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Abstract - An attitude determination routine based onAnother recent study by Deutschmaenal. [7] excludes
geometric relations coupled with an orbital position estion  gyro measurements and also estimates the angular rates by
is designed. The proposed determination algorithm usilizeadditional sun sensor measurements.

Earth position and magnetic field vector measurements. Inertial attitude determination involves the determioati
Orbital position data is provided by an Extended Kalmamwf both the orbital position and the orientation of a body
Filter (EKF) estimation of the Keplerian orbital elementsfixed coordinate system with respect to an orbital reference
This estimator uses only measurements of the magnitudeordinate system. One possible way to determine the latter
of the Earth’s magnetic field. Coupling the orbital positionis by utilizing an EKF to estimate the attitude quaternion
estimator and attitude determination routine results inllg f and the axis rates [6], [8], [9]. This requires the estintatio
autonomous satellite navigation system. The proposed attif seven states. Since both an update and propagation stage
tude determination routine significantly reduces the compuare used for both states and the error covariance matrix, the
tational efforts necessary to accurately estimate theudéti computational burden of such a process is enormous. For
It also eliminates the need of error-prone gyros while onlynany satellites with slow CPU and limited RAM, such a
requiring a nadir vector measurement. Simulation of theomputational load is undesirable.

proposed system on the CATSAT (Cooperative Astrophysics An alternative is to determine the attitude directly from
and Technology SATellite) model results in accurate otbitavector observations. The first standard method used on many
position and attitude estimates for secondary fault dietect missions is the TRIAD algorithm [10]. Using two vector sets,

and isolation implementation. the attitude information is found in a deterministic manner
Matrix inversion of a three dimensional system is utilized,
|. INTRODUCTION directly yielding the directional cosine (attitude) matri

Unfortunately, some of the attitude information must be

For three-axis stabilized satellites, an accurate measuiscarded to prevent the system from being over-determined
of inertial attitude of all three axes is needed for accuratgue to the existence of multiple solutions for a given aditu
control. As a satellite rotates about the Earth, sensord mugnatrix. Another method known as the QUEST (QUaternion
measure the satellite attitude with respect to a fixed rafere ESTimate) [10] overcomes some of the shortcomings by
point (such as the Earth, sun and stars). Stars are the oglymbining all vector observations in an optimal manner by
group of objects that can be considered inertially fixed witlminimizing a specified loss function of sensor data. This
respect to the satellite. However, star sensors need @xtensmethod assumes accurate knowledge of the measurement and
star catalogs for determination and may be a computationgtocess noise, a priori attitude information and gyro data.
burden for small satellite missions. Since stars are thg onl This paper proposes a simple attitude determination rou-
inertially fixed points available, attitude determinatifsom tine that directly processes the magnetic field and Earth po-
objects such as the sun and the Earth require knowledggion vector measurements. Proposed method uses a similar
of satellite position with respect to the Earth. Such otbitaapproach with the TRIAD algorithm, requiring a minimal
information must either be up-linked from a ground statioamount of sensor measurements and relatively inexpensive
or be calculated autonomously by the satellite itself. @lob measurement hardware. The computational requirements are
positioning systems have also recently been used for seraiso significantly reduced. The algorithm is based on a
autonomous orbital estimates [1]. geometric development, where six independent equatians ca

This paper deals with the use of only magnetometer datee formed from the six independent variables that create
for orbital position estimation. One of the earliest paperthe directional cosine matrix. Using a numerical solution
by Psiakiet al. [2] used a square root information filter method, a minimum error approximate solution to these
implementation of the Extended Kalman Filter (EKF) toequations can be found. It is important to note that the
estimate the Keplerian Orbital Elements (KOE) [3]. Shorshattitude determination routine is reliant on the accuraty o
et al. [4] applied an EKF to estimate the KOE by using onlythe orbital estimator for both set of vectors.
the dynamic equations of a mass under a central force while The resulting completely autonomous navigation system
neglecting the drag terms when an estimate is unnecessampuld be adequate as a primary routine if a coarse heading
The estimation of KOE utilizing an EKF was later combineds sufficient. Otherwise, the proposed attitude deterrionat
with an attitude estimation routine to yield an algorithmatth and orbital estimation routines can be used as a part of the
used magnetometer and gyro data filtered through an EKfentingency system.
to obtain both the orbital and the attitude estimates [}, [6 The organization of this paper is given as follows. First,
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the dynamic equations that govern the orbital dynamics are [11. EKF ORBITAL ESTIMATOR

