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Abstract
 
The popular PID controller, even though versatile, 
possesses well-known characteristics that limits its 
achievable performance, and an intrinsic structure 
that makes its tuning not as transparent. We recently 
developed a novel 4-mode control scheme that takes 
full advantage of the modern electronic hardaware 
components, and whose tuning parametersare related 
directly to controller performance attributes 
(robustness, set-point tracking, and disturbance 
rejection); its achievable performance is better, and it 
can be designed and implemented much more 
directly and transparently. . In this paper we present 
rigorous robust stability results for the proposed 
controller for any given plant/model mismatch. These 
results are then used to generate procedures for 
selecting values for the controller tuning parameters. 
The controller design and tuning is illustrated via 
simulation on a nonlinear polymerization process. 
 
1. Introduction 
The PID controller is the most commonly used 
controller in industrial practice with perhaps only 5-
10% of loops on which it is not routinely applied [1]. 
However, the controller parameters are not related 
directly to the three critical controller performance 
attributes of robustness, set-point tracking and 
disturbance rejection; therefore designing the 
controller to achieve desired performance in each of 
these attributes is not straightforward. In fact, it is 
well-known that one cannot tune a PID controller to 
achieve good set-point tracking and disturbance 
rejection simultaneously.  
 A study of industrial control loops by Ender 
[2] found that more than 30% of installed controllers 
operate in manual mode while, of the loops operating 
in automatic mode, 65% are poorly tuned. It is also 
well-established that PID controllers perform poorly 
for dead-time dominant, inverse response or highly 
nonlinear processes. Under these conditions, it is 
typical to enhance the performance of PID controllers 

with the Smith predictor for dead-time dominant 
process, and with adaptive [3] or auto-tuning 
techniques [4] for nonlinear process.  Even then, 
there are well-known technical issues associated with 
implementing these strategies in practice.  
 Alternatives to the PID controller (fuzzy 
control, general linear control, state feedback and 
observers etc. [5]) can achieve better performance but 
usually at the expense of sacrificing simplicity. There 
is therefore still a need for an alternative controller 
that is sufficiently simple to implement, that can 
achieve better performance, and whose structure 
allows for transparent tuning related directly to 
controller performance attributes.   We recently 
developed such a controller that combines the 
simplicity of classical PID controller with the 
efficiency of model predictive controller, while 
avoiding the tuning problem associated with both. 
The details of the development, design and 
implementation of this regulatory controller (the 
RTD-A controller) have been discussed elsewhere 
[6]. The key characteristic is that its three primary 
tuning parameters, θR, θT, and θD, are not only related 
directly to the attributes of robustness, set-point 
tracking, and disturbance rejection, they are also 
normalized to lie between 0 and 1. These normalized 
tuning parameters arise naturally from the 
formulation in a manner that makes it possible to tune 
the controller directly for each performance attributes 
independently. An auxiliary fourth parameter, θA, 
related to the overall controller aggressiveness, arises 
naturally from the model predictive formulation 
independently of the three main tuning parameters; it 
is also normalized between 0 and 1.  
 
Controller Features and Performance: The salient 
features of the controller are as follows [6]: 
1. Process characterization: A discrete-time 

version of the same model employed for tuning 
classical PID controllers, the first-order-plus-



 

dead-time (FOPDT) model obtainable from a 
“process reaction curve”: 
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2. Control Strategy: A single control move, u(k),  to 
be held over an N-step horizon beyond the delay 
period, m, is computed and implemented at each 
time instant, k, in standard receding horizon 
fashion. Under these conditions the 
“uncorrected” model prediction is obtained as: 
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3. Error Decomposition and Model Update: The 

model error, )(ˆ)()( kykyke −= , is explicitly 
decomposed into separate and distinct 
conditional estimates of the effect of plant/model 
mismatch, em(k), and unmeasured disturbances, 
eD(k), as: 

