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Analysis of Nonlinear Time-Delay Systems
using the Sum of Squares Decomposition

Antonis Papachristodoulou

Abstract— The use of the sum of squares decomposition  In this paper we present an extension of this method-
and semidefinite programming have provided an efficient ology to the construction of Lyapunov-Krasovskii func-
methodology for analysis of nonlinear systems described by tjonals for time-delay systems. The functionals that
gg)sEefjbgr?'%ﬁgthsn;'rﬁillynfgt?]f)té%%'gg ng;p:geﬁnghon;go_ we use hz_:\ve structures that are similar to the com-
rithmic procedure for constructing Lyapunov-Krasovskii  Plete functionals used for delay-independent and delay-
functionals for nonlinear time delay systems described dependent stability analysis of linear systems but they
by Functional Differential Equations (FDEs) both for  have kernels that aggolynomials This allows the use of
delay-dependent and delay-independent stability analysis. ne Sum of Squares decomposition to check the resulting

Robust stability analysis of these systems under parametric 1 o .
uncertainty can be treated in a unified way. We illustrate stability conditions through the solution of LMIs. The

the results with an example from population dynamics. ~ Methodology reduces to the standard LMI conditions
when the system under consideration is linear and the
I. INTRODUCTION functional has quadratic kernels. The same methodology

can be used to analyze robust stability of nonlinear time
Significant progress has been made in the stabilit§ielay systems under parametric uncertainty.
analysis of linear autonomous time-delay systems (TDS) The structure of this paper is as follows. In Section Il
using time-domain Lyapunoy and frequency domain we present the general setting, the problem formulation
methods [6], [3], [8], [10]. In general there are two typesand the algorithmic methodology that we propose to
of Lyapunov methods: using Lyapunov-Krasovskii (L-use. In Section Ill we show how it can be applied to
K) functionals and Lyapunov-Razumikhin (L-R) func- solve the problem as it was stated in Section Il. In
tions. In the linear case these are constructed by solvir@gection IV we present how robust stability analysis can
Linear Matrix Inequalities (LMIs) [4] with a worst-case be performed using the same methodology; we apply the
polynomial time complexity. The L-R LMI criteria are theory developed to the stability analysis of a predator-
in general more conservative than the L-K ones [6]. prey system in Section V that concludes the paper.
This algorithmic procedure is used for bottelay- The notation we will be using is standard, and is
dependentand delay-independenstability analysis, a the one that is used in [8]R™ is an n-dimensional
classification based on the persistence of stability aeal Euclidean space with norin |. Forb > a denote
the delay is increased. In the linear case, the structuré¥[a, b], R™) the Banach space of continuous functions
of general quadratic Lyapunov-Krasovskii functionalsmapping the intervala, b] into R™ with the topology of
necessary and sufficient for delay-dependent and strongiform convergence. Faf € C([a, b],R™) the norm of
delay-independent stability analysis are known [6], [1]¢ is defined ag|¢|| = sup,<y<;, [¢(0)], where| - | is a
On the other hand, the stability analysis of nonlin-norm inRR". Also C7 = {¢ € C : ||¢|| < ~}.
ear time delay systems is far more‘ d|ff|cult,a_nd L- Il. THE GENERAL SETTING
R functions are usually constructed ‘manually’ in this ) _
case [11]. Even in the case of systems described by We Wwill be concerned with autonomous Retarded
ordinary differential equations, the stability analysfs oFunctional Differential Equations (RFDEs) given by
nonlinear systems has always been a challenging task. @(t) = f(ze). 1)
It is not until recently [16], [15] that a methodology has
been proposed to analyze such systems by algorithmithere f : @ — R™, Q C C, ' '’ represents the right-
cally constructing aLyapunov functioras a certificate hand derivative andc; € Q, 24(0) = z(t +0), 0 €
for stability of the zero equilibrium using the Sum of [—7,0]. Definitions of stability of the equilibriumx* of
Squares decomposition and SOSTOOLS [18]. this system satisfying (z*) = 0 can be found in [8].
Assessing the stability properties of the equilibrium
Work financially supported by AFOSR MURI, NIH/NIGMS Afcs Of (1) can be done usingme-domainmethodologies
(Alliance for Cellular Signalling), DARPA, Kitano ERATO S§ems by constructing either a Lyapunov-Razumikhin (L-R)
Bi(l)log%/ Project, and URI “Protecting Infrastructures frofihem-  function or a Lyapunov-Krasovskii (L-K) functional. L-
Se,X.esP;':\pa(:hristodoulou is with Control and Dynamical SystemS,R. funCt.IonS attempt tO_ aSS.eS.S St.ablllty. of an infinite-
California Institute of Technology, Pasadena, CA 91125AUBmail: ~ dimensional system using finite-dimensional tools; the
ant oni s@ds. cal t ech. edu results are conservative even in the linear case [6].
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On the other hand, the Lyapunov-Krasovskii theorencoefficients such that(x) is nonnegative is also an SDP,
can be seen as a generalization of the Lyapunov theorearfact that is important for the construction of Lyapunov
for the case of systems described by ODEs, in which thieinctions and other S-procedure type multipliers. Con-
existence of a positive definite functidn(x) defined in  structing the equivalent SDP can be quite involved when
a region of the zero equilibrium with a negative definitehe degree of the polynomials is high, but this has been
derivative proves its asymptotic stability. automated in SOSTOOLS [17], [18].

