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Abstract—This paper examines the problems of robust H∞ fil-

tering design for linear parameter-varying discrete-time systems 
with time-varying state delay. We present new H∞ performance 
criteria that depend on the parameters and the delay-varying mag-
nitude using appropriately selected Lyapunov-Krasovskii func-
tional. Then the corresponding filter can be obtained from the 
solution of convex optimization problems in terms of parameter-
ized linear matrix inequalities, which can be solved via efficient 
interior-point algorithms. And the admissible filter guarantees a 
prescribed H∞ noise attenuation level, relating exogenous signals 
to the estimation error for all possible parameters that vary in a 
compact set. A numerical example illustrates the feasibility of the 
proposed methodologies. 

I. INTRODUCTION 
Linear parameter-varying (LPV) systems have received 

considerable attention recently [1]-[8]. LPV systems are 
linear systems that depend on time-varying parameters, 
whose values are not known a priori, but can be measured 
in real time. In contrast to continuous-time cases, LPV dis-
crete-time systems [6]-[8] received relatively less attention 
despite their importance in digital control and signal proc-
essing applications. 

Since time delay often appears in many control systems 
either in the state, the control input, or the measurements, 
and is, in many cases, a source of instability, the stability 
issue and the performance of LPV systems with delay are 
of theoretical and practical importance. Many results of the 
stability analysis for LPV time-delayed systems both on 
continuous-time cases [4]-[5] and discrete-time case [7] 
have been obtained. However, it is worth noting that the 
filters design for LPV time-delay systems [8] is still very 
limited, especially for LPV discrete time-delayed systems. 

In this paper, we investigate the H∞ filtering problem for 
LPV discrete-time systems that include time-varying state 
delay based on the references [8]-[10]. Using parameter-
dependent Lyapunov-Krasovskii functional, we obtain a 
new H∞ performance criterion that depends on the parame-
ter and the delay-varying magnitude. Then we further mod-
ify the obtained criterion by adopting the idea [11] of de-
coupling between the positive matrices and the system ma-
trices by the introduction of addition slack variable to ob-
tain another parameterized linear matrix inequalities 
(PLMIs) representation. And the corresponding filter de-
sign problems are finally cast into convex optimization 
problems. The obtained filter design procedure is shown, 
via a numerical example, to be effective. 

The notation used throughout the paper is fairly standard. 
The superscript “T” stands for matrix transposition, nR de-
notes the n dimensional Euclidean space, nmR ×  is the set 
of all nm×  real matrices, and the notation 0>P for 

nnRP ×∈  means that P is symmetric and positive definite. 
In addition, in symmetric block matrices or long matrix 
expressions, we use * as an ellipsis for the terms that are 
introduced by symmetry and }{diag  stands for a block-
diagonal matrix. 

II. PROBLEM FORMULATION 
Consider the following LPV discrete time-delayed sys-

tem presented in state-space form by: 
( 1) ( ( )) ( ) ( ( )) ( ( )) ( ( )) ( )

( ) ( ( )) ( ) ( ( )) ( ( )) ( ( )) ( )
( ) ( ( )) ( ) ( ( )) ( ( )) ( ( )) ( )

d

d

d

x k A k x k A k x k d k B k k
y k C k x k C k x k d k D k k
z k H k x k H k x k d k L k k

ρ ρ ρ ω
ρ ρ ρ ω
ρ ρ ρ ω

+ = + − +
= + − +
= + − +

 

(1) 
where nRkx ∈)(  is the state; mRky ∈)(  is the measured 
output; pRkz ∈)(  is the signal to be estimated; lRk ∈)(ω  is 
the noise input; 

1( ) ( ( ), , ( ))Sk k kρ ρ ρ=  is a vector of time-
varying parameters which belong to a compact set SRℑ∈ ; 

( ) 0d k >  is time-varying delay. It is assumed that there exist 
two positive constants dm and dM   such that the following 
inequality holds 

( ) , 0m Md d k d k≤ ≤ ∀ ≥                                (2) 