given. Then an Extended Kalman Filter is formulated for the 116 relation between the magnitude of Earth's magnetic
orbital estimation problem. Next, the aforementioned@d® e\ ang the orbital elements is highly nonlinear. Therefor
determination method is explained. Finally, the results of , pxF [11] is used for the estimation of orbital elements

the coupled _orblital gstimaﬁor gg_?_stge é‘ttit“de qlete;\m’mati instead of a linear KF, to incorporate the nonlinear effects
routine as simulated on the \[(Cooperative AStro- egent hoth in the measurement model and in the dynamic

?ohry\?g:iso32%;[)?;;?ri]r?écl)iggtf)ﬁ-ls:e”ite) model are demonstrategy ations. The system and the measurement models are given

as:
Il. ORBITAL DYNAMICS X(t) = fIX (1), 1] +w(t) (4a)
The state vector for the EKF is comprised of the six o
classical Keplerian orbital elements in addition to a term Ui = hi[ X (t)] + v (4b)
representing drag friction: ) ) .
- ) where f[X (¢),t] is the nonlinear system equationst)
X7 (t) = [a,€,i,Q,w,0,C4] (1) is the white, zero-mean process noidg,[X (t;)] is the

wherea is the semi-major axis is the eccentricityj is the honlinear measurement model, angd is the white, zero-
inclination, 2 is the right ascension of the ascending nade, Mean measurement error. Development of the measurement
is the argument of the perige|s the true anomaly and, Update and the propagation stages of the filter equations [11
is the drag coefficient. Analysis of the dynamics of the aibit are reviewed in the following section.

parameters when the satell_|te_ is exposed to perturbinggorc . Measurement Update Stage
is performed using the variation of parameters method [3], ]
which considers the direct effect of the perturbing forces The error between the measurement and the estimated
on orbital parameters. Analytical descriptions of thesaie magnetic field vector is used to update the state estimates
change of each parameter is obtained instead of a numeri¢@lforce the convergence of magnetic field estimates. The
integration routine. Results of the analysis [3] are given a measurement model is defined as

d:%(ga_r)ﬁ vk = |B(Xk, tx)| + vk )
r v o
2f; for where B(Xy,t;) represents the measured magnetic field
é= 7(0089 +e)— fasme vector. The update equation is given as
i= It cosor @ Ki(+) = Xa(=) + K [~ 1BER(=), )| | (6)
Vg
O fi sin6* whereXk() represents the estimated states. Pre-update and
T g sin i post-update variables are also represented by - and +crespe
2f f , tively. B(X(—),tx) is the estimated magnetic field vector
W=t ging+ (2 + — cos 9) using the International Geomagnetic Reference Field (IGRF
v-e v a-€ model. The IGRF is a complex 10th-order spherical harmonic
G — h Q. ) model of the Earth’'s magnetic field and models secular
=2 cost variations to the 8th order. The IGRF model used in this

where f;, f,., f; are the tangential, inward normal and lateralvork uses the spherical harmonic _co_efficients caIcuIatqed fo
orbital perturbing forces, respectively. The first two fesc the epoch 2000. The secular variation terms vary slightly
are “in-plane” perturbations, whereas the last acts oaitsiach year but can be accurately calculated by modifying the
the orbital plane. These forces are assumed small compaiegfficients of the same epoch. Details of the IGRF model
to the central gravitational force. Additionally, can be found in[12]. . _
The Kalman gain matri¥<;, in Eq.(6) is defined as

h = ca(l —e2 _

e ) Ky, = Py(—) Hy," [HyPi(—)Hy" + Ry] ' (7)

a(l—e?)
T 1+e-cosb ) where Hj is the measurement matridt,(—) is the pre-
update estimation error covariance matrix, aRg is the
v — 21 B covariance matrix ob,. Once the states have been updated,
7 a the estimation error covariance matrix is updated as falow
0" =60+ w