LetQ C C7, defineV : Q — R a continuous function  In the next sections we will deliberately be using the
and letV denote théJpper Right Dini DerivativeThen SOS decomposition to test nonnegativity and we will be
we have the following theorem [10]: formulating Lyapunov and S-procedure type SOS condi-

Theorem 1:(Lyapunov-Krasovskii) Let2 < (7. tions for analysis of time-delay systems. We will then be
SupposeV : ©Q — R is continuous and there exist searching for polynomials that satisfy those conditions
nonnegative functiong(s) andb(s) such thati(s) — co  using semidefinite programming and SOSTOOLS.

ass — oo, anda(0) = b(0) = 0 such that IIl. STABILITY OF RFDES USING SOSTOOLS

a([¢(0)]) <V (9), V(¢) < —b(|¢(0)]) Vo€ (2) In this section we present the methodology for assess-
ing the stability properties of RFDEs through the con-
struction of Lyapunov-Krasovskii functionals using the
Sum of Squares decomposition, for delay-independent
nd delay-dependent stability analysis. In all that will

Just as in the case of ODEs, this is a powerfu I thout | ; litv that
theorem as it answers questions about stability withogp' OV, W€ assume without any 10ss of generality tha
the equilibrium of interest is at the origin.

requiring a solution to (1). At the same time, however,
no methodology exists to construct these functions. IA. Delay-independent stability

particular, there are two questions that arise. Firsthatwh Delay-independent stability for nonlinear systems has

should be the structure 6f, and secondly, how one can paan investi Do
" Lo gated deeply under Lyapunov-Razumikhin
check the two Lyapunov conditions (2)gorithmically. conditions [12]. In [20] connections between appropri-

To answer the first question we can use the structutge | v annoy-Razumikhin conditions and Input-to-State
of completelyapunov functionals in the case in which gyapility small-gain are made, and relaxed Razumikhin-

the RFDEs are linear (which is known) to guide thet I : : e

. . A L : ype conditions guaranteeing global asymptotic stability
ph0|ce ofVin the Case In whiclf IS ”0”"'”66!“ Justas gre derived. In [2] a relationship between a criterion
in the case of ODEs with polynomial vector fields where,aineq using a Lyapunov-Krasovskii functional and
a good ch(_)|ce would be polynomlaIV, In the case o delay-independent small gain theorem is established
of polynomial FDEs, we will be constructing Lyapunov¢,, 5 gpecial class of nonlinear time-delay systems.
functionals that havepolynomial kernels sacrificing In this paper we concentrate on Lyapunov-Krasovskii

&on-ne?atlwty Olﬂ;[‘;véth the r;)on;]negdalltl\élt_y of its ker_ne_ll. functionals. Finding the proper structure involves some
on-polynomia S can be handled in a way Similaly essing, particularly for nonlinear systems. Here we
c

to non-polynomial ODEs [15]'. nsider the following Lyapunov functional for the non-
To answer the second question, we propose a meth Jear system given by (1):

ology based on the Sum of Squares decomposition [16].

