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Abstract— This paper mainly treats with the feedback sta-
bilization of nonlinear stochastic time-delay systems with state
and control-dependent noise, some locally/globally robustly
stabilizable conditions are correspondingly given independent
of delay length. Several previous consequences are extended to
more general systems with both state and control-dependent
noise.

I. INTRODUCTION

The stabilizability of linear stochastic control systems
governed by It̂o differential equations has been investi-
gated by many authors, see [7], [8], [10] and the refer-
ences therein. In recent years, the stabilization of nonlinear
stochastic systems has also become a popular topic and
attracted a great deal of attentions, see [4]-[6],etc.. This
paper is on robust stabalization of nonlinear stochastic
systems with uncertain time-delay. So far, most work related
to such problems are focused on the deterministic time-
delay systems, there are only a few authors treating with
the stability and stabilization of the nonlinear stochastic
delay systems ( [1], [2], [13], [14], etc.), especially, most
of the criteria given are based on matrix norm , matrix
measure operation or ARE, which makes these results more
conservative and inconvenient to be used in some cases.

Based on [11], in this paper, we mainly use linear
matrix inequality (LMI)-based approach to treat with the
stabilization of more general nonlinear stochastic systems
with both state and control-dependent noise, which makes
our results more applicable and less conservative. In Section
II, some preliminary work is presented; Section III is on
the robust stabilization of nonlinear stochastic time-delay
systems, some useful criteria are presented in terms of LMIs
independent of the length of delay; Section IV concludes
this note by some remarks.

II. PROBLEM SETTING

For convenience, we adopt the following notations:
Sn: the set of all realn× n symmetric matrices;
A′ : the transpose of the corresponding matrixA;
A ≥ 0(A > 0): positive semidefinite (positive definite)

matrix A;
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I: identity matrix.
C0

2 ({t > 0} × U): class of functionsV (t, x) twice
continuously differential with respect tox ∈ U and once
continuously differential with respect tot > 0, except pos-
sibly at the pointx = 0.

Consider the following stochastic controlled system gov-
erned by an It̂o differential equation

dx(t) = f(x(t), u(t))dt + σ(x(t), u(t))dw(t) (1)

In the above,x(t) ∈ Rn is called the system state,u(t) ∈
Rm the control input, andw(t) is the standard Wiener
process defined on the probability space(Ω,F ,P), with
natural filterFt generated byw(·) up to time t. Without
loss of generality, we can supposew(t) is one-dimensional.
Assumeu(t) is an adapted and measurable process with
respect toFt, f(0, u) ≡ 0, σ(0, u) ≡ 0, i.e., x ≡ 0 is
an equilibrium point of (1). Under very general conditions
on f , σ and u(t), stochastic controlled system (1) has a
unique strong solutionxs,ξ(t) for any t ≥ s ≥ 0, and initial
statex(s) = ξ ∈ Rn [3]. We first introduce the following
definition:

Definition 1. We say that system (1) is locally asymp-
totically stabilizable via linear state feedback u(t)=Kx(t), if
the trivial solutionx ≡ 0 of the closed-loop system

dx(t) = f(x(t),Kx(t))dt + σ(x(t),Kx(t))dw(t) (2)

is asymptotically stable in probability(see, e.g.,[6]), i.e., for
any s ≥ 0 andε > 0

lim
ξ→0

P(sup
t≥s

‖xs,ξ(t)‖ > ε) = 0 (3)

and
lim
ξ→0

P( lim
t→∞

xs,ξ(t) = 0) = 1 (4)

where K is a suitable dimensional constant matrix. In
addition, if the solutionx ≡ 0 of the closed-loop system
(2) is asymptotically stable in the large (see, e.g.,[6]), i.e.,
if (3) and

P( lim
t→∞

xs,ξ(t) = 0) = 1 (5)

hold, then we say that (1) is globally asymptotically stabi-
lizable via linear state feedback u(t)=Kx(t).

