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Abstract—An output feedback design technique is pre- based on the assumption of global stabilizability of an
sented, by means of which it is possible to achieve semi- guxiliary system. In addition, the authors identify a class
global practical stabilization for a class of non-minimum ot hsplinear systems that are semi-globally stabilizable via

phase nonlinear systems, subject to parameter uncertainties. ,, . N . .
This work is an extension of the result by (Isidori, 2000). uniformly completely observable” (UCO) functions in the

It provides a constructive controller design method for an ~ Sense of [11]. In [4], an adaptive dynamic output feedback
auxiliary system, whose existence is crucial, but is assumed stabilization tool is proposed, for a class of nonlinear

in (Isidori, 2000). Simulation results demonstrate satisfactory ~systems. The high-gain result is extended by considering
stabilization performances. the adaptation of the gain parameter as a time varying scalar
function, which depends on the magnitude of the output and
a quantity of the dynamic feedback compensator.

In practice, controller implementation is generally subject For the related problem of output tracking for non-
to limited number of measurements available for feedbackninimum phase nonlinear systems, there are two major
due to sensor cost and/or availability. In such cases, or@proaches in the literature. In the first approach proposed
relies on the design of controller based on imperfect staig [1] and [2], and further modified in [12], the stabilizing
measurements, often termed output feedback controllgsntrol consists of a feedforward component that generates
design. Most existing output feedback controller designge zero dynamics trajectory, and a feedback component
require that the zero dynamics of the controlled plant bghat stabilizes the whole system. This approach is based on
stable, that is, to be minimum phase. However, a numbgie assumption that the inverse system is kinematically hy-
of processes exhibit non-minimum phase (i.e. inverse rgerbolic, with slowly time-varying outputs that have small
sponse) behavior. For instance, this phenomenon can &plitude. The second approach is the nonlinear output
encountered in a continuous exothermic reactor, whefegulator problem [5]. This approach uses center manifold
the inlet stream flowrate is used to control the reactaheory, and gives necessary and sufficient conditions under
temperature. In this situation, a positive step change in thghich the closed-loop system can be driven to a center
inlet flowrate will cause an initial decrease in the reactomanifold contained in the output zeroing manifold. This
temperature [8]. approach yields a local result around the equilibrium point.

For linear systems, the output feedback control of nonn addition, if only the output information is available,
minimum phase systems is generally solved by factorizing requires detectablility of the linearized system, which
the system dynamics into a minimum phase and nofimplies that the system has to be locally minimum-phase.
minimum phase part [10]. Only the invertible minimum |n this work, we examine the assumption from [6],
phase part is considered in controller design, while thetating that “the auxiliary system is globally stabilizable
non-minimum phase part, generally viewed as an obstadl§ dynamic output feedback”. We provide a controller
to closed-loop performances, remains in the open-loogesign procedure and outline the requirements for auxiliary
Although attempts have been made to generate such fagstems with relative degree zero, a problem not addressed
torization in the nonlinear case, the problem remains opep [6].

A non-minimum phase cc_)mpensation structure for n.onlinear This paper is organized as follows, the main results are
systems was developed in [14], based on a synthetic outpliovided in section 2, and simulation results are presented

original output. The synthetic output can either be chosen

in an ISE-optimization formulation [8], or by prescribing
zeros in a systematic manner [9]. However, the afore-”'
mentioned approaches can oply be appligd to opgn-lc_)gg Problem Formulation and Motivation

stable processes. In [6], a semi-global practical stabilization

design tool is proposed for a general class of uncertain We first give a brief review of the results in [6].
non-minimum phase nonlinear systems. This approach isConsider a smooth nonlinear system modelled by equa-
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tions of the following form wherek is a positive number,(-) is a saturation function

z = fO(Zazla"' 7I7‘—17$7‘ap) o (T')_ T, |f|7’| <L
T = Tz L sgn(r)L, iflr| > L,
: 1) and¢,. is the estimation of state,. under the following high
Tp_1 = X gain observer
T, = ho(z,x1,  ,Tr_1,2,p) + b(x1)u :
v - x?,( ! @ p) +b(a) & 2+ ger—1(y — &1)
) &2 &+ gPe—a(y—&)
where z € R"™", and p is a (possibly vector-valued) £ = =
unknown parameter, ranging over a compact BetThe &q &+ g e (y — &)
following is assumed for system (1). ¢, g coly — &)
Assumption 1: For allp € P = Pt +Qy,
fo(0,--+,0,p) = 0 in which ¢g,c1,---,¢._1 are the coefficients of some
ho(0,---,0,p) = 0 Hurwitz polynomial,g is a positive number.