Definition 2: A multivariate polynomialp(z), = €
R™ is aSum of SquaregSOS) if there exist p(oli/nomials V() = Vo(z(t)) + /4 Viz(t+0))dd ()
filz), i=1,...,M such thap(z) = XM f2(z).

An equivalent characterization of SOS polynomials i
given in the following proposition.

Proposition 3: [16] A polynomialp(x) of degree2d > X o C
is SOS if and only if there exists a positive semidefinite Proposition 4: Let 0 be an equilibrium of (1), and
matrix Q and a vectoZ(z) containing monomials iz 16t there exist polynomial$y (x(t)), Vi (z(t +0)) and a
of degree< d so thatp = Z(2)TQZ(x). positive definite functionp(z(t)).

In general, the monomials iff(z) are not algebraically 1) Vo(z(t)) — ¢(x(t)) = 0,

independent. Expanding(z)”QZ(x) and equating the ~ 2) Vi(x(t 4 0)) >0,

coefficients of the resulting monomials to the ones in 3) % = gagyf + Vil(a(t)) — Vi(a(t — 1)) < 0.

p(zx), we obtain a set of affine relations in the elementthen the equilibrium is globally delay-independent sta-
of Q. Sincep(x) being SOS is equivalent tQ > 0, ble.

the problem of finding & which proves thap(z) is an Proof: The first two conditions guarantee that
SOS can be cast as a semidefinite program (SDP) [16].(x;) is positive definite, ad/(z;) > (z(t)) > 0.

If the monomials in the polynomial(z) haveunknown By the third condition, the derivative df is also non-
coefficients then the search for feasible values of thogmsitive;V is a Lyapunov functional and the equilibrium

Then the solutionr = 0 of (1) is uniformly stable. If,
in addition, b(s) is positive definite, then the solution
x = 0 of (1) is uniformly asymptotically stable.

0

Where by Vy(z(t)) we denote a polynomial inc(t)
of bounded degree, instead of just quadratic. Stability
conditions can then be summarized as follows:
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is stable. Since the delay size is not explicit in the Nonlinear systems may have more than one equilibria.
conditions and no state-space restriction is mades In this case we have to use the regi@nn Theorem 1.

a Lyapunov functional for all- and so the system is For this, we define the set:

globally delay-independent stable. ]

In order to use Proposition 4 with SOSTOOLS, first Q={z € C: ol = S SN ju(t + ) <7}
construct the polynomialgy andV; in their arguments. _ ) o
If the degree ofi, is m, then construct In particular this means that:(t + 0)| < v, V0 €
p 12 [-r,0], where | - | is the co-norm. This is a set of

0 inequalities which can be adjoined in a way similar
p(x(t) =D ezt)*, Y e; =7 (4 to the S-procedure. Suppose for concreteness that one
j=11i=1 i=1 wants to use the Lyapunov functiorid(x;) given by (3)
for j = 1,...,n with ¢, > 0 and a fixed posi- to prove stability for a system described by (@gally,
tive number, to guarantee the positive definiteness 6 under the additional constraint that

©(z(t)). The three conditions in Proposition 4 are then lz(t+0)| <v, V0. (6)
converted into Sum of Squares conditions, for example: -
) In particular this gives rise to the following conditions:
Vo(x(t)) — (x(t)) is SOS (5)
The other two conditions are constructed similarly. The mi = (@) =)(@t) +7) <0,
y. hoi = (it —r) — ) (@it — ) +) < 0.