 )()()( kekeke Dm +=                 (4) 
using Bayesian principles [6] to determine eD(k) 
estimates as  
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where θR, (0<θR<1), emerges from the 
formulation as the  robustness parameter. From 
here, the future disturbance effect is predicted 
according to: 
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θD, (0<θD<1), is the disturbance rejection tuning 
parameter.  
 The model prediction in (2) is updated with 
(6) to obtain: 
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4. Control action computation: At each discrete 
point in time, the single control move, u(k), is 
determined to minimize the predicted deviation 
of the plant output from the desired set-point 
trajectory, y*, over the next N discrete steps in 
the future.  For a set point yd, the desired set-
point trajectory given by: 
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with θT, (0<θT<1), as the set-point tracking tuning 
parameter. The value chosen for N, or  
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determines the overall controller aggressiveness. The 
closed form solution of the least squares optimization 
problem is easily shown to yield: 
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Effect of Tuning Parameters: Figure 1 shows 
simulations of nominal controller performance on a 
plant model,
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tuning parameters, θT, θD, and θR directly influence 
the controller performance attributes of set-point 
tracking, disturbance rejection and robustness 
respectively; it also shows the effect of the overall 
aggressiveness parameter θA and how, in each case, 
the controller becomes more conservative as each 
tuning parameter value is increased from 0 to 1. The 
other tuning parameters are kept at a fixed value of 
0.1 and sampling time is 0.1. These results are meant 
to illustrate the ease and transparency of tuning this 
controller. 
 

 
Figure 1(a): Effect of θR on robustness. 

 
Figure 1(b): Effect of θT on set-point tracking. 

(a) 



 

  
Figure 1(c): Effect of θD on disturbance rejection. 

  
Figure 1(d): Effect of θA on overall aggressiveness. 
 
 The focus of this paper from here on is the 
development of a procedure for determining 
acceptable tuning parameters for the controller.  The 
procedure, based on robust stability considerations, is 
presented in section 2 and illustrated in section 3 
using a polymerization reactor simulation. 
 
2. Theoretical Stability Analysis 
State Variable Formulation: When the controller in 
(10) is implemented on a plant with explicit 
parametric plant/model mismatch, the closed-loop 
behavior may be represented in the following state 
variable form (see Appendix): 
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In state feedback form, the controller is given by  
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yd and d are set-point and disturbance variables 
respectively, and the indicated matrices are shown 
fully in the Appendix. The system characteristic 
equation is now obtained as: 

0=−− QSRzI .    (13) 
 
Robust Stability Analysis: For any given plant/model 
mismatch, Eq. (13) may now be used to determine 
the set of tuning parameter values such that the 
closed-loop system is stable (i.e. all roots of the 
characteristic equation are within the unit circle).  It 

can be shown that one of these roots is the set-point 
tracking parameter, θT. Hence, the only condition θT 
must satisfy is 0<θT<1; it does not affect closed-loop 
stability in any other way. Eq. (13) is thus used to 
determine acceptable values for only 3 parameters, 
θA, θD, and θR. 

For representing plant/model mismatch, we 
employ the multiplicative uncertainty description 
where, for each model parameter, M, its relationship 
to the “true” but unknown parameter M0 and the 
model error ∆M % is: 
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3.  Illustrative Example 
We now apply this technique to design and 
implement the RTD-A controller on a simulation of 
an isothermal polymerization reactor discussed in [7], 
where initiator flow rate is used to control number 
average molecular weight (NAMW). The nonlinear, 
four-state, state-space model is used to represent the 
plant; an approximate FOPDT model used for 
controller design is obtained from a step response 
(see Figure 2). Note that this model is an 
approximation of the real process and has inherent 
parametric and structural uncertainty. To design the 
RTD-A controller for “worst case” 10% parametric 
uncertainty, (i.e. the process steady state gain, dead 
time, and time constant are assumed to be 
underestimated by 10%), we employ (13) to generate 
Figure 3, a plot of closed-loop stability regions as a 
function of  θR and θD, and,  for simplicity, for only 3 
values of θA (0.1, 0.5 and 0.9). The region above each 
curve is the stability region.  

 
Figure 2: First-Order-Plus-Time-Delay model fit to 
the true process response.  

FOPDT Model parameters 
K = -1.197x106 
τ   = 0.2831 hr 
α  = 0.05 hr 
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Figure 3: Stability regions for polymerization reactor 
control: dashed, θA=0.1; solid, θA=0.5; dotted, 
θA=0.9. The stability region is above each curve.  
 