Remark 1. It is well known [6] that if there exists
a neighborhoodU of the origin, a Lyapunov function
V (t, x) ∈ C0

2 ({t > 0} × U), V (t, x) > 0 in domain
{t > 0} × U , which has infinitesimal upper limit, i.e.,

lim
x→0

sup
t>0

V (t, x) = 0 (6)



satisfying

LV (t, x) =
∂V (t, x)

∂t
+ f ′(x,Kx)

∂V (t, x)
∂x

+
1
2
σ′(x(t),Kx(t))

∂2V (t, x)
∂x2

σ(x(t),Kx(t))

< 0

for x 6= 0, then x(t) ≡ 0 of system (2) is asymptotically
stable in probability. Furthermore, ifV (t, x) also admits the
following property

inf
t>0

V (t, x) →∞, as ‖x‖ → ∞ (7)

andU is replaced by the total spaceRn, thenx(t) ≡ 0 of
system (2) is asymptotically stable in the large. WhereL is
so- called the infinitesimal generator of (2).

Now, we suppose that the linear parts off(x, u) and
σ(x, u) can be separated out as follows:

f(x, u) = Ax + Bu + H0(x, u),H0(0, u) ≡ 0,

σ(x, u) = Cx + Du + H1(x, u),H1(0, u) ≡ 0

then the nonlinear stochastic system (1) can be rewritten as

dx = (Ax+Bu+H0(x, u))dt+(Cx+Du+H1(x, u))dw
(8)

whereA,B,C andD are constant matrices. Below, we will
discuss the stabilization of system (8).

III. FEEDBACK STABILIZATION OF
STOCHASTIC TIME-DELAY SYSTEMS

In this section, we investigate the robust stabilization of
the following stochastic time-delay system governed by Itô
differential equations of the form

dx(t) = (Ax(t) + Bx(t− τ) + B1u(t)

+ H0(x(t), x(t− τ), u(t)))dt
+ (Cx(t) + Dx(t− τ) + D1u(t)
+ H1(x(t), x(t− τ), u(t)))dw

x(t) = φ(t) ∈ L2(Ω,F0, C([−τ, 0],Rn)), t ∈ [−τ, 0]
(9)

whereA,B, B1C,D andD1 are constant matrices,τ > 0 is
an uncertain time delay,Hi(0, ·, ·) ≡ 0, i = 0, 1. Under very
mild conditions onHi(·, ·, ·), i = 0, 1, (9) exists a unique
global solution [13]. We will prove that, for some special
cases of the above system, robust stability and stabilization
can be given via LMIs, which is very efficient for practical
computation.

Definition 2. Stochastic time delay differential system
(9) is called locally robustly stabilizable if there exists a
constant state feedback control lawu(t) = u(x(t)) =
Kx(t), such that the equilibrium point of the closed-loop
system

dx(t) = ((A + B1K)x(t) + Bx(t− τ)
+ H0(x(t), x(t− τ),Kx(t)))dt
+ ((C + D1K)x(t) + Dx(t− τ)
+ H1(x(t), x(t− τ),Kx(t)))dw

x(t) = φ(t) ∈ L2(Ω,F0, C([−τ, 0],Rn)), t ∈ [−τ, 0]
(10)

is asymptotically stable in probability for allτ ≥ 0. It is
called globally robustly stabilizable, if (10) is robustly stable
[1], i.e., the equilibrium point of (10) is asymptotically
stable in the large for allτ ≥ 0.

A very general theorem is as follows.
Theorem 1. If the following matrix inequality

Z :=

 {P (A + B1K) + (A + B1K)′P + Q
+(C + D1K)′P (C + D1K)}
B′P + D′P (C + D1K)

PB + (C + D1K)′PD

D′PD −Q

 < 0 (11)

has solutionsP > 0, Q > 0 andK ∈ Rm×n, and

lim
‖x‖→0

sup
y∈Rn

‖Hi(x, y, Kx)‖/‖x‖ = 0, i = 0, 1, (12)

then system (9) can be locally robustly stabilized byu(t) =
Kx(t).