And the system matrices )(⋅A , )(⋅dA , )(⋅B , )(⋅C , )(⋅dC , 

)(⋅D , )(⋅H , )(⋅dH , )(⋅L are known functions of )(⋅ρ . For 
simplicity, kρ denotes the time-varying parameter vector 

)(kρ  throughout the paper. 
Here we are interested in designing an estimator or full-

order filter described by: 
( 1) ( ) ( ) ( ) ( ), (0) 0

( ) ( ) ( ) ( ) ( )
F F k F F k F

F F k F F k

x k A x k B y k x
z k C x k D y k

ρ ρ
ρ ρ

+ = + =
= +

         (3) 

Augmenting the model of (1) to include the states of the 
filter, we obtain the filtering error system as follows:  

( 1) ( ) ( ) ( ) ( ( )) ( ) ( )
( ) ( ) ( ) ( ) ( ( )) ( ) ( )

k d k k

k d k k

k A k A K k d k B k
e k C k C K k d k D k

ξ ρ ξ ρ ξ ρ ω

ρ ξ ρ ξ ρ ω

+ = + − +

= + − +
  (4) 

where 

( ) { ( ), ( )} , ( ) ( ) ( )T T T
F Fk x k x k e k z k z kξ = = −  
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(5) 
and I denotes an identity matrix with an appropriate dimen-
sion. 

Our objective is to develop a robust H∞ filter of the 
form (3) such that for all admissible parameter trajectories: 

(a) The filtering error system (4) is asymptotically stable. 

(b) The filtering error system (4) guarantees, under zero-
initial condition, 

                      
22 ωγ≤e                                       (6) 

for all nonzero [ )∞∈ ,02lω  and a given positive constant γ . 

III. ROBUST H∞ FILTERING ANALYSIS  
In this section, we will derive new H∞ performance crite-

ria for filtering analysis and synthesis of system (1).  
Theorem 1: Consider the system of (1). For a prescribed 

0>γ , if there exist matrices nnT RPP 22)()(0 ×∈=< ρρ , 
nnT RQQ ×∈=<0  that satisfy the following PLMI 

2

1 1 1 1

( ) * * * *
0 * * *

00 0 * *
( ) ( ) ( ) ( ) ( ) ( ) ( ) *

( ) ( ) ( ) 0

T
k

k k k d k k k k

k d k k

P d K QK
Q
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ρ

γ
ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

∆

+ + + +

 − +
 − 
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 

− 
 − 

  

(7) 

for all ρ  then (4) is asymptotically stable with a H∞  noise 
attenuation level γ . Where   1M md d d∆ = − + . 

Proof:  Construct a Lyapunov-Krasovskii functional as 

1 2 3( ( )) :V k V V Vξ = + +                                       (8) 

)()()(:1 kPkV k
T ξρξ=  

1

2
( )

: ( ) ( )
k

T T

i k d t
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−

= −
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1 1

3
2 1
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j d i k j
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= ∑ ∑  

where ( ) 0kP ρ > , 0>Q . 

Define ))(())1((: kVkVV ξξ −+=∆ , and along the tra-
jectory of system (4) under the zero disturbance input, we 
have 

1 1

1

1
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2 ( ) ( ) ( ) ( ) ( ( ))

( ( )) ( ) ( ) ( ) ( ( ))

T T
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where  
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       (11) 
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Then 
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 (14) 

Therefore, from (9)-(14) we can obtain that 

     1 2 3 ( ) ( )TV V V V k kξ ξ∆ = ∆ +∆ +∆ ≤ Μ                                             

where 

( ): ( ) ( ( )) ( ) ( ( ))
T TT T T T Tk k k d k K k x k d kξ ξ ξ ξ   = − = −     
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Using the Schur complement [12], PLMI (7) implies 
0<Μ . Then from the Lyapunov-Krasovskii stability theo-

rem, we can conclude that the filtering error system (4) is 
asymptotically stable. 