db 0 There are two limitations to the above approach. First,
an_l_h(ml) 7 'I biective i bil 1 . even though it is shown in [6] that the assumption of global
e control objective Is 10 stabilize system (1) us"ngstabilizability of the auxiliary system is not restrictive, how

a robust output feedback, given that the system is NOWS find such a dynamic output feedback is not a trivial task.

minimum phase. The SOI,Ut'On of this problem is based O8¢acond, it is also observed that, for most applications, the
the existence of a dynamic output feedback controller for azguxiliary outputh, is a function ofu,, in other word, the

auxiliary_ system associated with system (1). The auXi”ar};’luxiliary system (2) has relative degree zero, which makes
system is defined as follows, the problem even more difficult.
o = falTa,Ua,p) @ It is suggested in [6] that the relative degree zero problem

Yo = ha(Ta,uq,p) be solved by moving the, term to the controk, provided
h thaty, is a linear function of:,. However, this is not always
where possible, as shown in the following illustrative example.
z Example | Consider a continuous stirred tank reactor
T1 (CSTR), where the series/parallel van de Vusse reaction [13]
Ta = is taking place:
Lp—2 k k
o A o plro
fO(Zazla”' 7Ir—17uaap) 24 & D
£l ) = 2 where A is the reactantB3 the desired producty’ and D
a\%a;Ua,P) = are unwanted by-products.
Tr—1 The dynamics of the CSTR can be described in terms of
Ugq . .
the material balance for species and B and an energy
ha(Tata;p) = ho(z,21, -+ Zr—1, Ua, p)- balance for the reactor as follows:
The basic hypothesis about the auxiliary system (2) is$4 = —k(T)Ca — k3(T)C% + (Cao — Ca)u
the knowledge of a robust global dynamic output feedbackd(TtB = k(T)Cx — ke(T)Cp — Cpu
stabilizer of the following form ([6], Assumption 2), % _ ﬁ [(*AHl)kl(T)CA + (=AHy)ks(T)C
(. ]LV<(737>)+ Mya @3) +H(~OHy)ks(T)CA + Q| + (To — Thu

. . y _ . . where C4, Cp are the concentrations of the specids
in which» € R, L(0) = 0, N(0) = 0, and M is av x 1 and B inside the reactor, respectively, is the temperature

constant matrix. N . . .
Under the above assumption, it is proved in [6] thatns'de the reactor(” 4 is the concentration ofd in the

: . . eed streamT} is the feed stream temperature,T) is
system (1) can be semi-globally practically stabilized b)fhe rate coeﬂgﬁcient given by the Arrhgnius r?x(pre)zssions
the following dynamic output feedback law ’

ki(T) = kioexp(—E;/RT), i = 1,2,3; u is the dilution

& = PE+Qy rate, given byu = F/V, where F' is the inlet flow rate,

n = L)+ Mor(kl& — N(n))) andV is the reactor volume (assumed constaptiind C,

u L_[ON (1) + Moy (K6, — N (4) are the density and specific heat of the reaction mixture,
w2 (L) L(kle D) respectively,—AH;, i = 1,2,3 are the heat of reactions,
—or(kl& — N(n)})} —Q is the cooling rate per unit volume.
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The control objective is to make the output= C'p track  wherew is the new control. Differentiating,, we have
its setpoint, by manipulating the dilution rate= F'/V'.

