + θ))dθ ≥ ϕ(x(t)) −
∑

i

pih1i > 0,

and so the first Lyapunov condition is satisfied. The
same is true for the derivative condition, and so the
equilibrium (1) is delay-independent stable.

Let us now turn to delay-dependent stability and
derive Lyapunov-based conditions.

B. Delay-dependent stability

In this case the stability of the system changes as the
delay, seen as a parameter, varies. Therefore a different
type of Lyapunov functionals has to be used to allow for
the delay size to appear explicitly in the SOS conditions.

In obtaining stability criteria for linear systems, it
is customary to use amodel transformation[14] to
distribute the delays over an interval, which however
introduces spurious poles not present in the original
system, the dynamics of which may become unstable
before the original system does [7]. In this paper we
avoid this methodology and therefore our results do not
suffer from this conservatism.

The structure that would be adequate for the Lyapunov
functional in the linear case is known [19], [9] but it
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is difficult to construct [5]. For nonlinear TDS analysis
we will use functionals with structures resembling the
complete Lyapunov structure but with kernels that are
polynomials, using the Sum of Squares decomposition
to construct them. Consider the following functional:

V (xt) = V0(x(t)) +

∫ 0

−r

V1(θ, x(t), x(t + θ))dθ +

+

∫ 0

−r

∫ t

t+θ

V2(x(ζ))dζdθ (7)

for the system of the form (1). The first term is added
to impose positive definiteness ofV and the last term is
added for convenience, as it will be used in the derivative
condition to ‘complete the squares’. Sufficient condi-
tions for the (global) stability of the zero equilibrium
can then be formulated as follows:

Proposition 9: Let 0 be an equilibrium for the system
given by (1). Let there exist polynomialsV0, V1 andV2

and a positive definite polynomialϕ(x(t)) such that:

1) V0(x(t)) − ϕ(x(t)) ≥ 0,
2) V1(θ, x(t), x(t + θ)) ≥ 0 for θ ∈ [−r, 0],
3) V2(x(ζ)) ≥ 0,
4) r ∂V1

∂x(t)f + dV0

dx(t)f − r ∂V1

∂θ + rV2(x(t))− rV2(x(t+

θ))+V1(0, x(t), x(t))−V1(−r, x(t), x(t−r)) ≤ 0
for θ ∈ [−r, 0].

Then the equilibrium0 of the system given by (1) is
globally uniformly stablefor all delays in[0, r].

Proof: Integrating the second and third conditions
and adding the first condition to get thatV (xt) ≥
ϕ(x(t)), whereV (xt) is given by (7): the first Lyapunov
condition is satisfied. The time derivative ofV (xt) is:

V̇ (xt) =
dV0

dx(t)
f + V1(0, x(t), x(t)) − V1(−r, x(t), x(t − r))

+

∫ 0

−r

(

∂V1

∂x(t)
f −

∂V1

∂θ
+ V2(x(t)) − V2(x(t + θ))

)

dθ

=
1

r

∫ 0

−r







dV0

dx(t)
f + r ∂V1

∂x(t)
f − r ∂V1

∂θ
+

+V1(0, x(t), x(t)) − V1(−r, x(t), x(t − r))+
+rV2(x(t)) − rV2(x(t + θ))







dθ.

Condition (4) above states that the kernel of the above
integral is nonpositive forθ ∈ [−r, 0]. So (7) is a Lya-
punov functional, and the zero equilibrium isuniformly
stable. Since there is no constraint on the state-space,
the result holds globally.

This proposition can be used in practice in a similar
way as described in the delay-independent case. To im-
pose the conditionsθ ∈ [−r, 0], we use a process similar
to the S-procedure. The polynomialV1(θ, x(t), x(t+θ))
is required to be non-negative only whenh(θ) = θ(θ +
r) ≤ 0 is satisfied. We therefore adjoin this constraint
to a, using instead of constant positive multipliers (S-
procedure), Sum of Squares multipliersp, and we rewrite
condition (2) in Proposition 9 above, as follows:

V1(θ, x(t), x(t+ θ))+p(θ, x(t), x(t+ θ))h(θ) is a SOS

Condition (4) can be verified in a similar manner. Then
we get four SOS conditions in a relevant Sum of Squares
programme which can be solved using SOSTOOLS [18].
We can also consider different structures to resemble
the general quadratic form of thecompleteLyapunov
functional.

Remark 10:As remarked earlier, when dealing with
nonlinear systems with multiple equilibria or with natu-
ral constraints on their state-space, it is useful to use a
restricted region for which stability is to be proven, in
the same way that it was done in the delay-independent
case. We will still need to specifyΩ = {xt ∈ C :
‖xt‖ ≤ γ}, and adjoin the relevant conditions onx(t),
x(t − r) and x(t + θ) ∀ θ ∈ [−r, 0] to the relevant
kernels of the Lyapunov functionals using the extended
S-procedure, in much the same way that the conditions
θ ∈ [−r, 0] were adjoined in Conditions (2) and (4) of
Proposition 9.

Remark 6 on asymptotic stability applies here too.