Now, to establish the H∞ performance for the filtering er-
ror system, assume zero-initial condition and consider the 
following index 
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Under zero initial condition, 0))(( 0 ==kkV ξ and we 
have 
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∞
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∞
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where 
( ): ( ) ( ( )) ( ) ( ) ( ( )) ( )
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1

1 1

1 1

:

( ) ( ) ( )

( ) * *

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
*

( ) ( ) ( ) ( )
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T
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By Schur complement, PLMI (7) guarantees 0<Ξ , 
therefore 0≤J  and 

22 ωγ≤e . The proof is completed.   

Remark 1: It should be noted that the condition pre-
sented in Theorem 1 contains product terms between posi-
tive matrices and system matrices when (5) is considered. 
In the following, we will give an improved version of 
Theorem 1 by introducing a slack variable to decouple 
these product terms, which is more easily tractable for han-
dling the filtering problems.  

Theorem 2: Consider the system of (1). For a prescribed 
0>γ , if there exist matrices nn

kk
T RPP 22)()(0 ×∈=< ρρ , 

nnT RQQ ×∈=<0 , nnRW 22 ×∈ satisfying 

     

2

1

( ) * * * *
0 * * *

00 0 * *
( ) ( ) ( ) ( ) ( ) *

( ) ( ) ( ) 0

T
k

T T T T
k d k k k

k d k k

P d K QK
Q

I
W A W A W B P W W

C C D I

ρ

γ
ρ ρ ρ ρ

ρ ρ ρ

∆

+

 − +
 − 
  <−
 

− + 
 − 

                          

(17) 

for all ρ , the filtering error system (4) is asymptotically 
stable with a H∞  noise attenuation level γ . 

Proof: we will prove the theorem by showing the 
equivalence between (7) and (17). If (7) holds, (17) is read-
ily established by choosing )( 1+== k

T PWW ρ . On the 
other hand, if (17) holds, we can explore the facts 

0)( 1 >−+ +k
T PWW ρ so that W is a nonsingular matrix. In 

addition, we have 0))()(())(( 11
1

1 ≥−− ++
−

+ WPPWP kk
T

k ρρρ , 
which implies that WWPWPW T

kk
T −−≤− ++

− )()( 11
1 ρρ . 

Therefore we can conclude from (17) that 

2

1

( ) * * * *
0 * * *

00 0 * *
( ) ( ) ( ) ( ) *

( ) ( ) ( ) 0

T
k

T T T T
k d k k k

k d k k

P d K QK
Q

I
W A W A W B W P W

C C D I

ρ

γ
ρ ρ ρ ρ

ρ ρ ρ

∆

+

 − +
 − 
  <−
 

− 
 − 

                      

(18) 

Performing congruence transformation to (18) by 
1{ , , , , }diag I I I W I−  yields (7), and then the proof is 

completed. 

Now, considering the delay-free LPV system  

( 1) ( ( )) ( ) ( ( )) ( )
( ) ( ( )) ( ) ( ( )) ( )
( ) ( ( )) ( ) ( ( )) ( )

x k A k x k B k k
y k C k x k D k k
z k H k x k L k k

ρ ρ ω
ρ ρ ω
ρ ρ ω

+ = +
= +
= +

                (19) 

the following two corollaries establish the counterparts of 
Theorem 1 and 2, respectively. 

Corollary 1: Consider the delay-free system of (19). The 
system (4) is asymptotically stable with a H∞ noise attenua-
tion level γ  if there exist a matrix nnT RPP 22)()(0 ×∈=< ρρ  
satisfying the PLMI 

2

1 1 1 1

( ) * * * *
0 * * *
0 0 * * 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) *
( ) ( ) ( ) 0

k

k k k d k k k k

k d k k
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C C D I

ρ

γ
ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ
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− 
 − 
 − <
 − 
 − 

  (20) 

Corollary 2: Consider the delay-free system of (19). The 
system (4) is asymptotically stable with a H∞ noise attenua-
tion level γ  if there exist two matrices nnRW 22 ×∈ , 

nnT RPP 22)()(0 ×∈=< ρρ  satisfying the PLMI 
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0 0 * * 0
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k