Pye(+) = [ — Ky Hy|Po(—)[I — Kp Hy )" + Ky R K™ (8)
where . is the Earth gravitation constant. As the drag ) ) )
coefficient is constant;); = 0, which is included in the state ~ The measurement matrikl, relates the differential of
dynamics, so as to allow for the estimation of its nominalhe norm of the magnetic field vector to the differential of
value. the orbital elements. As the relations for the magnetic field

and the nonlinear measurement model are highly involved,
ICATSAT is a small satellite mission sponsored by NASA andhe corresponding derivations and calculations are sfimgli
developed by the Space Science Center of the University of Neand briefly mentioned.
Hampshire to detect gamma ray bursts in deep space.
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Fig. 1. Magnetic Spherical Coordinates Fig. 2. Earth-Centered Inertial Spherical Coordinates

Measurement Model: The measurement matrikl;, is where AT is the time step between measurements. The
defined as propagation of the covariance matrix is carried out as fslo

oh _ O|B(Rp)|

Hk‘ = — e
90X X (=) tw 90X

e O o) = AR P AT (i) + Qe (12)
k\— )tk
where|B(Ry)| refers to the norm of the estimated magneti¢Vhere Qs is the process noise covariance matrix (used for
field vector resolved in the Earth-fixed magnetic sphericdHNing purposes) andl; is the transition matrix approxi-
coordinate system. Figure 1 shows the components of tifeation, which is computed using a first order Taylor series
magnetic field vector in the Earth-fixed spherical coordinat®XPansion:

system. The measurement model (i.e. the magnitude of the

estimated magnetic field vector) has no direct functional Ap(Xi(+)) = T+ Fi(Xi(+)) - AT (13)
relation with the orbital states, therefore EQ.(9) can be .
expanded by chain rule to yield Here (X1 (+)) denotes the Jacobian matrix based on the

. R partial derivative of the nonlinear system dynamics with
_0|B] 0B ORp ORyp

o, = 2= . 10) respect to the orbital states:
k 8B ORrp OR;r 090X (=) tn ( ) Dr(x
iy 5 t),t
where Rr and R; represent the spacecraft position vector Fp.(Xi(+)) = % (14)
in the Earth centered fixed and the Earth centered inertial X=Xg(+)

coordinate systems, respectively. Definition of the latin - ! . .
be seen in Figure 2 (X of Aries is an inertially fixed vectorAfter predicting the filter states and the covariance matix
that points from the Earth’s center to the center of the suiff€ next step, the algorithm proceeds with the updates from

on the vernal equinox). the sensor measurements of the following time step.
The partial derivatives of; with respect to the filter states
are calculated analytically according to the sphericahgeo IV. ATTITUDE DETERMINATION

try. The partial derivatives of the magnetic field with restpe
to the position vector are calculated using the magnetid fie[/e
model equations. Details of the matrix development can ke
found in [13]. Measurement matrix calculations impose

significant computational burden on the flight processars. F
this reason, calculations can be made analytically andeffli is
Therefore, during the execution only the states are neested g
the propagation of the algorithm.