resulting SOS program can be solved using SOSTOOLS.
The above procedure generalizes the linear case ihen we have the following result:

which Vy = z(t)T Pyz(t) andVy = z(t+6)T Prx(t+0). Proposition 8: Let 0 be an equilibrium of system

Other Lyapunov structures may have better properties(l), and let there exist SOS multiplierg;(z(t)),
Remark 5:An alternative structure would be the oneqi;(z(t), z(t — r)) and go;(z(t), z(t — r)) such that:

introduced by P.-A. Bliman in [1]. Denoting 1) Vo(z(t)) — @(x(t)) + X2, pih1s > 0 with o(x(t))

2(t) = [o(t), x(t —7),... a(t — (k= 1)r)], 2 ?/?(S;Eﬁ %?;Ir;t% |
then the type of Lyapunov-Krasovskii functionals con- 3 _% + Y i (quihi + gaiho;) > 0.

sidered in [1] in the single delay case are Then the equilibrium iglelay-independerstable.
0 Proof: The proof is similar to the proof of Propo-
Vie(ze) = Vo(zx(t)) + / Vi(zi(t + 0))do sition 4. While z(t) satisfiesh;; < 0 and p;(z(t)) is a
- SOS we have:

whereV, andV; arequadraticin their arguments. 0
Remark 6: Global asymptotic stabiligan be tested V(zt) = Vo(z(t)) +/ Vi(a(t+0))d6 > @(x(t) — Y pih1i > 0,
in a similar manner, by constructingpositive definite - i

function ¥(z(t)) as in (4) and requiring that and so the first Lyapunov condition is satisfied. The
AV (a) same is true for the derivative condition, and so the

- —9(x(t)) is SOS equilibrium (1) is delay-independent stable. [ |
Example 7:Consider a very simple example: Let us now turn to delay-dependent stability and

) ) _ derive Lyapunov-based conditions.
1= —x1(t) +a5(t —r), &g =—x2(t)

This system is delay-independent stable, and we provBe' Delay-dependent stability

this by constructing a Lyapunov functional of the form In this case the stability of the system changes as the
V with V, and V; polynomials of bounded degree - delay, seen as a parameter, varies. Therefore a different
note that nowz(t) = [z1(t), z2(¢)]”. WhenV, andV;  type of Lyapunov functionals has to be used to allow for
are second order polynomials, no certificate is foundhe delay size to appear explicitly in the SOS conditions.
However, when their order is increased, a certificate of In obtaining stability criteria for linear systems, it
stability is obtained. In fact the two conditions becomds customary to use anodel transformation[14] to

‘ o distribute the delays over an interval, which however
V(e :xg(tHixg(t)+(o.5x1(t)+x§(t))2+/ z4(t + 0)do. introduces spurious poles not present in the original

4 -r system, the dynamics of which may become unstable

— V() = (z1(t) + 23(t) — 23(t — 1)) + 225 (1) + before the original system does [7]. In this paper we
222t — ) + 2(22(0) + 1I1(t))z i Exl(t)Z. avoid this me’ghodology ar)d therefore our results do not
4 16 suffer from this conservatism.
To get this certificate, only a handful of SOSTOOLS The structure that would be adequate for the Lyapunov
commands are required. functional in the linear case is known [19], [9] but it
3
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is difficult to construct [5]. For nonlinear TDS analysisCondition (4) can be verified in a similar manner. Then
we will use functionals with structures resembling theve get four SOS conditions in a relevant Sum of Squares
complete Lyapunov structure but with kernels that ar@rogramme which can be solved using SOSTOOLS [18].
polynomials, using the Sum of Squares decompositiotWe can also consider different structures to resemble
to construct them. Consider the following functional: the general quadratic form of theompleteLyapunov
0 functional.
Ve, = Vo(z(t) +/ Vi(0,z(t), z(t + 0))do + Remark 10:As remarked earlier, when dealing with
—r nonlinear systems with multiple equilibria or with natu-
0 rt ral constraints on their state-space, it is useful to use a
+/ / Va(z(¢))dCdo (7)  restricted region for which stability is to be proven, in
—rJtto the same way that it was done in the delay-independent
for the system of the form (1). The first term is addectase. We will still need to speciff2 = {z; € C :
to impose positive definiteness bf and the last termis ||z,|| < ~}, and adjoin the relevant conditions at(t),
added for convenience, as it will be used in the derivativg(t — ») and 2(t + 6) V § € [-r,0] to the relevant
condition to ‘complete the squares’. Sufficient condikernels of the Lyapunov functionals using the extended
tions for the (global) stability of the zero equilibrium S-procedure, in much the same way that the conditions