 
Controller Tuning and Implementation: The first set 
of simulations are performed under the following 
conditions: “Start-up,” in which a set-point change of 
15,000 in NAMW is made at t=0 hr, followed by a 
disturbance in the form of a one-third reduction in 
monomer concentration introduced at t=2.5 hr. If an 
aggressive controller performance is desired, the 
overall aggressiveness parameter, θA should be small. 
For a choice of θA = 0.1, closed loop system stability 
requires combinations of θD and θR values in the area 
above the dashed curve in Figure 3; two possible 
choices are labeled (1) and (2) both with θD = 0.3. 
For point 1 (θR=0.4), aggressive performance (close 
to the edge of instability) is expected; increasing θR 
to 0.8 (point 2 in Figure 3) should enhance 
robustness. Figure 4(a) shows that this, in fact, is the 
case.  Note especially the control action plot. 
 To illustrate tuning for disturbance rejection, 
a disturbance in the form of a one-third reduction in 
monomer concentration is introduced at t=0h. The 
responses are shown in Figure 4(b).  For a relatively 
less aggressive controller, selecting θA = 0.5 and θD = 
0.7 with θR=0.3 (point 3 in Figure 3, considerably far 
from the stability boundary) results in the response 
shown in the dashed lines.  A choice of θD = 0.2 
(point 4 in Figure 3) should provide better 
disturbance rejection; and this is seen in the dotted 
line responses. Decreasing θD further to 0.1 (point 5), 
should result in even better disturbance rejection; 
however, this parameter combination is close to the 
stability boundary.  The responses shown in the solid 
lines reflect this: faster disturbance rejection is 
achieved with control action showing the onset of 

oscillations. The set-point tracking parameter θT is 
fixed at 0.9 for all the simulations.  
 
Comparison with PID control: The performance of 
the RTD-A controller may also be compared with 
that of an IMC tuned PID controller (IMC-PID) and a 
minimum Integral-Time-Absolute-Error tuned PID 
controller (ITAE-PID).  For aggressive control, a 
choice of θA = 0.1 restricts acceptable θD and θR 
values to those lying in the region above the dashed 
line in Fig 3.  Choosing θD=0.1 for aggressive 
disturbance rejection requires a companion θR > 0.7.  
We consider a final choice as follows: θD=0.1, 
θA=0.1, θR=0.8 along with θT=0.9. The tuning 
parameters for the IMC-PID and ITAE-PID are 
determined using the tuning rules in [8]. (For the 
ITAE-PID controller, we employed the tuning 
parameters for set-point response because the closed-
loop system was unstable with parameters tuned for 
disturbance rejection.) The ITAE-PID and IMC-PID 
tuning parameters are, respectively: KC=-3.55.10-6, 
τI=0.3677, τD=0.0174 and KC=-4.29.10-6, τI=0.3081, 
τD=0.0230.  The resulting simulation results are 
shown in Figures 5(a) and 5(b) where the RTD-A 
controller is seen to achieve better set-point tracking 
and disturbance rejection.  
 The main point here is not so much the 
improved performance; it is that the RTD-A 
controller tuning parameters are transparently related 
to controller attributes and are easier to choose. If we 
wish to modify any aspect of the observed response, 
the required changes are clear. For example, if the 
overshoot in set-point tracking response is 
undesirable, we simply increase the θT value to say, 
0.95, to obtain the more gradual transition to set-
point shown in the dash-dotted curve in the top half 
of Figure 5a. 
 

∆K = 10% 
∆α  = 10% 
∆τ = 10%



 

 
Figure 4: Controller performance for various tuning 
parameters: worst case 10% plant/model mismatch. 
(a) Top: Robustness (start-up and disturbance 
rejection); (b) Bottom: Disturbance rejection 
characteristics. 

 
Figure 5(a): Polymerization reactor control 
simulation for set-point change. (solid) RTD-A with 
θT=0.9, (dash-dot) RTD-A with θT=0.95, (dashed) 
IMC-PID, (dotted) ITAE-PID. 
 
 

 
Figure 5(b): Polymerization reactor control 
simulation for disturbance rejection (solid) RTD-A, 
(dashed) IMC-PID, (dotted) ITAE-PID. 
 
  
4. Summary and Conclusions 
In this paper, stability analysis results and their use 
for controller tuning have been presented for a novel 
regulatory controller. We have demonstrated how 
tuning this controller is easy and transparent because 
(i) the tuning parameters are directly related to the 
controller performance attributes; and (ii) they are 
naturally normalized to lie between 0 and 1, and 
formulated such that decreasing their value from 1 to 
0 makes the controller more aggressive in each of the 
corresponding attribute. How to apply the 
methodology in practice was illustrated using a 
simulation of an isothermal polymerization reactor 
where it was shown that the controller performed 
well even in the presence of parametric and structural 
uncertainties.  Future work will focus on reducing the 
stability plots to generalized formulas that can be 
used to choose the RTD-A controller parameters 
more conveniently. 
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APPENDIX: State variable formulation: 
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R is the matrix in the first term and Q is the vector in 
the second term on RHS.                            
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 The state feedback is given by:  
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where, a0, b0, and m0 are true discretized FOPDT 
process parameters given by: 
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∆t is the sampling time, and 
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