The attitude determination routine requires two sets of

ctors. These vector sets are essentially comprised of two
nparallel vectors expressed in two different coordinate

%ystems: the satellite centered body (SCB) and the satellit

centered inertial (SCI) coordinate frames. (The SCB frame

defined by the satellite principal inertial axes, wheras

Cl frame is in the same orientation with the Earth centered
inertial frame except the origin is translated to the sitéd|

B. Propagation Stage center of mass). The magnetic field vector is one of these
Orbital dynamics of Eq.(2) constitute the system modevyectors, and theadir vector, which points from the satellite
; ; ; \ to the center of the Earth, will be used as the second vector.
previously given in Eq.(4a) ) . . L
. As the orbital position estimator converges, the inertial
X(t) = f(X(1),1) position of the satellite with respect to the center of the
The derivatives of the states are approximated by the fcoiwafalgh IS datsrfunéedthknow_?_. Consctequently, kbOth the tmhaggg[;C
Euler approximation. Hence, the estimated state at the ndi§'c &nd the Earth position vectors aré known in the
time step | coordinate frame. Assuming that both vectors are measured
pis .
N A . in the SCB frame, the necessary sets of vectors are complete
Xpr1(=) = Xp(+) + f(Xp(+)) - AT (11) and differ only by the satellite attitude. The transfornatizig
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Difference in Magnetic Models [nT]

each vector set is merely the directional cosine matrixsThi »

relation can be shown as: 7
Bscp = A - Bscr . ‘ ‘ ‘ L]
CSCB — A[B 3 CSC[ (15) oE ‘ ‘ RMS Orbital Error [km] ‘ ‘ s
where Bscn, Bscr, Cses and Csep are the magnetic L ]
field and nadir vectors resolved in the SCB and the SCI |
coordinates, respectivelyd;p is the attitude (directional RMS Orbital Ertor (Magfied) [km] e
cosine) matrix which transforms a given vector from the SCI
to the SCB coordinate system and is defined as so- 8
n(E ny nZ ° 0.‘2 0.‘4 otal itude Error [det 1.‘6 1‘8 2
Arp = [iga) = [ 0. 0, o 1 CONN o Tesen 4
Ay Gy Ay o b
1,0,a represent the respective principal inertial axes of 0 : NI I SR - ]
the satellite in the SCI coordinate frame. Indeterminacy of A
Eq.(15) can be solved by using the knowledge thag, a
form an orthogonal triad, such thatcan be replaced by Fig. 3. Orbital and Attitude Estimator Results figri5°
Qg Ny Og Ny * 0z Nz Oy
Gy = | ny X | 0y | = | Nz 0z —Ng -0y
a n, 02 Ng = Oy — Ny * Og In cases where the first séf) of equations does not
) ) ) (17)  meet the performance requirements or converge, the Newton-
Equations (15, 17) yield the nonlinear system Raphson solution method (or applied numerical method) is

Fl(n:mnya Nz, Og, Oyvoz) = Fl(Xa) =0 (18) repeated for Eq.(20)
to be solved in the attitude determination routine. The axpa V. SIMULATION RESULTS
sion of Eq.(18) can be found in the Appendix. Using Taylor The orbital estimation and attitude determination rowine
series expansion and neglecting higher order terms, are tested on the University of New Hampshire CATSAT
simulation model. The orbital estimator results in accelata
F1(Xa) = Fi(Xa0) + (Xa — Xao) - J(Xa0) =0 (19) RMS orbital position errors between 29 and 42 km upon
convergence, with magnitude errors ranging from 5 km to
80 km. The attitude determination routine produces aceurat
gesults within0.481° to 1.080° of total angular error for all
%xes, over the range mentioned for the orbital position esti
Mator. Efficiency of the estimation routine is demonstrated
in Figure 3 for an orbital inclination oft5°. The results

where X,o denotes the current iterated value of the stat
vector X, and J(X,o) represents the Jacobian Bf (X,).

The closed form solution of Eq.(19) requires the inverse
the Jacobian to be computed at every iteration. Since this
not trivial for high-dimensional systems, an appropriate n

merical method (e.g. Gaussian elimination/back subsitht are investigated separately for the orbital estimator dred t

can be used to find an approximate solution igy. ; L A . ;
Detailed simulation results [13] show that the Newton_attltude determination routine in the following sections.