IV. ROBUST STABILITY ANALYSIS UNDER
PARAMETRIC UNCERTAINTY

Robust stability under parametric uncertainty can be
treated in a unified way. Consider a time-delay system
of the form (1) with an uncertain parameterp:

ż(t) = f(zt, p), (8)

wherep ∈ P given by

P = {p ∈ R
m |qi(p) ≥ 0, i = 1, . . . , N} , (9)

i.e. the uncertainty set is captured by certain inequalities.
Let x(t) = z(t) − z0. Then we have:

ẋ(t) = f(xt + z0, p) (10)

0 = f(z0, p) (11)

which has the equilibriumx∗ at the origin. The stability
of this system (which has a DAE form) can be han-
dled by constructing aParameter DependentLyapunov
functional. Consider the functional (modified from (7)):

V (xt, p) = V0(x(t), p) +

∫ 0

−r

∫ t

t+θ

V2(x(ζ), p)dζdθ+

+

∫ 0

−r

V1(θ, x(t), x(t + θ), p)dθ. (12)

Then we have:
Proposition 11: Consider the system given by (10),

where p ∈ P as defined by (9). Suppose that there
exist polynomialsV0(x(t), p), V1(θ, x(t), x(t+θ), p) and
V2(x(ζ), p) and a positive definite functionϕ(x(t)) such
that the following conditions hold forp ∈ P :

1) V0(x(t), p) − ϕ(x(t)) ≥ 0,
2) V1(θ, x(t), x(t + θ), p) ≥ 0 ∀ θ ∈ [−r, 0],
3) V2(x(ζ), p) ≥ 0,
4) V1(0, x(t), x(t), p) − V1(−r, x(t), x(t − r), p) +

dV0

dx(t)f + rV2(x(t), p) − rV2(x(t + θ), p) +
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+ r ∂V1

∂x(t)f − r ∂V1

∂θ ≤ 0, ∀ θ ∈ [−r, 0] and when
(11) is satisfied.

Then the equilibrium0 of the system given by (10–11)
is robustly globally uniformly stablefor all p ∈ P and
for all delays in the interval[0, r].
The proof is similar to the one given earlier, it is
based on functional (12) and is omitted. The equality
constraints given by (11) that may arise during the
transformation process can be adjoined using appropriate
polynomial multipliers. See [15] for more details on how
this is done. State-space constraints for local stability
analysis can also be adjoined in a unified manner.

V. EXAMPLE : STABILITY ANALYSIS OF A
PREDATOR-PREY MODEL

A simple model of predator-prey interactions is

ẋ = bx − k1xy, ẏ = k2xy − σy,

wherex and y are the prey and predator populations,
b is the rate of increase of prey,k1 and k2 are the
coefficients of the effect of predation onx andy andσ
is the death rate ofy. So the cause of death of the prey
is due to predation alone, and the growth of the predator
population has as the only limitation the number of prey.
These equations give rise to Lotka-Volterra predator-
prey cycles, but the model is not biologically meaningful
because it isconservativegiving rise to a family of
closed trajectories rather than a single limit cycle [13].

The above equations describe ideal populations that
can react instantaneously to any change in the environ-
ment; in real populations this change comes with a delay
that representsmaturationof the predator population. A
more realistic set of equations is [21]:

ẋ(t) = x(t)[b − ax(t) − k1y(t)],

ẏ(t) = −σy(t) + k2x(t − r)y(t − r),

where−ax(t)2 limits the growth of the prey, andr ≥ 0
is a constant capturing the average period between death
of prey and birth of a subsequent number of predators.

Assumption 12:a, b, k1, k2 andσ are positive.
The equilibria(x∗, y∗) of the above system are:

(x∗, y∗) = (0, 0), (x∗, y∗) = (b/a, 0),

(x∗, y∗) =

(

σ

k2
,
bk2 − aσ

k1k2

)

. (13)

We are only interested in the equilibrium given by (13).
Assumption 13:(bk2 − aσ) > 0.

Assumption 13 ensures that the equilibrium (13) is
in the first quadrant. We now shift the coordinates to
(x1, x2) = (x − σ

k2

, y − bk2−aσ
k1k2

) to get:

ẋ1(t) =

[

x1(t) +
σ

k2

]

[−ax1(t) − k1x2(t)] (14)

ẋ2(t) = −σx2(t) + σx2(t − r) +
bk2 − aσ

k1
x1(t − r)+

+ k2x1(t − r)x2(t − r) (15)

We can linearize the above system about(0, 0) to get:

ẋ1(t) =
σ

k2
[−ax1(t) − k1x2(t)] (16)

ẋ2(t) = −σx2(t) + σx2(t − r) +
bk2 − aσ

k1
x1(t − r) (17)

For the linearised system, we have the following result:
Proposition 14: Consider the system (16–17) under

the assumptions (12,13). Then if(bk2 − 3aσ) < 0 the
zero equilibrium is stable independent of the delay. If
(bk2 − 3aσ) > 0 the zero equilibrium is stable if the
delay satisfiesr < r∗ and is unstable otherwise, where
r∗ is given by:

r∗ =
1

ω
atan

[

ω
(aσ2

− ωk2)k2 − σ(2aσ + bk2)(k2 + a)

k2σω2(k2 + a) + (2aσ − bk2)(aσ2
− ωk2)

]

.

