Proceeding of the 2004 American Control Conference ThP13.5
Boston, Massachusetts June 30 - July 2, 2004

Feedback Stabilization of Nonlinear Stochastic Time-Delay
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Abstract—This paper mainly treats with the feedback sta- I identity matrix.
bilization of nonlinear stochastic time-delay systems with state C9({t > 0} x U): class of functionsV (t,z) twice
and control-dependent noise, some locally/globally robustly continuously differential with respect to € U and once

stabilizable conditions are correspondingly given independent . . . .
of delay length. Several previous consequences are extended tocontinuously differential with respect to> 0, except pos-

more general systems with both state and control-dependent Sibly at the pointr = 0.
noise. Consider the following stochastic controlled system gov-

erned by an & differential equation
I. INTRODUCTION

The stabilizability of linear stochastic control systems du(t) = f(@(t), u(®)dt + o(2(t), u(®))dw(t) (1)
governed by B differential equations has been investi-in the above;z(t) € R" is called the system state(t) ¢
gated by many authors, see [7], [8], [10] and the referR™ the control input, andw(t) is the standard Wiener
ences therein. In recent years, the stabilization of nonlineprocess defined on the probability spage, F,P), with
stochastic systems has also become a popular topic angkural filter 7, generated byw(-) up to timet. Without
attracted a great deal of attentions, see [4]-[6].etc.. Thisss of generality, we can suppog€t) is one-dimensional.
paper is on robust stabalization of nonlinear stochastigsssumeu(t) is an adapted and measurable process with
systems with uncertain time-delay. So far, most work relate@spect toF;, f(0,u) = 0,0(0,u) = 0, i.e., z = 0 is
to such problems are focused on the deterministic timemn equilibrium point of (1). Under very general conditions
delay systems, there are only a few authors treating withh f , o and u(t), stochastic controlled system (1) has a
the stability and stabilization of the nonlinear stochasti@inique strong solution ¢ (¢) for anyt > s > 0, and initial
delay systems ( [1], [2], [13], [14], etc.), especially, mosistatex(s) = & € R™ [3]. We first introduce the following
of the criteria given are based on matrix norm , matrixiefinition:
measure operation or ARE, which makes these results moreDefinition 1. We say that system (1) is locally asymp-
conservative and inconvenient to be used in some casestotically stabilizable via linear state feedback u(t)=Kx(t), if

Based on [11], in this paper, we mainly use lineathe trivial solutionz = 0 of the closed-loop system
matrix inequality (LMI)-based approach to treat with the
stabilization of more general nonlinear stochastic systems da(t) = f(x(t), Ke(t))dt + o(z(t), Kz(t))dw(t)  (2)
with both state and control-dependent noise, which makes 5symptotically stable in probability(see, e.g.,[6]), i.e., for
our results more applicable and less conservative. In Sectl%ys >0ande> 0
II, some preliminary work is presented; Section Il is on o
the robust stabilization of nonlinear stochastic time-delay lim P(sup [|[zs¢(t)|| >€) =0 (3
systems, some useful criteria are presented in terms of LMIs §70 itz
independent of the length of delay; Section IV concludeand

this note by some remarks. éh_r% P(tlirgo zs¢(t) =0)=1 4
Il. PROBLEM SETTING where K is a suitable dimensional constant matrix. In
For convenience, we adopt the following notations: ~ addition, if the solutionz = 0 of the closed-loop system
S,: the set of all reah x n symmetric matrices; (2) is asymptotically stable in the large (see, e.g.,[6]), i.e.,
A’ : the transpose of the corresponding mattix if (3) and
A > 0(A > 0): positive semidefinite (positive definite) P(lim z,6(t) = 0) =1 (5)
matrix A;

hold, then we say that (1) is globally asymptotically stabi-
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satisfying is asymptotically stable in probability for ak > 0. It is

oV (t,z) y oV (t,x) called globally robustly stabilizable, if (10) is robustly stable
LV (t,z) = 5 T (@ Ka)—— [1], i.e., the equilibrium point of (10) is asymptotically
1, 2V (t, ) stable in the large for alt > 0.
T30 (z(), Kx(t))wa(f(t)a Kz(t)) A very general theorem is as follows.
<0 Theorem 1.If the following matrix inequality
for 2 # 0, thenz(t) = 0 of system (2) is asymptotically {P(A+B1K)+ (A+ B1K)P+Q
stable in probability. Furthermore, ¥ (¢, z) also admits the ~ Z := | +(C + D1 K)'P(C + D1K)}
following property B'P+ D'P(C+ D1K)
inf V(t,2) — 00,as |z|| — o0 @) PB+(C+ DiK)'PD
t>0 <0 (11)
andU is replaced by the total spad®™, thenx(t) = 0 of D'PD - Q

system (2) is asymptotically stable in the large. Whéris

1 mXn
so- called the infinitesimal generator of (2). has solutions? > 0,Q > 0 and K € R . and