can then be formulated as follows: 6§ € [-r,0] were adjoined in Conditions (2) and (4) of
Proposition 9: Let O be an equilibrium for the system Proposition 9.

given by (1). Let there exist polynomialg, V; andV; Remark 6 on asymptotic stability applies here too.

and a positive definite polynomial(x(t)) such that: IV. ROBUST STABILITY ANALYSIS UNDER

1) Vo(z(t)) — p(z(t)) >0, PARAMETRIC UNCERTAINTY

2) Vi(0, x(t), 2(t +6)) > 0 for 6 & [—r,0], Robust stability under parametric uncertainty can be
3) ‘/26(‘55(4)) =0, oy treated in a unified way. Consider a time-delay system
8 roan ] T am S — e +rVa(@(t) —rVa(z(t+  of the form (1) with an uncertain parameter
)+ VA (0. (1), (1) ~ Vi (=r.x(t) 2(t—1)) < 0 |
for 6 € [—r,0]. (t) = f(zt,p), (8)
Then the equilibrium0 of the system given by (1) is wherep € P given by
globally uniformly stabléfor all delays in|0, r]. m .

Proof: Integrating the second and third conditions P={peR"a(p) 20, i=1....N}, (9
and adding the first condition to get thaf(z;) > i.e.the uncertainty setis captured by certain inequalitie
@(x(t)), whereV (z,) is given by (7): the first Lyapunov Let x(t) = 2(¢) — 2o. Then we have:
condition is satisfied. The time derivative Bf(x,) is:

v i(t) = f(zt+ 20,p) (10)
V() = dw(i) f+V1(0,z(t), z(t) — Vi(=r,z(t),z(t — 7)) 0 = f(20,p) (11)
0 on o which has the equilibriunz* at the origin. The stability
+./,r <8:1:(t)f_ 2 T V2t) - VQ(‘T(HQ))) d0 of this system (which has a DAE form) can be han-

L0 AVo_ g OVA_p . OVL dled by constructing #arameter Dependerityapunov
— _/ { VA (0, 2(8) () — Wl 2 (6. 2t — 7))+ } 4. functional. Consider the functional (modified from (7)):
rer +rVa(z(t)) — rVa(z(t +0)) 0 gt

Condition (4) above states that the kernel of the aboveV (z+,p) = Vo(z(t),p) + / /t+9 Va(2(¢), p)dCdo+

integral is nonpositive fof € [—r,0]. So (7) is a Lya- 0

punov functional, and the zero equilibriumusiformly V(0. (). 2(t + 0).)do 12
stable Since there is no constraint on the state-space, + . 1(0,2(2), 2(t +9), p)df. (12)
the result holds globally. ®  1hen we have:

This proposition can be used in practice in a similar Proposition 11: Consider the system given by (10),
way as descrlbgd in the delay-independent case. To Mhere p € P as defined by (9). Suppose that there
pose the conditiong € [, 0], we use a process similar oy« polynomials/y(z(), p), Vi (0, z(t), z(t+6), p) and
to the S-procedure. The polynomial (6, z(t),z(t+6)) v, (4(¢), p) and a positive definite functiop(z(t)) such
is required to be non-negative only whe(¥) = 6(6 + nat the following conditions hold fop € P
r) < 0 is satisfied. We therefore adjoin this constraint 1) Vo(z(t),p) — p(a(t)) >0,

to a, using instead of constant positive multipliers (S- 2 vlge 2(t),2(t +6).p) >0V 0 € [—r,0]
( >
(

procgdure), Sum of Squares multipliersand we rewrite 3) Va(a(¢),p) > 0
condition (2) in Proposition 9 above, as follows: 4) @Vo,x(t),:c(t),p) — Vi(=r,z(t), 2(t — 7),p) +
Vi(0, z(t), x(t+0)) +p(0, x(t), 2(t +6))h(0) is a SOS dey S +rVa(a(t),p) —rVa(z(t +6),p) +