To prove Theorem 1, we construct the Lyapunov-
Krasovskii functional ([9]) as follows:

V (t, x) = x′(t)Px(t) +
∫ τ

0

x′(t− s)Qx(t− s) ds

whereP > 0 andQ > 0 are the solutions of (11). Letting
L1 be the infinitesimal generator of the closed-loop system
(10), whereK is a solution to (11), then we have

L1V (t, x(t)) = ((C + D1K)x(t) + Dx(t− τ)
+H1(x(t), x(t− τ),Kx(t)))′P
·((C + D1K)x(t) + Dx(t− τ)
+H1(x(t), x(t− τ),Kx(t))
+2 < (A + B1K)x(t) + Bx(t− τ)
+H0(x(t), x(t− τ),Kx(t)), Px(t) >

+x′(t)Qx(t)− x′(t− τ)Qx(t− τ)
(13)

Rearranging (13) yields

L1V (t, x(t)) = x′(t)(P (A + B1K)
+(A + B1K)′P
+Q + (C + D1K)′P (C + D1K))x(t)
+2x′(t)(PB + (C + D1K)′PD)x(t− τ)
+x′(t− τ)(D′PD −Q)x(t− τ)
+2H ′

0(x(t), x(t− τ),Kx(t))Px(t)
+2H ′

1(x(t), x(t− τ),Kx(t))PDx(t− τ)
+2H ′

1(x(t), x(t− τ),Kx(t))P (C + D1K)x(t)
+H ′

1(x(t), x(t− τ),Kx(t))PH1(·, ·, ·)

=
[

x(t)
x(t− τ)

]′
Z

[
x(t)

x(t− τ)

]
+2H ′

0(x(t), x(t− τ),Kx(t))Px

+2H ′
1(x(t), x(t− τ),Kx(t))P (C + D1K)x(t)

+2H ′
1(x(t), x(t− τ),Kx(t))PDx(t− τ)



+H ′
1(x(t), x(t− τ),Kx(t))PH1(·, ·, ·)

(14)

Then by (11),Z < 0, so

(x′(t), x′(t− τ))Z
[

x(t)
x(t− τ)

]
≤ λmax(Z)(‖x(t)‖2

+‖x(t− τ)‖2)
(15)

In addition, by (12), for anyε > 0, there existsδ > 0, such
that when‖x‖ < δ,

‖H0(x, y, Kx)‖ ≤ ε‖x‖, ‖H1(x, y,Kx)‖ ≤ ε‖x‖,∀y ∈ Rn

Hence

2H ′
0(x(t), x(t− τ),Kx(t))Px(t)

+2H ′
1(x(t), x(t− τ),Kx(t))PCx(t)

+2H ′
1(x(t), x(t− τ),Kx(t))PDx(t− τ)

+H ′
1(·, ·, ·)PH1(·, ·, ·)

≤ 2ε‖C‖ · ‖P‖ · ‖x(t)‖2

+2ε‖D‖ · ‖P‖ · ‖x(t)‖ · ‖x(t− τ)‖
+ε2‖P‖ · ‖x(t)‖2 + 2ε‖P‖ · ‖x(t)‖2) (16)

By inequality |ab| ≤ 1
2 (a2 + b2), from (16) follows

2H ′
0(x(t), x(t− τ),Kx(t))Px

+2H ′
1(x(t), x(t− τ),Kx(t))PCx(t)

+2H ′
1(x(t), x(t− τ),Kx(t))PDx(t− τ)

+H ′
1(·, ·, ·)PH1(·, ·, ·)

≤ (2ε‖C‖+ ε‖D‖+ 2ε + ε2)‖P‖ · ‖x(t)‖2

+ε‖D‖‖P‖ · ‖x(t− τ)‖2

≤ −1
2
λmax(Z)(‖x‖2 + ‖x(t− τ)‖2 (17)

if we take ε sufficiently small, such that

max(2ε‖C‖+ ε‖D‖+ 2ε + ε2, ε‖D‖) ≤ −λmax(Z)
2‖P‖

then from (15) together with (17) follows

L1V (t, x(t)) ≤ 1
2
λmax(Z)(‖x(t)‖2 + ‖x(t− τ)‖2) < 0

That is,L1V (t, x(t)) < 0 in the domain{t > 0} × U :=
{t > 0} × {x : ‖x‖ < δ} for x 6= 0. In addition, note that
V (t, x) can be written as

V (t, x(t)) = x′(t)Px(t) +
∫ t

t−τ

x′(s)Qx(s) ds

hence, in the domain{t > 0}×U , (6) holds. This ends the
proof of Theorem 1.

