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Abstract— In this paper, the problem of identifying the value
of a set of a priori unknown parameters of a discrete-time
dynamic system is faced. To this end, a control law that
minimizes the “information gain” about such parameters is
required. The Shannon entropy is proposed (and justified) as
a suitable information measure. After formulating the general
statement of the problem, a viable approximation consisting in
formulating a receding horizon problem is proposed. When the
measurement channel is linear in the parameters, the optimal
solution of the latter is given involving the minimization of a
(finite dimensional) cost at each step.

I. INTRODUCTION

In recent years, great deal of progresses have been
made in the area of system identification. However, in
the usual approach, the problem consists in estimating the
unknown parameters under a giving control policy. It is
well known that in general the control policy influences the
identification. We pose the following question: What is the
control policy by which the Decision Maker (or Controller)
gains the maximum information? We shall call this problem
Exploration Problem.

In statistics, a similar problem is the Optimal Experiment
Design (OED), where one has to design an experiment in
order to infer about an unknown parameterized system [1],
[2]. Also in machine learning a similar problem arises,
when one can choose the input patterns to optimize an
approximator (Active learning) [3]. In robotics the problem
of environment exploration can be formulated as a particular
case of our general Problem, and it has been studied from
an heuristic point of view [4]. In these last years some
researchers have used information theoretic concepts to
study control problems (see [5], [6]).

In this paper, we formulate the problem in an information
theoretic setting by using the Shannon entropy as a mea-
sure of information about a set of unknown parameters.
As the problem of maximizing the information gain is
almost unsolvable under general hypotheses, we propose a
second formulation which results to be more tractable and
propose a feedback control law that aims at maximizing
the information gain in a receding horizon optimal control
setting. We show that, for a particular class of systems,such
a control law can be obtained solving on-line a sequence of
non-linear constrained minimization problems.

This paper is organized as follows: in Section 2, we
define the entropy and the information concepts and then
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we give some useful properties. In Section 3, we state
the exploration problem using two different but correlated
formulations. In Section 4 we show how the problem can
be reduced, under some hypotheses, to a sequence of non-
linear constrained minimization problems. In Section 5 we
give a geometrical interpretation to the results when a
simple system is considered. Finally experimental results
are presented in Section 6.

II. PROPERTIES OF THE INFORMATION MEASURE

In this section we will give some definitions and prop-
erties of the information measure when the inference is
influenced by using a DM acting on the dynamic system.

Let us consider the following state and measurement
equation:

xt+1 = f(xt, ut, ξt) , t = 0, 1, . . . (1)

yt = h(xt, ηt, θ) , t = 0, 1, . . . (2)

where xt ∈ R
n, yt ∈ R

d, ut ∈ U ⊆ R
m, ξt ∈ R

p, θ ∈ R
k.

We define the information vector as:

It =





It−1

ut−1

yt





I0 = y0 .

Here and in the following of the paper, for any time-
varying vector vt, we denote vt2

t1
=col(vt1 , vt1+1, . . . , vt2).

Let us consider a fixed control law πT−1
0 =

{u0(I0), u1(I1), . . . uT (IT−1)} acting on the system,
the consequent measurement vector yT

0 and a prior
probability density (shortly, from now on, we shall call it
probability) p0(θ). In which way is it possible to quantify
the information on the parameters the DM have gained
with the given informative vector IT ? Two possible choices
of information measure are the Shannon entropy and the
Kullback divergence. The Shannon entropy (or simply
entropy) of a random variable θ is defined as:

H(p(θ)) ,

∫

R
z

p(θ) ln
1

p(θ)
dθ.

The difference between prior and posterior entropies will
be addressed as “information gain”, and is given by:

I(p(θ), IT ) =

∫

R
z

p(θ|IT ) ln p(θ|IT )dθ−

∫

R
z

p(θ) ln p(θ)dθ .



The Kullback divergence between prior and posterior prob-
ability functions is defined as:

D(p(θ|IT )||p(θ)) ,

∫

R
z

p(θ|IT ) ln
p(θ|IT )

p(θ)
dθ.

Since we are interested in the expected value of the infor-
mation gain given the control policy, we can indistinctly
choose one of the above mentioned measures, as stated by
the following theorem:

Theorem 1:

E
yT
0

D(p(θ|IT )||p0(θ)) = E
yT
0

I(p0(θ), IT )

Proof:
By using the Bayes formula:

E
yT
0

I(p0(θ), IT ) =

∫

R
d×(T+1)

p(yT
0 )

∫

R
z

p(θ|IT ) ln p(θ|IT )dθ −

∫

R
z

p(θ) ln p(θ)dθdy
T
0 =

∫

R
d×(T+1)