4
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+ Tai‘(/i)f — r% <0,V 6 e [-r0] and when We can linearize the above system ab@ui) to get:
(11) is satisfied.
Then the equilibriund of the system given by (10-11)
is robustly globally uniformly stabléor all p € P and bka — ao
for all delays in the intervalo, r|. k1

The proof is similar to the one given earlier, it iS po the linearised system, we have the following result;
based on functional (12) and is omitted. The equality proposition 14: Consider the system (16-17) under
constraints given by (11) that may arise during th‘?he assumptions (12,13). Then (ifk; — 3ac) < 0 the
transformation process can be adjoined using appropriagjgrg equilibrium is stable independent of the delay. If
polynomial multipliers. See [15] for more details on how/;;. 3ac) > 0 the zero equilibrium is stable if the

this is done. State-space constraints for local stabilitMe|ay satisfies: < »* and is unstable otherwise. where
analysis can also be adjoined in a unified manner. .« ig given by:

V. EXAMPLE: STABILITY ANALYSIS OF A « 1 (a0? — wk2)ka — 0(2a0 + bk2) (k2 + a)
r = — atan |w
PREDATORPREY MODEL w koow? (k2 + a) + (2a0 — bk2)(ac? — wk2)

A simple model of predator-prey interactions is

i’1(t) = —ax1(t) - k1$2 (t)] (16)

T [
z2(t) = —ox2(t) + oxa(t — 1) +

z1(t—7r) (A7)

Proof: In the absence of delay, and under the
two assumptions, the system @symptotically stable
wherez andy are the prey and predator populationsSubstitutings = jw in the characteristic equation and
b is the rate of increase of prey; and k., are the Separating real and imaginary parts we get:

& =bx — kizy, y=kozy— oy,

coefficients of the effect of predation anandy ando ac? 20
is the death rate of. So the cause of death of the prey —w? + — = owsin(wr) +o (— - b) cos(wr)
is due to predation alone, and the growth of the predator ko k2
population has as the only limitation the number of prey [, _} v = owcos(wr) —o (261_0 3 b) sin(wr)
These equations give rise to Lotka-Volterra predator- ko ko

prey cycles, but the model is not biologically meaningfu
because it isconservativegiving rise to a family of
closed trajectories rather than a single limit cycle [13]. , a%0% , o2

The above equations describe ideal populations that” 2 Y + 12
can react instantaneously to any change in the environ- 2 ) 22 )
ment; in real populations this change comes with a delapenotingp; = “5- andpz = %5 (bks —ac)(3ac — bks)
that representmaturationof the predator population. A the roots of this 2équation are’

more realistic set of equations is [21]: 5
Vi —4
() = 2(8)[b — az(t) — kiy(b)], w? = —% + %. (19)

y(t) = —oy(t) + kaa(t —r)y(t —r), . . .

Under assumption 13, itbke — 3ac) < 0 (i.e p; >
where—azx(t)? limits the growth of the prey, and> 0 ), then there are no real solutions to (18). Since the
is a constant capturing the average period between dea§uilibrium is stable when the delay is zero, and there
of prey and birth of a subsequent number of predatorss no w for which poles cross to the RHP, we conclude

%quaring the two equations and adding we get:

(ka - CLO’) (3aa - bkg) =0. (18)