Raphson iteration technique requires only two iteratians t . .

cor?verge. Unfortunately, ?he cor?vergenceyis not assured df- Orbital Estimator Results

to the inherent nature of the numerical method employed. To Obtaining success in convergence and in rates of con-
increase the number of successful determinations, a secorgtgence in a global sense is difficult due to the complex
set of equations is also used: topography of the magnetosphere and varying initial condi-
: tions of the estimator and the orbit. Therefore, the sinmet

B . z . y . Z —_ €z 1 I i 1 I 1
Ny Bscr +ny - Bsor +ne - Bior — Bieop are performed only under varying orbital inclinations,c&n

0y - BEcy+ 0y - By + 0. Bior — Béep the inclination is the most significant parameter affectimg
Ny 0p + Ny -0y + 7. -0, observability of the orbit. All other initial conditions meain
=0 constant. Initial conditions used for the simulated orlsit a

ng - Céor +ny - Céor +n. - Bior — Céop

0z Ccr+o0y - Céop + 0. - Céor — Céop
ng +ny+ni—1 y y _ _ _

L © (20 Table 1. Initial conditions for_the simulated orbit and the orbital

. . . N 5 1| t

This set uses the unity constraint of vectarand o estimator

the orbital estimator are given in Table 1.

a e Q w 0
2, .2, 2 _ (km) (deg) | (deg) | (deg)
ng tny+tny=1 Orbital IC [ 6921.2 0.001 | 45 | 90 | 0O
02 +0l+0i=1 (1) Estimator IC | 6926.2| 0.00101| 48 | 86 | 4
and The orbital estimator is initialized with an inclination 2f
n-0=0 (22) less than the actual inclination and tested for values rangi
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betweenl15° and 75°. The orbital position error results are = .
listed in Table 2. S ]
* ¥ | ,Lwl . L L ol J li
Table 2. Orbital position errors for varying inclinations 6z o4 0s 08 : S
Inclination | Initial Orbital Position | Initial Magnetic 50 ]
i Error | RMS Error After | Field Magnitude g 1
(deg) (km) | Convergence (km Error (nT) 5w 7
15 1018 108 -321.359 o " ‘ i
20 894 194 -160.694 w s . w L s L,
25 929 209 -65095 0.2 04 0.6 08 1 12 1 16 18 anz
30 710 52 -34.953 o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ b
45 929 27 -223.009 T 1
60 995 39 -566.325 g 1
75 1068 30 651.412 <® ‘ 1
The orbital position error in Table 2 refers to the differenc e ke e
between the actual and the estimated rectangular cooedinat
of the center of mass of the satellite. The simulation darati Fig. 4. Attitude Error Vectors for=45°

is 2 - 10* s, corresponding to approximately 3.5 orbits
according to the average orbital period [3] given by

a3 Table 3. Attitudinal error results for varying inclinations
Tortir = 2 - (23) [ Orbital Position | a,, Qo Qa Jé]

Hearth (deg) | RMS Error After | (deg) | (deg) | (deg) | (deg)

where Jearth is the gravitational constant equal 80986 - Convergence (km
10°km- - A sampling time of 2 s between measurements is %g igi g'ggé g'gég g'géi g%g
used for the simulations. Convergence of the orbital estima & 509 1739 4021 4032 | 5.954
often occurs within one-half of an orbit. 30 52 0489 0.985 | 0.965 | 1.463
It can be clearly seen that the steady-state estimationm—z5 27 0294 02811 0256 | 0.481
error falls drastically for inclinations higher tha°. This 60 39 0.417| 0.382| 0.333] 0.656
is due to the poor magnetic field magnitude variation at low 75 30 0.640| 0.753] 0.436| 1.080

inclinations. The magnitude varies a great deal more atdnigh
inclinations because of the dipole shape of the magnetit. fiel
The correlation between the orbital estimator and the