∫

R
z

p(yT
0 , θ|uT−1

0 ) ln
p(yT

0 |θ, uT−1

0 )p(θ)

p(yT
0 |u

T−1

0 )
dy

T
0

−

∫

R
z

∫

R
d×(T+1)

p(yT
0 |u

T−1

0 )p(θ|yT
0 , u

T−1

0 )dy
T
0 ln p0(θ)dθ

=

∫

R
d×(T+1),Rz

p(yT
0 , θ|uT−1

0 ) ln
p(yT

0 , θ|uT−1

0 )

p(yT
0 |u

T−1

0 )p(θ)
dy

T
0 dθ

Given a sequence of control functions πt+T−1
t ,

{ut(It), ut+1(It+1), . . . ut+T−1(It+T−1)} and a probabil-
ity p(θ|It) we define

Ī(πt+T−1
t , p(θ|It)) , E

y
t+T

t+1

{IT (p(θ|It), It+T )} =

E
y

t+T

t+1

{H(p(θ|It)) − H(p(θ|It+T ))}

to be the expected information gain obtained by applying
the control sequence πt+T−1

t . We give now an important
property:

Proposition 1:

Ī(πt+T−1
t , p(θ|It) ≥ 0

Proof:

This fact can be proved using the fact that K.D. is a
pseudo-metric and then it is always positive see [7]

III. PROBLEM FORMULATIONS

Let us consider the state equation (1) and the measure-
ment equation (2). In the following, we shall state the ex-
ploration problem in a general case. The control objective is
to gain all the information achievable about the parameters,

minimizing a given process cost. A possible, approximate
solution, consists in formulating a second problem in which
the control objective is to maximize the information in
a receding horizon (RH) setting. To fix the ideas let us
consider an explicative example. A DM (e.g. a robot) that
must explore totally the unknown environment in which it
is moving. After choosing the parameterized model of the
environment, the DM must move and gain local information
by means of its sensors. During the process, a cost is
paid (e.g. fuel consumption). For this example the first
formulation correspond to explore totally the environment
minimizing the total cost. Clearly nobody knows what is
the time horizon in which the DM will finish its task. The
second formulation correspond to maximize the information
the DM achieves given the size of the control window. A
constant cost for every time step is considered. Clearly we
can see the second technique as an approximate way to
solve the general problem when we have a constant cost
(minimum time problem). We now give first the general
and then the RH formulation for the exploration Problem.
In next section we shall give the solution to the second
problem for a particular class of systems.

Problem 1: Find an admissible control law
(

πT−1
0

)◦
=

{u◦
0(I0), u

◦
1(I1), . . . , u

◦
T−1(IT−1)} that minimizes the fol-

lowing:

J = E
ξt,ηt,x0,θ

T−1
∑

t=0

g(xt, θ, ut(It), ξt) + gT (xT , θ) (3)

subject to:

xt+1 = f(xt, ut(It), ξt) , t = 0, 1, . . . (4)
yt = h(xt, ηt, θ) , t = 0, 1, . . .

eH(p(θ|IT ) ≤ ε (5)
ut ∈ U

where the time horizon T is a priori unknown and ε is an
arbitrary small constant.

Constraint (5) states that the final probability density
function must belong to the set of functions for which the
exponential of the entropy is under a given arbitrarily small
constant. It is worth noting that the exponential function
is needed because the entropy (if the random variable is
continuous) assumes decreasing (even negative) values with
the “contraction” of the density function.

From now on, we shall concentrate on minimum time
problems, in this case we have g(·, ·, ·, ·) = 1. The general
hypotheses under which Problem 1 has been formulated
make it impossible to solve it exactly. The properties of the
entropy given in the previous section suggest us to renounce
to solve Problem 1 and to reformulate it in a RH form. To
this end, let us consider the following sequence of finite-
horizon cost functions:

J̄t = −Ī(ut+N−1
t , p(θ|It)), t = 0, 1, . . . (6)



where

ut+N−1
t = {ut,t, ut+1,t, . . . , ut+N−1,t}.

We can now formulate the following problem:

Problem 2: Find sequentially, stage after stage, the opti-
mal RH control vectors u∗

t = ūt,t(It), t = 0, 1, . . ., where
ūt+N−1

t = {ūt,t, ūt+1,t, . . . , ūt+N−1,t}, that minimizes the
function J̄t, t = 0, 1, . . ..

Then, when
the system is at stage t, a sequence of N optimal control
vectors minimizing (6) is derived but only the first control
function is used to generate the control vector u∗

t = ūt,t(It).
The same procedure is repeated at stages t + 1, t + 2, . . .
up to infinity. Ī(ut+N−1

t , p(θ|It)) represents the expected
information gain in the control window that starts at t and
finishes at t + N − 1.

IV. PROBLEM SOLUTION

In this section we shall focus on a particular class of
systems, i.e.:

xt+1 = f(xt, ut(It)) , t = 0, 1, . . .