Assuming thatCz # 0, the following change of vari- ; _ gz(z’xl’ 1o, P)
ables,z; = CAOC;CA, 29 = Tg,;T, x1 = Cg, y = x1, ]
transforms the CSTR dynamics into the normal form: : 7
Tro1 = Ug
2.'1 = i[(l—zl)]fl(CAo—Zl.’El) ya = gzzfa(zvxlv"' 7mrflvua7p)+%£v
Hhs(Cag — 2121)? + k221$1} wherez, is the state vector as in (2).
. . The following assumptions are made for the auxiliary
2T G system (7).
(=AH )k (Cao — z171) + (=AHz)kozy  (5) Assumption 2: The zero dynamics of (7) is stable with
+(=AH3)k3(Cao — 2121)% + Q} respect to the outpuy,.
22 [k (Cao — 2131) — ko] Assumption 3: G0 fo(2, 21, S o1, Ug,p) IS glob-
#1 = ki(Cao— 2121) — kpwy — 210 ally Llpschl_tz inz and locally Lipschitz m(a;g,_ e J:T,l_).
oo Assumption 4: [|k|| > ¢ > 0, and the sign of3% is
y = 2. Uq Uq

known.
It can be shown later in section IlI-A that system (5) i Remark 1. Assumption 2 is not restrictive, as shown in
locally non-minimum phase around a reference steady ste?[g]’ that a mer_noryless feed_back transforma_tzom uthy
The auxiliary system associated with (5) is as follows can render this property with a proper choice/iof
' Under these assumptions, it is guaranteed that there exists
a robust dynamic output feedback for the auxiliary system

3 = i {(1 — 21)k1(Cao — z1uq) (2), as shown in the following lemma.

St hs(Cao — 211a)? + k2211ta:| Lemma 2.1: There exists a smooth dynamic system of
. L the form
2 = pcpua[ 6 n = L(xy, - ,z—1,n)+ My

(—AH k1 (Cao — 10a) + (— Ao, © S ' ®)

Ug = 1N

+(=AH3)k3(Cao — 21uq)? + . ) .
(22 1 é) 2(Ca0 =2 k:) Q} in which n € R, L(0) = 0, M is a nonzero constant.
~u [k1(Ca0 = 21ua) — k2ol In addition, there is a positive definite and proper smooth
Ya = ki(Cao = 21ua) — katta. function V (z,,n) whose derivative along the trajectories of

_ o the interconnected system (2) and (8) is negative definite,
It is observed from the last equation in (6) that theg o

term multiplyingu, is —k1z1 — ko, which depends on the
zero dynamics; and z,. Since the zero dynamics are not oV fal )+ al[L( ) + My,]
a\Ta, T, P T, y Lr—1,1,P Ya

observable, we can not move this term to the contred ~ 9%a I
make the relative degree greater than zero as in [6]. <0 (9

In order to alleviate the two limitations, we provide infor all (z,,7) # (0,0).
the next section a systematic design procedure to construclprgof: Under the above assumptions, it is obvious that
a dynamic output feedback for the relative degree zef@e following controller
auxiliary system (2). It is shown that the original system

. 3 . . 1 Oh
(1) can still be semi-globally practically stabilized. T (—koya - 8Tc0f“(0’x1’ . ,xT»_1,ua)>
Oug a
B. Controller Design = Lz, @p_1,Ug) — ko(gho)_lya. (10)
Uq

TQ. construct a ropust dyqamlc output feedback for th% able to stabilize the auxiliary system (7), provided that
_auxmary system (with relat!\{e d_egree zero), We_?‘dd ark‘:o is a large enough positive number. By Assumption 4,
integrator<, = v on the auxiliary inputu,. The auxiliary there exists a positive number such that[| 222 | )~ < m.
system (2) becomes Ou -

a

Denoting
s — e oh
.Z - fO(Za-rla 7377'—17Uaap) M = _kaSgn( O),
X1 = X2 5‘ua
the following controller
Tro1 = U v =L@y, o1, a) + My, (12)
U, = U
Yo = ho(z,21, " ,ZTr_1,Ua,P)- is able to stabilize the auxiliary system (7) as well.
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Given thatu, = v and (11) stabilizes (7), it is implied  The control law (16) takes similar form with the control
that the dynamic output feedback (8) stabilize the auxiliariaw (4), which was developed in [6]. The only difference is
system (2). In addition, by the converse Lyapunov theorettiie presence of the estimated staigs--- ,&.—1) in (16),
[7], there exists a Lyapunov functidr(x,,n) such that (9) which does not add any difficulty in the stability proof.