T T T T
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Q

I
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C C D I

ρ
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ρ ρ ρ ρ

ρ ρ ρ
+

− 
 − 
 − <
 − + 
 − 

(21) 

IV.    ROBUST H∞ FILTERING DESIGN 
In this section, based on Theorem 2, we will develop 

linear filter of form (3) assuring robust H∞ performance for 
discrete time-delayed LPV system (1).                                                          

The following theorem provides sufficient conditions for



 

  

the existence of delay-dependent H∞ filters. 
Theorem 3: Consider the system of (1). For a prescribed 

0>γ , if there exist matrices nnRE ×∈ , nnRF ×∈ , 
nnRU ×∈ , nnT RPP ×∈= )()( 11 ρρ , nnT RPP ×∈= )()( 33 ρρ , 

nnRP ×∈)(2 ρ , nnT RQQ ×∈=<0 , nn
F RA ×∈)(ρ , 

mn
F RB ×∈)(ρ , np

F RC ×∈)(ρ  and mp
F RD ×∈)(ρ  that satisfy 

the following inequalities (22-23) for all ρ  then an admis-
sible H∞ filter of the form (3) exists. 
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Proof: First let some matrix variables in Theorem 2 be 
partitioned as 

11 12

21 22

:
W W

W
W W
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Now we introduce matrices 
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(25) 

Then performing congruence transformation to (17) by 

2J , it can be readily established that (22)-(23) are equiva-
lent to (17). 

Therefore, from Theorem 3 we can conclude that the fil-
ter with a state-space realization ( ( ), ( ), ( ),F F FA B Cρ ρ ρ  

( ))FD ρ  defined in (25) guarantees that the filtering error 
system (4) has a H∞ noise attenuation level γ .                 □ 

Remark 2: Notice that the PLMI conditions (22)-(23) 
correspond to infinite-dimensional convex problems due to 
their parametric dependence. Using the gridding technique 
and the appropriate basis functions [3], infinite-dimen-
sional PLMIs can be transformed to finite-dimensional 
ones, which can be solved numerically using convex opti-
mization technique. Hence, by choosing appropriate basis 
function { }
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(26) 

PLMI can be approximated. 

Remark 3: Theorem 3 casts the full-order robust H∞ fil-
tering problem for system (1) into PLMIs feasibility test, 
and any feasible solution to (22) and (26) will yield a suit-
able filter. If we can find an admissible robust H∞ filter for 
system (1), the filter matrices can be calculated from the 
definition (25). However, there seem to be no systematic 
ways to determine the matrices 21V and 22V needed for the 
filter matrices. To deal with such a problem, first of all, let 
us denote the filter transfer function from )(ky  to )(kzF  
by  (27). 

 

1

2 3

( ) * *
( ) ( ) *

0 0
0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

k
T

k k

T T T
k F k k k F k k F k d k F k d k

T T T
k k d k

k F k k k F k k F k d k F k d k

P d Q
P d Q P d Q

Q

E A B C E A B C A E A B C
F A F A F A

H D C H D C C H D C

ρ
ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

∆

∆ ∆

 − +
 − + − +
 −


 + + + +

− − − −

2

1 1

2 1 3 1

* * * *
* * * *
* * * *

* * * 0
( ) ( ) ( ) ( ) * *

( ) ( ) ( ) *
( ) ( ) ( ) 0 0

T T
k F k k k

T T T T
k k k

k F k k

I
E B B D P E E

F A P E F U P F F
L D D I

γ
ρ ρ ρ ρ

ρ ρ ρ
ρ ρ ρ

+

+ +









− <
+ − −


− − − − − 
− − 

(22) 



 

  

)()())()(( 1 ρρρρ FFFFyz DBAzICT
F

+−= −             (27) 

Substituting the filter matrices with (25) and considering 
the relationship 212111 WVVU TT−=  yields 
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Therefore, an admissible filter is given by 