B. Attitude Determination Results attitudinal steady-state error is obvious from the datae Th
To quantify the accuracy of the attitude determinatiorattitude estimate increases in accuracy with increasihijabr

routine, an approximate error expression based on the-diffestimate accuracy. The ascending trend in attitudinal éoro

ence between the actual and the estimated directionalecosinclinations about75° is due to the fact that the magnetic

matrices is established: poles and the Earth’s rotation axis do not align. The radial

AR Fraot — Rost component of the Earth’s mag_netic field shows a peak for
AJ] _ [ Bt — Basy ] (24) locations corresponding to latitudes betwed? and 75°
Ad a a

[13]. This leads to a loss of independence of the equations

used to obtain the attitude estimates as a result of the
Taking the RMS of each error vector indicates the accuragyear co-alignment of the magnetic and the nadir-pointing
of the estimated attitude information vectors. This phenomenon occurs even for smaller orbital
inclinations at certain instances where the satelliteelsav
near the magnetic poles. This can be seen in Figure 4, which
shows the attitude determination results at an inclination
of 45°. The spikes correspond to brief intervals where
where m is the number of data points after convergencdhe determination routine fails. The autonomous navigatio
To obtain the equivalent angular difference, the errorarect routine implemented here is completely decoupled from the
is assumed to be approximately perpendicular to the actugecific satellite model used and works outside the control

Aer’r' -

Qgct — Qest

vector and the error angle is obtained as follows: loop. The actual model uses tR¥RBINT code developed by
the NASA Jet Propulsion Lab (JPL) for orbit propagation. It
o ~ tan~! Ey (26) should be noted that the IGRF model is used for both the
b= true satellite model and the orbital estimator magnetid fiel

information; although both have different initial conditis.
As the IGRF model is a highly complex nonlinear function

B \/ﬁ 7 of the orbital position, these varying initial conditionsffice
B=vVan®+a’+a (27) {0 effect the true and orbital estimator model outputs ttedif

wherej is the total angular error. The attitudinal error sim-Significantly.
ulation results are given in Table 3 for varying inclinaon

A single indicator of the total attitudinal error is chosen t
be
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VI. CONCLUSIONS

This paper presents a satellite attitude determination al- o
[1] M.L. Psiaki.

gorithm coupled with an orbital position estimator utifigi

Earth position and magnetic field measurements. The satelli
position estimates are provided by Extended Kalman Filter-
ing of Keplerian Orbital Elements. The proposed attitude de
termination routine is a computationally efficient and sienp
algorithm, which directly processes two vector measurdsen

to obtain attitude information without requiring errorepe
gyros.

The resulting autonomous navigation algorithm is imple-[3]
mented on the University of New Hampshire - CATSAT
simulation model. The results show that RMS orbital po-[4]
sition errors vary between 27 km and 42 km, depending

on the orbital inclination. The orbital estimator succesals

overcome initial position errors exceeding 1000 km. This
algorithm works well for near-circular orbits. The EKF is [5] J.K. Deutschmann and l.Y. Bar-ltzhack.
designed to incorporate an atmospheric drag estimate &s wel

as the Keplerian orbital element estimates.
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VIII. A PPENDIX. EQUATION (18)

x Y z x
N - Bgor +ny - Bgop + 1z - B§er — Bsep
x Yy z Yy
0z - B§cr + 0y - Bgop + 0= Béer — Bsep
(ny -0z =nz-0y) - Bgor + (nz - 02 = ng - 02) - By + (e - 0y =1y - 0z) - Bior — Biop
T Y z T
na - Cgor +ny - Csor + 1z Bier — Céep
x Y z Y
0z - Ciop + oy Cgop+ 0. Cicr — Csop
L (ny -0 —nz-0y) Céoyp+ (02 0p =g 02) - Cp + (N -0y — 1y - 0) - Cé0p — Chop
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