is satisfied Therefore, Theorem 1 in [6] applies to the closed-loop
Next, consider the dynamic state feedback control system (16) and (1), which is stated below.
. _ Theorem 2.1: Suppose Assumptions 1 to 4 hold and
o= L(lxl’ »Zr—1,7) + Mz, =1 consider system (1). Given any arbitrary large numhes
U= 5y {L(T/l, s mee1,m) + ME(ze —1)  (12) 0 and any arbitrary small number> 0, there are numbers
—k(z, —77)} k>0,g>0,L >0, ko > 0 such that, in the closed-

loop system (16) and (1), any initial condition ;™' *"
wherek is a positive number. Changing the state variablgroduces a trajectory which is captured by the Bgt1+".
x, into the new variable Proof: This proof amounts to showing that the presence
of the estimated states in (16) will not affect the stability
conditions imposed in the proof of the Theorem 1 in [6].
the interconnection of the feedback control (12) and system Consider the change of variabfe= x,. — 7, we have the

92%—77,

(1) becomes following closed-loop system
i’a. = fa(®a,0+n,p) ia. = fa(za,0+n,p)
0 = he(xe,0+1n,p)— ko (13) 0 = ha(za,0+n,p) —or(k[& —n]) (17)
77 = L(Zla"' ,LL‘T_1,77)+]\/[]€9. 77 = L(y7 7$r—1,77)+M0L(k[§r—77])

£ = PE+Qy

Define the following scaled state estimation error

ei=9" "z — &)

Let B%, denote the closed cube
B ={z eRF:|z;| < R1<i<k} (14)

Consider the positive definite and proper function

fori=1,---,r, ie.,
W(xq,n,0) =V (xe,n+ M)+ 62
e=Dy(x—¢)
and let{);, denote the set
in which D, = diagg"~!,--- ,g,1].
Q= {(z4,n,0) : W(zq,n,0) < b}. (15) Then (17) can be written in the following perturbation
Then Lemma 2 in [6] applies to the closed-loop systerﬁorm'
(13) in the same manner, which shows that the original 2, = f.(x4,0+7,Dp)
system (1) is semi-globally practically stabilizable by (12). 6 = ha(ze,0+71,p) — kO + $1(6,€) (18)
Lemma 2.2: (Lemma 2 in [6]) For any? > 0 ande > 0, n = Ly, - ,xr—1,m) + MkO — Mp1(0,¢e)
and for anyp > 0 andc¢ > 0 such that ¢ = gAe+ Boo(x,0,1n,e,p)
Q, C BM c BEM Q. in which A is a Hurwitz matrix,B = [0,0,--- ,0,1]7, with
where B'+! and B! are defined as in (14), arfd, and perturbationsp, and ¢, as follows,
Q. are defined as in (15), then there is a numbersuch p1(0,e) = kb —op (kb — ke,) + [L(y, e Eel1,m)
that, if £ > k*, the derivative of the functio®’ (z,, 7, 6)
along the trajectories of (13) is negative at each point of —L(y, - 75”’“*17”)}
the set ba(a,0,m,€,p) = ha(2a,0 +1,p) — o (k0 — ke,) +1).
S ={(24,n,0): p < W(xa,n,0) <c}. It is shown in [6] that the key for the stability proof is
Proof: See [6]. to prove that the perturbation terms satisfy the following
The dynamic state feedback (12) uses the statégquirements: for al((z4,7,0),e) € Qey1 X R”
(z2,--- ,x,), which need to be estimated. A high gain 161(6, )| < 3
observer together with a saturation element are shown to B E =1
provide a systematic design approach. |p2(2a,0,m,€,p)| < B2
The resulting output feedback controller is as follows, |1(8,€)] < ~(llel)
£ = PE+Qy in which 1, 32 are fixed numbers, ang(-) is a continuous
n = Ly,&, - ,&-1,m) + Mor(k[& —n)) function such thaty(0) = 0.
u = @ L(y,& -+ ,&—1,m) + Mor(k[é& —n)) (16) The pnly difference petween t.he pe.rturbation in this
case with the perturbation term in [6] is the extra term
—or (k& — 77])]- Ly, - ,&-1,m) — Ly, - ,zr—1,n) In ¢;. However, the
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above requirements can be easily verified given Assumpti
3.
The rest of the proof follows the proof in [6]J
Remark 2: Note that the assumption

9o fu(z, @1, -, Tr_1,uq, p) being globally Lipschitz ire

of

. —1 ~
f]|g—52||> < (kgn)~' = m. Assumption 4 is therefore

satisfied.