(7)
yt = h(xt)

′θ + ηt , t = 0, 1, . . .

where ηt is an additive Gaussian noise with density
G(0, σ2) and θ is G(θ̄,Σ0) (′ denote the transpose). The
state of the system is perfectly measurable, i.e. the DM,
at every time step, knows perfectly its state but not the
parameters. Then we can state the following:

Theorem 2: For the System (7):

J̄t = −
1

2

N
∑

i=1

ln(1 +
1

σ2
(h(xt+i))

′

Σt+ih(xt+i)) (8)

Where Σt denote the covariance matrix of the Gaussian
density of the parameters updated at time t.
Proof:

Using the linearity of the channel and the Gaussian
assumption we know that:

Σ−1
t+1 = Σ−1

t +
1

σ2
h(xt)h

′(xt)

then:
Ht =

k

2
(1 + 2π) + ln |Σt|

Similarly:

Ht+1 =
k

2
(1 + 2π) + ln |Σt+1| =

k

2
(1 + 2π) − ln |Σ−1

t +
1

σ2
h(xt)h

′(xt)| =

k

2
(1 + 2π) − ln |Σ−1

t |(1 +
1

σ2
h′(xt)Σth(xt))

where we have used the following identity in the scalar
case:

|A + FF ′| = |A||I + F ′A−1F |

then it follows:

Ht − Ht+1 = ln |Σt| + ln |Σ−1
t |(1 +

1

σ2
h′(xt)Σth(xt))

= ln(1 +
1

σ2
h′(xt)Σth(xt)) .

If we consider a control window grater then one step then,
using the additivity of the entropy functional we have:

J̄t = −
1

2

N
∑

i=1

ln(1 +
1

σ2
(h(xt+i))

′

Σt+ih(xt+i)) .

The most informative control u∗
t t = 1, 2, . . . is found

solving the following constrained non linear minimization
problem:

ūt+N−1
t = arg min J̄t , t = 1, 2, . . . (9)

s.t.

ūt+i,t ∈ U , i = 1, 2, . . . , N − 1 , t = 1, 2, . . . .

The control law will take on the following form:

u∗
t = γ(xt,Σt) .

Then, under the given hypotheses, the control law can be
found by using constrained mathematical programming
techniques.

Remark 1 The assumption of linearity of the channel
function respect to the parameters is a strength hypothesis.
In the case of a non-linear channel function belonging to
the class of C1 functions, we can give an approximate
version of (3) through a linearization of the channel
function near the estimate θ̂. This procedure leads to the
following:

I(ut, xt, θ̂) =
1

2
ln(1+

1

σ2
∇

′

h(f(xt, ut), θ̂)Σt∇h(f(xt, ut), θ̂)

Remark 2 The result stated in Theorem 1 has been
obtained for N = 1. If we would want to consider N > 1,
two possibilities arise. The first one consists in carrying
on calculations similar to that in the Proof of Theorem 1.
This would lead to find, at each stage t, a sequence of RH
control vectors ūt+N−1

t corresponding to the solution of the
open loop minimization of J̄t(u

t+N−1
t , p(θ|It)), though the

resulting RH strategy u∗
t = ūt,t would be a feedback one.

At each stage a constrained mathematical programming
problem must be solved. The second possibility consists
in solving exactly Problem 2, thus searching for sequences
of feedback control functions π̄t+N−1

t , t = 0, 1, . . . . At
each stage t, a finite horizon stochastic optimal control
problem would be faced. Solving it exactly (by means
of Dynamic Programming) under general hypotheses is
unfeasible. One could resort to approximate techniques



such as the Extended Ritz Method (see [8]) or the Neuro
Dynamic Programming approach (see [9]).

In the particular case of parameters identification problem
where the space of the variables are finite and discrete,
we are able to calculate the information gain in a straight-
forward way, because it reduces simply to a summation.
As an example, let us consider the problem of exploring
a two-dimensional environment by a DM or a team of
DMs. The mapping problem consists in constructing a
map of the ground by identifying its obstacle-free parts
and the parts occupied by obstacles. In order to model
the environment, one could choose a discrete formalization
dividing the ground into regular squares or cells. In [10]
and [11], simulation results show that the approach has been
successful.