However, since (11) is not an LMI on variablesP,Q
and K, it is not convenient to use Theorem 1 in practice.
However, from Theorem 1, we can derive some useful
results, which can be expressed in terms of LMIs.

Corollary 1. Under the conditions of Theorem 1, ifHi ≡
0, i = 0, 1, then the linear stochastic time-delay system

dx(t) = (Ax(t) + Bx(t− τ) + B1u(t))dt

+(Cx(t) + Dx(t− τ) + D1u(t))dw (18)

is globally robustly stabilizable. Especially, ifD = 0, and
the following LMI AP̂ + P̂A′ + B1Y + Y ′B′1 + BQ̂B′

CP̂ + D1Y

P̂

P̂C ′ + Y ′D′
1 P̂

−P̂ 0
0 −Q̂

 < 0 (19)

admits solutionsP̂ > 0, Q̂ > 0 andY ∈ Rm×n, then

dx = (Ax + Bx(t− τ) + B1u)dt + (Cx + D1u)dw (20)

is globally robustly stabilizable. In this case, the stabilizing
feedback control lawu(t) = Kx(t) = Y P̂−1x(t).

Proof. If H0(·, ·, ·) ≡ 0,H1(·, ·, ·) ≡ 0, then
L1V (t, x(t)) < 0 for (t, x) ∈ {t > 0} × Rn, except
possibly atx = 0, and (7) clearly holds. Thus, the first
part of Corollary 1 is proved.

Furthermore, ifD = 0, (11) degenerates into {P (A + B1K) + (A + B1K)′P + Q PB
+(C + D1K)′P (C + D1K)}

B′P −Q

 < 0

(21)
which by Schur’s complement is equivalent to

P (A + B1K) + (A + B1K)′P + PBQ−1B′P + Q

+(C + D1K)′P (C + D1K) < 0
(22)

Then pre- and postmultiplying (21) byP−1, we have

(A + B1K)P−1 + P−1(A + B1K)′ + BQ−1B′ + P−1

·(C + D1K)′P (C + D1K)P−1 + P−1QP−1 < 0 (23)

Setting P̂ := P−1, Y =: KP−1 = KP̂ , and Q̂ := Q−1;
again, by Schur’s complement, (23) is equivalent to (19).
Thus the second part of Corollary 1 is also proved.



WhenD = D1 = H0 = H1 ≡ 0, the analogous problem
to Corollary 1 is also considered by [5] via delay feedback,
where the main result is expressed by means of a algebraic
Riccati-type equation.

The following result is an immediate corollary of Theo-
rem 1.

Corollary 2. The unforced system

dx(t) = (Ax(t) + Bx(t− τ))dt

+(Cx(t) + Dx(t− τ))dw (24)

is robustly stable, if the following LMI[
PA + A′P + C ′PC + Q PB + C ′PD

B′P + D′PC D′PD −Q

]
< 0 (25)

has solutionsP > 0, Q > 0.
Another description for robust stability of (24) was given

in [1] via the existence of positive solutions of the algebraic
Riccati-type equation

PA + A′P + W + C ′PC + D′PD

+(PB + C ′PD)W−1(PB + C ′PD) + R

= 0 (26)

One can easily show that Corollary 2 is equivalent to (i) of
Theorem 1 in [1].