Assumption 12, b, k1, k2 ando are positive. that (16-17) is delay-independent stable.
The equilibria(z*, y*) of the above system are: Under assumption 13 antbky — 3ac) > 0 then
(z*,y%) = (0,0), (¢, y") = (b/a,0), p2 < 0 and one of the two roots of (19) is positive and
bl — the other one is negative. Therefore the poles cross the
. x o 2 — a0 . . ;i . s
(", y") = (k_’ > ) (13) imaginary axis at only oner — there is no possibility
2 e for stability reversal If w is the solution to the above
We are only interested in the equilibrium given by (13)equation, then at = * given in the statement of the
Assumption 13:(bkz — ac) > 0. Proposition a Hopf bifurcation occurs; the system is
Assumption 13 ensures that the equilibrium (13) isstable forr < »* and unstable for > r*. ]
in the first quadrant. We now shift the coordinates to We now analyze the nonlinear description of the sys-
(z1,22) = (x — Z,y — %279%) to get: tem (14-15) using the methodology that was developed
o in the previous sections. We choose as nominal values
z1(t) = {:cl(t) + k—J [—az1(t) — k1z2(t)] (14) for the parameters = 10, a = 1, k; = 1, andk, = 3.
bks — ao A. Delay-independent stability analysis

Z2(t) = —oxa(t) + ox2(t — 1) + z1(t —7r)+ _
k1 The system (14-15) has many equilibria, and so we
+ kaw1 (t — m)w2(t —7) (15)  need to define a region around the zero equilibrium
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to obtain a stability condition (this is the regidn in
Theorem 1). We let:

|1, ] < ma™,  |ae,| < 2y, (20)

where the Equilibrium(z*,y*) is given by (13). We
considerb to be a parameter in the problem. From
Proposition 14, the linear version of this system is delay-
independent stable wheff < b < 322. For the given
values ofa, o and k,, the system is delay-independent
stable for10/3 < b < 10. For the purpose of calculating [2]
(z*,y*) we use a value ob = 20/3. The equilibrium
(0,0) of system (14-15) does not move @ashanges,
however the other two equilibria cross through the region3]
defined by (20). If we choose; = 7, = 0.1, then no

(1]

other equilibrium enters this region fad /3 < b < 10. 4
We consider the following Lyapunov structure: 5
0
V(:Et) = Vo(xl(t),xz(t), b) + i (l‘l(t + 9),x2 (t + 9), b)d9.
- [6]

We use a variant of Proposition 11 to obtain parameter
regions for which robust delay-independent stability of v
the origin can be proven. When the ordenffis second

order andV; is 4th order, we can construdf(x;) for  [8]
4.56 < b < 7.11. When they are 4th order and 6th order
respectively, then this region beconfe67 < b < 9.95, 9]
which is essentially the full interval.

[10]

B. Delay-dependent stability analysis

Now we will try to obtain a bound for for which
stability is retained using the same parameters as befdfé!
and fixedb = 15. Given these parameters = 0.0541.

The system has several equilibria and so we use i€
same constraints op; andz, on the state-space given
We can construct the Lyapunov function®l(x;)

given by (7) withV; Oth order with respect t@ and
2nd order with respect to the rest of the variables for
0 < r < 0.04. When V; is quartic with respect to [15]
all variables butd (which is kept at O order) then we
can construct thisV (x;) for 0 < r < 0.053. The
corresponding SDP is bigger as the functional is morg®6l
complicated, but we can see that stability for almost the
full delay interval can be proven this way.

[13]
(14]

[17]
VI. CONCLUDING REMARKS
In this paper we presented a methodology to construct
Lyapunov-Krasovskii functionals for time delay systemg€]
based on the Sum of Squares decomposition. The con-
struction is entirely algorithmic and is done through the
solution of a set of Linear Matrix Inequalities (LMIs). [1°]
There is increasing interest in the effect of timepoq)
delays on congestion control schemes for the Internet
and we hope that this methodology will find applicatio 21]
in this very active area of research. Moreover, the above
methods can be easily extended to systems with many
delays, either commensurate or not. Still a judicious

choice for the structure of the Lyapunov functional

would be required. Functional differential equations of
neutral type can also be treated in a unified way. The
case in which the vector field is not polynomial can be
handled in a way similar to ODEs [15].
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