V. A SIMPLE GEOMETRICAL INTERPRETATION

In this section we show some geometrical interpretations
of the results shown in the previous section. For the sake of
clarity we consider a very simple system and measurement
equation and set N = 1. Let the system be:

xt+1 = ut , t = 0, 1, . . .

yt = x′
tθ + ηt , t = 0, 1, . . .

s.t.
||ut|| ≤ δ

Accordingly with our results, the control objective is to to
solve at every control step the following:

u◦
t = arg max(h(xt+1))

′Σt+1h(xt+1)

or equivalently

u◦
t = arg max ||ut||Σt+1

(10)

As Σt+1 is a positive definite matrix, the vector ut which
satisfies (10) will have maximum norm ||ut|| = δ. Moreover
the direction of ut will be the direction of the eigen-vector
associated to the maximum eigen-value of the matrix Σt+1.
Observing the recursion equation relative to the covariance
matrix we see that this choice causes a reduction of the
maximum eigen-value, and then contracts a the ellipsoid
associated to Σt+2. Then the most informative control,
causes a contraction of the posterior density function, and
reduces the uncertainty about the parameters.

VI. EXPERIMENTAL RESULTS

Let us consider the mass-spring system:

mẍ = Fx − kx − ωẋ

The associated state form is:

ẋ =

[

0 1
− k

m
− ω

m

]

x +

[

0
1
m

]

u (11)

We have considered the discrete time version of (11) with
a sample time Ts = 0.1 . Let us consider the following
measurement equation:

yt = [cN(α1, γ1), cN(α2, γ2), . . . , cN(αm, γm)]′θ + η

where

N(αi, γi) =
1

√

2πγ2
i

e
1

γ2
i

(x1−αi)
2

.

The system represents a controlled mass-spring system
with a sensor giving information about an object with an
increasing precision (high signal-noise ratio) with the align-
ment of the mass with the object (see Fig. 1). The control
purpose is to gain the maximum amount of information in a
receding horizon setting about the objects (rapresented with
4 unknown parameters). Figures 2, 3, 4 show the position
of the system, the control and the increasing information
gain respectively, setting N = 5, m = 1, k = 1, ω =
1, α1 = 5, α2 = 2, α3 = −5, α2 = −2, γ1 = γ2 = γ3 =
γ4 = 4, σ = 1, c = 10. We have compared our results
with the information achieved with several sinusoidal input
signals (the structure of the problem suggest the function
form to be near to the optimal), in Fig. 4 we have compared
the maximum informative input sinusoidal signal with the
control sequence according to our approach.

ω

k

m

Fig. 1. Mass-spring system
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Fig. 2. Evolution of the position of the mass
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Fig. 4. Information gain comparison

VII. CONCLUSIONS

The problem of identifying a set of a priori unknown
parameters for discrete time dynamic systems has been
faced. To quantify the information gain the Shannon entropy
has been proposed, motivated by some of its properties.
The identification problem has been formulated in a gen-
eral setting, where a closed-loop strategy is searched that
minimizes a process cost while leading to a “sufficiently
large” information gain. The general problem has then been
approximated by a receding horizon one, which result to be
numerically tractable. In the case when the measurement
channel is linear in the parameters, the optimal solution
is given involving on-line mathematical programming. The
same procedure can be applied in the non linear case as
an approximate solution. Numerical results will be given
in the final version of the paper in the case of a linear
measurement channel as well as in the nonlinear case.

REFERENCES

[1] V. V. Fedorov, Theory of optimal experiments. Academic Press,
1972.

[2] Z. Ghahramani, D. A. Cohn, and M. I. Jordan, “Active learning with
statistical models,” J. of Artificial Intelligence Research, vol. 4, pp.
129–145, 1996.

[3] D. MacKay, “Information-based objective functions for active data
selection,” Neural Computation, vol. 4, pp. 590–604, 1992.

[4] B. Yamauchi, “A frontier based approach for autonomous explo-
ration,” in IEEE International Symposium on Computational Intel-
ligence in Robotics and Automation, Monterey, CA, 1997, pp. 146–
151.

[5] G. N. Saridis, “Entropy formulation of optimal and adaptive control,”
IEEE Trans. Automatic Control, vol. 33, pp. 713–721, 1988.

[6] K. A. Loparo, X. Feng, and Y. Fang, “Optimal state estimation for
stochastic systems: an information theoretic approach,” IEEE Trans.
Automatic Control, vol. 42, pp. 771–785, 1997.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Wiley, 1991.

[8] R. Zoppoli, M. Sanguineti, and T. Parisini, “Approximating networks
and the extended ritz method for the solution of functional optimiza-
tion problems,” Journal of Optimization Theory and Applications,
vol. 112, pp. 403–439, 2002.

[9] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[10] M. Baglietto, M. Paolucci, L. Scardovi, and R. Zoppoli, “Information
based multi-agent exploration,” in IEEE Third International Work-
shop on Robot Motion and Control, Bukowy Dworek, Poland, 2002,
pp. 173–179.

[11] ——, “Entropy-based environment exploration and stochastic opti-
mal control,” in 42nd IEEE Conference on Decision and Control,
Maui, Hawaii, 2003, pp. 2938–2941.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP17.6
	Page0: 3826
	Page1: 3827
	Page2: 3828
	Page3: 3829
	Page4: 3830