Corollary 3. The stochastic linear time-delay system

dx(t) = (Ax(t) + Bx(t− τ) + B1u(t))dt

+(Cx(t) + Dx(t− τ))dw (27)

is globally robustly stabilizable, if the following LMI PA + A′P + C ′PC + Q
√

2PB1 PB + C ′PD√
2B′1P −Q 0

B′P + D′PC 0 D′PD −Q


< 0 (28)

admits solutionsP > 0 and Q > 0. Moreover, the
stabilizing feedback control lawu(t) = Q−1B′1Px(t).

Proof. Applying Theorem 1, this corollary is easily
obtained.

Remark 2. All results obtained in this section can be
extended without difficulty to systems with multiple delays
and independent stochastic perturbations .

IV. CONCLUSIONS

In the above sections, we have discussed the static state-
feedback stabilization of nonlinear stochastic systems with
state and control-dependent noise. Theorem 1 is on the
locally robust stabilization of nonlinear stochastic time-
delay systems, from which we derive some useful results for
globally robust stabilization (stability) of the corresponding
linearizable systems. All consequences except Theorem 1
can be expressed in terms of LMIs, which makes them more
practically applicable [7].

V. ACKNOWLEDGMENTS

The authors gratefully acknowledge the reviewers’ com-
ments.

REFERENCES

[1] E.I.Verriest and P. Florchinger, Stability of stochastic systems with
uncertain time delays,Systems and Control Lett.,vol. 24, 1995, pp
41-47.

[2] E.I.Verriest and M.K.H. Fan, “Robust Stability of Nonlinearly Per-
turbed Delay Systems”,in 35th IEEE Conference on Decision and
Control, Kobe, Japan , 1996, pp. 2090-2091.

[3] L. Arnold, Stochastic differential equations: Theory and applications,
Wiley, New York; 1974.

[4] P. Florchinger, Feedback stabilization of affine in the control stochas-
tic differential systems by the control Lyapunov function method,
SIAM J.Contr.Optim.,vol. 35, 1997, pp 500-511.

[5] P. Florchinger and E. I. Verriest, “Stabilization of nonlinear stochastic
systems with delay feedback”,in 32nd IEEE Conference on Decision
and Control, San Antonio, TX, WM-12, 1993.

[6] R.Z. Has’minskii, Stochastic Stability of Differential Equations,
Sijthoff and Noordhoff, Alphen a/d Rijn; 1980.

[7] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan,Linear matrix
inequalities in system and control theory, SIAM, Philadelphia, PA:
1994.

[8] U. G. Haussmann, Stability of linear systems with control dependent
noise,SIAM J. Contr.,vol. 11, 1973, pp.382-394.

[9] V.Kolmanovskii and A.Myshkis,Applied Theory of Functional Dif-
ferential Equations,Kluwer Academic Publishers, Dordrecht; 1992.

[10] W. Zhang, A note on the stabilizability of the stochastic systems”,
Chinese Journal of Engineering Mathematics,vol. 17, 2000, pp 129-
132.

[11] W. Zhang and B.S.Chen, Local stabilizability of non-linear stochastic
systems with state and control-dependent noise, The 4th Asian
Control Conference, Singapore, 2002.

[12] W. Zhang and B.S. Chen, On stabilizability and exact observability
of stochastic systems with applications,Automatica, vol. 40, 2004,
pp 87-94.

[13] X. Mao, Stochastic Differential Equations and Their Applications,
Horwood Publication, Chichester; 1997.

[14] X. Mao, Robust stability of uncertain stochastic differential delay
equations,Systems and Control Lett.,vol. 35, 1998, pp 325-336.
1998.

[15] Z. Y. Gao and N. U. Ahmed, Stabilizability of certain stochastic
systems,Int. J. Systems Sci.,vol. 17, 1986, pp 1175-1185.

[16] Z. Y. Gao and N. U. Ahmed, Feedback stabilizability of non-linear
stochastic systems with state-dependent noise,Int. J. Contr.,vol. 45,
1987, pp 729-737.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP13.5
	Page0: 3689
	Page1: 3690
	Page2: 3691
	Page3: 3692