       ( ) ( ), ( ) ( ),
( ) ( ), ( ) ( )

T
F F F F

T
F F F F
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ρ ρ ρ ρ
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−

−

= =

= =
                  (28) 

Remark 4: Note that (22) and (26) are PLMIs not only 
over the matrix variables, bust also over the scalar 2γ . This 
implies that the scalar 2γ  can be included as one of the 
optimization variables for LMI (22) and (26) to obtain the 
minimum noise attenuation level. Then the minimum guar-
anteed cost of robust parameter-dependent H∞ filter can be 
readily found by solving the following convex optimization 
problem:   

 Minimize 2γ  subject to (22) and (26)                  (29) 

   Remark 5: It can be shown that the time-varying delay of 
LPV system (1) is constant delay for 1d∆ = .   

V.  AN ILLUSTRATIVE EXAMPLE 
Consider the following discrete-time LPV system with a 

state-delay.  

[ ] [ ]
[ ]
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0.45
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+ = + −   −   

− 
+  
 

= − + − +

=
(30) 

where ksin1 =ρ and kcos2 =ρ  are time-varying parameters 
satisfying 

     11 1 ≤≤− ρ , 11 2 ≤≤− ρ                                                                                   

Our objective is to design a robust H∞ filter. First we 
choose appropriate basis functions  

1)(1 =ρf , 12 )( ρρ =f , 23 )( ρρ =f  
Gridding the parameter space uniformly using 99× grids. 

The minimum noise attenuation level obtained by solving 

convex optimization problem for different 1M md d d∆ = − +  
are shown in Table I. 

Table I The Minimum Guaranteed Cost for Different De-
lay-Varying Magnitude 

1M md d d∆ = − +  Minimum Guaran-
teed Cost γ* 

1 0.5458 

2 0.6653 

3 0.7709 

4 0.8713 

From Table I, we can see that the effect of the delay-
varying magnitude on the attainable the minimum guaran-
teed cost. For the minimum noise attenuation level 

* 0.5458γ = with 1d∆ = (constant delay case) we obtain 
the corresponding parameter-dependent filter (31) given by 

1 2 1 2

1 2 1 2

1 2
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=− − +
                                             (31) 

And for * 0.8713γ = with 4d∆ = , we obtain the corre-
sponding parameter-dependent filter  

1 2 1 2

1 2 1 2

1 2

1 2

1

0.2301-0.2991 0.1022 0.1591-0.2126 0.0286
( ) ,
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ρ ρ ρ

+

=− + +
                         (32) 

Then we analyze the disturbance attenuation level of the 
filtering error system by connecting the two obtained filters 
to the original system respectively. Here we assume ω(k) to 
be (33). 








≤≤−
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6005    ,2
3020    ,2   

)(
e
k
k

kω                             (33) 

Fig.1 presents the simulation curves of estimating the 
signal z(k) by the two filters respectively. We can see that 



 

  

ω(k) drives zF(k) to deviate from z(k). However, when ω(k) 
is zero, the deviation tends to be zero due to the asympto-
tically stability of the filter error system. Now we will fur-
ther analyze the H∞ performance. Fig.2 shows the changing 
curves of the disturbance signal and the filtering error sig-
nal. From (33) and Fig.2, we obtain that 

3808.9)()(
02

== ∑∞

=k
T kk ωωω ,

2 0
( ) ( ) 2.1634T

k
e e k e k∞

=
= =∑ , 

then it can be easily established that 
22

/ 0.2306e ω =  
* 0.8713γ< = , therefore, the H∞ filter (32) can guarantee the 

prescribed noise disturbance attenuation level. 
 

 
 
       

    
 

 
               

 
 

VI. CONCLUDING REMARKS 

In this paper, robust H∞ filters design is proposed for 
LPV discrete-time systems with constant and time-varying 
state delay. The filtering problems have been solved and 

cast into convex optimization problems in terms of PLMIs, 
which can be solved via efficient interior-point algorithms. 

 A numerical example has shown the feasibility applica-
bility of the proposed designs.  
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