Now, we suppose that the linear parts pfz,«) and lim sup [|H;(z,y, Kz)||/|«] =0,i=0,1, (12
o(z,u) can be separated out as follows: lzll—0yer
f(z,u) = Az + Bu + Ho(z,u), Hy(0,u) = 0, then system (9) can be locally robustly stabilizedugy) =
Kax(t).

o(z,u) = Cz + Du+ Hi(z,u), H1(0,u) =0 To prove Theorem 1, we construct the Lyapunov-
then the nonlinear stochastic system (1) can be rewritten Esasovskii functional ([9]) as follows:

dr = (Az+ Bu+ Hy(z,u))dt + (Cx + Du+ H; (x,u))dw o T, DOt — 5 ds
) V(t,z) —x(t)Pm(t)—i-/O z'(t—s)Qx(t —s)d

whereA, B, C and D are constant matrices. Below, we will where P > 0 andQ > 0 are the solutions of (11). Letting

discuss the stabilization of system (8). L, be the infinitesimal generator of the closed-loop system
I1l. FEEDBACK STABILIZATION OF (10), whereK is a solution to (11), then we have
STOCHASTIC TIME-DELAY SYSTEMS

In this section, we investigate the robust stabilization ogl (t,z(t)) = ((C+DiK)x(t) + Da(t — 7/')
the following stochastic time-delay system governed By It +H (2(t), 2t - 7), Ka(1)))' P
differential equations of the form ((C+ Di1K)x(t) + Da(t — )
dz(t) = (Az(t) + Ba(t — 7) + Byu(t) +Hy (2(t), z(t — 7), Kz(1))
+2 < (A+ B K)a(t) + Ba(t — 1)
R Ho(o(t), 2(t - 7). Ka (1)), Pa(t) >
+ Hy(2(t), 2t — 1), ult)))dw +a'(H)Qa(t) — 2'(t — T)Qua(t —7)
z(t) = ¢(t) € L*(Q, Fo, C([-7,0],R™)), t € [-,0] (13)

whereA, B, B;C, D and D are constant matrices,> 0 is Rearranging (13) yields

an uncertain time delay; (0, -,-) = 0,7 = 0, 1. Under very L1V (t,z2(t)) = 2/ (t)(P(A+ B K)
mild condltlpns onH, (-, -)., i =0,1, (9) exists a unique A+ B K)P

global solution [13]. We will prove that, for some special
cases of the above system, robust stability and stabilization +Q+(C+ DiK)'P(C + D1 K))z(t)

can be given via LMIs, which is very efficient for practical +22/(t)(PB + (C + D1K)'PD)x(t — 7)
compfutation. A delay dif I +2'(t —7)(D'PD — Q)z(t — 7)
Definition 2. Stochastic time delay differential system ' _
(9) is called locally robustly stabilizable if there exists a +2H?(m(t)’x(t 7), Ka(t) Pa(t)
constant state feedback control lawt) = wu(z(t)) = +2H, (z(t),z(t — ), Kz(t))PDz(t — T)
Kax(t), such that the equilibrium point of the closed-loop +2H; (x(t),z(t — 1), Kz(t))P(C + D1 K)x(t)
system +Hi(2(t),x(t — 7), Kz(t)) PH1(:, -, )
do(t) = ((A+ B1K)z(t) + Ba(t — 7) B zt) 1", =@
+ Ho(a(t) 2(t — ), Kr(1)))dt ol A I
+ ((C + DlK)l‘(t) + DZ(J(t - 7') +2H6($(t),.’17(t _ T),Kl‘(t))Pw
+ Hi(z(t), z(t — 7), Kz(t)))dw oH! — ). Kz(t))P(C + D1 K)x
2(t) = 6(t) € LX(Q, Fo, C([=7, 0, R"), t € [~7,0) +2H{a(t), o(b = 7), Kal6) P(C + Dy K)a(?)
(20) +2H (z(t), x(t — 7), Kx(t))PDz(t — 7)
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+H{(:C(t)v‘l'(t - T)v K*x(t))PHl(v ) )
(14)