In the simulation, controller (16) is implemented with the
following design parameters = 150, £ = 150. The initial
conditions for the states are the reference steady state. The

(Assumption 3) is rather restrictive. This can be relaxed tggntrol action is restricted in the range Bfh™ < u <
a more general locally Lipschitz assumption, which yieldgs p—1! [3].

a semi-global stability result for the auxiliary system.

Simulation results are shown in Figure 1. It can be seen

Moreover, this relaxation doesn't affect the stability resulihat the outputC; tracks the new set point within a short

in Theorem 2.1.

I1l. APPLICATION

period of time (about 2/3 times shorter than the result in

E)2

A. Example |

Consider again the van de Vusse reaction system in
section 1I-A. An example is the production of cyclopen-
tenol (B) from cyclopentadiene 4) by acid-catalyzed
electrophilic addition of water in dilute solution, where
cyclopentanediol @) and dicyclopentadienel)) are also
produced as side products [3].

The operating condition i€' 4o = 5 gmol-L !, andTj, =
403.15 K. In addition, the following parameters values are
assumed [3]:

m
o
TABLE |
PARAMETER VALUES FOR THE VAN DEVUSSEREACTOR

koo = 1.287 - 10120~ T
E;/R= —9758.3K
E3/R = —8560K
AHy = —11kJ- mol— T
p = 0.9342kgL~T

Q = —451.509kJ

k1o = 1.287 - 1012h~ 1

k3o = 9.043 - 10°L(mol - h)~ T
E>/R = —9758.3K

AH; = 4.2kJ-mol~ T

AHz = —41.85kJ- mol~ T

Cp = 3.01kJ(kg - K)~T

1
<
3}

17 410
409.5
409
408.5

-
14 408
407.5

13
407

12 406.5
0 0

1.05

35

1
0.95 > 30

0.9

25
0

Fig. 1. State trajectory and controller performance of example |

[V. CONCLUSIONS

The control objective is to make the output= Cp track
its setpoint, by manipulating the dilution rate= F/V. In
this work, we would like the outpuf’s to track a setpoint
change t01.0 mol - L™, from the following reference
steady-state€z, = 0.9 mol- L™, C4s = 1.25 mol - L1,
T, = 407.15 K, which corresponds ta, = 19.5218 hr— .

In this work, we proposed a robust control design
that semi-globally practically stabilize a general uncertain
non-minimum phase nonlinear system. Simulation results
demonstrate that satisfactory controller performance is ob-
tained. In particular, we show that the approach yields
excellent performance for the control of the bench mark
van de Vusse reactor.

To check the stability of the zero dynamics of (5), we
linearize the zero dynamics around the reference steady
state, and get the following eigenvalues: = 122.68, and  [1]
Ao = —11.17. This shows that system (5) is locally non-
minimum phase around the reference steady state. 2

Checking the stability of the zero dynamics of (6) around
the reference steady state, we get the following eigenvalt!
ues: A = —21.86 £ 8.93I. This shows that the auxiliary
system is locally minimum phase. Therefore, Assumption[4]
2 is satisfied. For Assumption 3, only the local Lipschitz
condition is satisfied. To verify Assumption 4, we check g
the term S — —ky 2 — ky. Since ki, z and k, are
all positive numbers, we know that the sign éﬁ—" is
always negative. In addition;; = €42=C4 > 0, k,
koge E2/BT > kone~E2/RTo — [, since the reaction is
exothermic, it follows that the temperatuf@ is always
greater than the cooling water temperatiie As a result,

(6]

(7]
(8]
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