Proof: In the absence of delay, and under the
two assumptions, the system isasymptotically stable.
Substitutings = jω in the characteristic equation and
separating real and imaginary parts we get:

−ω2 +
aσ2

k2
= σω sin(ωr) + σ

(

2aσ

k2
− b

)

cos(ωr)

σ

[

1 +
a

k2

]

ω = σω cos(ωr) − σ

(

2aσ

k2
− b

)

sin(ωr)

Squaring the two equations and adding we get:

ω4 +
a2σ2

k2
2

ω2 +
σ2

k2
2

(bk2 − aσ)(3aσ − bk2) = 0. (18)

Denotingp1 = a2σ2

k2

2

andp2 = σ2

k2

2

(bk2−aσ)(3aσ−bk2)

the roots of this equation are:

ω2 = −
p1

2
±

√

p2
1 − 4p2

2
. (19)

Under assumption 13, if(bk2 − 3aσ) < 0 (i.e p2 >
0), then there are no real solutions to (18). Since the
equilibrium is stable when the delay is zero, and there
is no ω for which poles cross to the RHP, we conclude
that (16–17) is delay-independent stable.

Under assumption 13 and(bk2 − 3aσ) > 0 then
p2 < 0 and one of the two roots of (19) is positive and
the other one is negative. Therefore the poles cross the
imaginary axis at only oneω — there is no possibility
for stability reversal. If ω is the solution to the above
equation, then atr = r∗ given in the statement of the
Proposition a Hopf bifurcation occurs; the system is
stable forr < r∗ and unstable forr > r∗.

We now analyze the nonlinear description of the sys-
tem (14–15) using the methodology that was developed
in the previous sections. We choose as nominal values
for the parametersσ = 10, a = 1, k1 = 1, andk2 = 3.

A. Delay-independent stability analysis

The system (14–15) has many equilibria, and so we
need to define a region around the zero equilibrium
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to obtain a stability condition (this is the regionΩ in
Theorem 1). We let:

|x1t
| ≤ γ1x

∗, |x2t
| ≤ γ2y

∗, (20)

where the Equilibrium(x∗, y∗) is given by (13). We
consider b to be a parameter in the problem. From
Proposition 14, the linear version of this system is delay-
independent stable whenaσ

k2

< b < 3aσ
k2

. For the given
values ofa, σ and k2, the system is delay-independent
stable for10/3 < b < 10. For the purpose of calculating
(x∗, y∗) we use a value ofb = 20/3. The equilibrium
(0, 0) of system (14–15) does not move asb changes,
however the other two equilibria cross through the region
defined by (20). If we chooseγ1 = γ2 = 0.1, then no
other equilibrium enters this region for11/3 < b < 10.

We consider the following Lyapunov structure:

V (xt) = V0(x1(t), x2(t), b) +

∫ 0

−r

V1(x1(t + θ), x2(t + θ), b)dθ.

We use a variant of Proposition 11 to obtain parameter
regions for which robust delay-independent stability of
the origin can be proven. When the order ofV0 is second
order andV1 is 4th order, we can constructV (xt) for
4.56 ≤ b ≤ 7.11. When they are 4th order and 6th order
respectively, then this region becomes3.67 ≤ b ≤ 9.95,
which is essentially the full interval.

B. Delay-dependent stability analysis

Now we will try to obtain a bound forr for which
stability is retained using the same parameters as before
and fixedb = 15. Given these parametersr∗ = 0.0541.
The system has several equilibria and so we use the
same constraints onx1 andx2 on the state-space given
by (20) with γ1 = γ2 = 0.97.

We can construct the Lyapunov functionalV (xt)
given by (7) with V1 0th order with respect toθ and
2nd order with respect to the rest of the variables for
0 ≤ r ≤ 0.04. When V1 is quartic with respect to
all variables butθ (which is kept at 0 order) then we
can construct thisV (xt) for 0 ≤ r ≤ 0.053. The
corresponding SDP is bigger as the functional is more
complicated, but we can see that stability for almost the
full delay interval can be proven this way.

VI. CONCLUDING REMARKS

In this paper we presented a methodology to construct
Lyapunov-Krasovskii functionals for time delay systems
based on the Sum of Squares decomposition. The con-
struction is entirely algorithmic and is done through the
solution of a set of Linear Matrix Inequalities (LMIs).

There is increasing interest in the effect of time
delays on congestion control schemes for the Internet
and we hope that this methodology will find application
in this very active area of research. Moreover, the above
methods can be easily extended to systems with many
delays, either commensurate or not. Still a judicious

choice for the structure of the Lyapunov functional
would be required. Functional differential equations of
neutral type can also be treated in a unified way. The
case in which the vector field is not polynomial can be
handled in a way similar to ODEs [15].
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