Then by (11),Z < 0, so

(& (1), (t 7)) Z { 40

2
Y] < A @)
Hz(t - 1)]?)
(15)
In addition, by (12), for any > 0, there exists) > 0, such
that when||z|| < 4,

[Ho(z,y, K2)|| < ellz[], [Hi(z,y, Kz)|| < €|lz[|,Vy € R"
Hence

2H{(z(t),z(t — ), Kz(t)) Px(t)
+2H (z(t), z(t — 1), Kx(t
+2H 1 (z(t),z(t — 7), Kx(t
+H{(,,)PH1(77)
2¢[CII - |IP] - ll=(t) |
+2€[| D[ - ([P - l@)]] - [t — )l
+E[| Pl |z (@)l + 2€] Pl - |z (t)]1)

IN

(16)
By inequality |ab| < 1(a? + b?), from (16) follows

2H{(z(t),z(t — 7), Kz(t)) Pz

+2H, (z(t),z(t — 7), Kz(t)) PCx(t)
+2H (x(t), z(t — 7), Kx(t))PDx(t — T)
+H{(, . )PH1(7 . )

(26| Cll + €l DIl + 2¢ + )| PI| - [|lx(t) |

+e|[ DIIPI - a(t = 1)l
1
< = 5Amar (@) (2] + [t = )]

if we take e sufficiently small, such that

IN

7

)\mam(Z)

max(2¢[|C|| + e[| D|| + 2¢ + €%, €] D) < — =T
2||P]

then from (15) together with (17) follows
1
LIV (1) < 5Amar(2) (|21 + ot = 7)) < 0
That is, £,V (t,z(t)) < 0 in the domain{t > 0} x U :=

{t > 0} x {z: ||z|| < §} for = # 0. In addition, note that
V(t,z) can be written as

V(t,z(t)) = o' (t)Px(t) + /ti 2’ (s)Qx(s) ds

hence, in the domaifit > 0} x U, (6) holds. This ends the
proof of Theorem 1.

However, since (11) is not an LMI on variabld3 @
and K, it is not convenient to use Theorem 1 in practice.
However, from Theorem 1, we can derive some useful
results, which can be expressed in terms of LMIs.

Corollary 1. Under the conditions of Theorem 1,if; =
0, i = 0,1, then the linear stochastic time-delay system

dx(t) = (Ax(t) + Bx(t — ) + Byu(t))dt
+(Cxz(t) + Dz(t — 7) + Dyu(t))dw (18)

is globally robustly stabilizable. Especially, I = 0, and
the following LMI

AP + PA' + B,Y +Y'B}, + BQB’

CP+ DY
P
PC'+Y'D, P
P o0|<o0 (19)
0 —Q

admits solutions? > 0,Q > 0 andY € R™*", then
dx = (Az + Bz(t — 7) + Biu)dt + (Cx + Diu)dw (20)

is globally robustly stabilizable. In this case, the stabilizing
feedback control lawi(t) = Kx(t) = Y P~ 1x(t).

Proof. If Hy(-,-,-) = 0,Hi(--) = 0, then
LV (t,z(t)) < 0 for (t,z) € {t > 0} x R™, except
possibly atz = 0, and (7) clearly holds. Thus, the first
part of Corollary 1 is proved.

Furthermore, ifD = 0, (11) degenerates into

{P(A+ BiK)+ (A+ BiKYP+Q PB

+(C + D1K)' P(C + D1 K)}
B'P —Q

<0

(21)
which by Schur's complement is equivalent to

P(A+BK) + (A+BK)P+PBQ 'BP+Q
+(C + D1K) P(C + D1K) <0
(22)

Then pre- and postmultiplying (21) by !, we have
(A+ BBK)P™' + P Y(A+ BiK)' + BQ™'B' + P!
(C+DK)P(C+DK)P'+P'QP~ ' <0 (23)

SettingP? := P~1Y = KP~! = KP, andQ := Q%;
again, by Schur’'s complement, (23) is equivalent to (19).
Thus the second part of Corollary 1 is also proved.
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WhenD = D, = Hy = H; = 0, the analogous problem

IV. CONCLUSIONS

to Corollary 1 is also considered by [5] via delay feedback, |n the above sections, we have discussed the static state-
where the main result is expressed by means of a algebrgitghack stabilization of nonlinear stochastic systems with

Riccati-type equation.

state and control-dependent noise. Theorem 1 is on the

The following result is an immediate corollary of Theo-|ocally robust stabilization of nonlinear stochastic time-

rem 1.
Corollary 2. The unforced system

delay systems, from which we derive some useful results for
globally robust stabilization (stability) of the corresponding

linearizable systems. All consequences except Theorem 1

de(t) = (Az(t)+ Bx(t—7))dt can be expressed in terms of LMIs, which makes them more
+(Cx(t) + Dax(t — 7))dw (24) practically applicable [7].
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