
 
 

 

  
Abstract— Full quaternions constitute a compact notation 

for describing the generic motion of a body in the space. One 
of the most important results about full quaternions is that 
they can be partitioned into a unit quaternion (which 
describes the orientation with respect to a suitable reference), 
and a modulus (which represents the translational motion 
along the direction indicated by the unit quaternion). Since 
vectors and scalars are also full quaternions, the equations of 
motion of the body can be rewritten in quaternion form. In 
this paper the orbit dynamics and kinematics of a point mass 
moving in the space are transformed in quaternion form. 
Simple application examples are presented. 

I. INTRODUCTION 
When dealing with satellite attitude and orbit control, 

one of the first design issue is the formulation of spacecraft 
dynamics. According to classical approach, rigid body 
motion can be decomposed into two parts: 
1. orbital motion, depending on position and velocity of 

the satellite Centre of  Mass (COM) ; 
2. attitude kinematics and dynamics, described by Euler 

parameters (i.e.: unit quaternions) or Euler angles. 
This methodology is very well known, has been widely 

treated in literature (see [1] and [2]), and is commonly used 
in applications: for example it has been employed in the 
design of a drag-free controller for the European satellite 
GOCE [3]. In this case, satellite attitude corresponds to the 
orientation of the body reference frame with respect to a 
local orbital frame, univocally defined by orbit position 
and velocity. Assuming that the orientation of the body 
frame with respect to an inertial frame is known, it 
becomes necessary to parameterize the orientation of the 
orbital frame with respect to the inertial reference. The 
problem, apparently straightforward, is transforming the 
inertial coordinates of the three unit vectors constituting the 
orbital frame into a set of four Euler parameters. Two 
alternatives have been considered: 
1. to build the rotation matrix and then exploit the well 
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known conversion rules (see [1]) allowing to pass to 
quaternion parameterization; 

2. to associate a full quaternion notation (i.e.: non-unitary 
quaternion) to orbital frame. 

The former solution has been employed in attitude 
determination of the GOCE satellite [3]. The latter one, has 
been developed to find a direct way to express the motion 
of the local orbital frame entrained by the COM motion. 

A full quaternion can describe the modulus and the 
orientation of a vector with respect to a given reference 
frame. This implies, considering the satellite orbit, that 
position and velocity can be alternatively denoted with a 
vector or with the associated full quaternion. Since that, 
orbital dynamics and kinematics can be rewritten 
substituting vector notation with full quaternions. This 
results in harmonization of motion equations: both orbital 
dynamics/kinematics and attitude dynamics/kinematics can 
be rewritten  in quaternion form. Then the orientation of 
the orbital frame can be directly extracted from the related 
full quaternion at any time. 

This paper is devoted to lay down the foundations of this 
technique with the help of simple applications. First of all, 
definition and elementary algebra of full quaternions will 
be introduced in Section II. Next, how full quaternions can 
represent vector magnifications and finite rotations will be 
shown. First and second derivatives of full quaternions are 
then derived in order to rewrite orbital motion equations in 
quaternion form. This will be explained in Section III, 
where quaternion kinematics and dynamics will be derived. 
In Section IV, quaternion kinematic and dynamic equations 
will be applied to a pair of typical orbital references: the 
Local Orbital Reference Frame and the Local Vertical – 
Local Horizontal frame. In both cases the associated full 
quaternion will be defined, as well as orbital kinematics 
and dynamics. Finally, the simple case of uniform circular 
motion will enlighten the similarities between classical 
vector form and quaternion expression of orbital motion.   

II. FULL QUATERNIONS 

A. Definition 
A quaternion A is defined as a complex number: 

 0 1 2 3 0a a a a a+ + + = +i j k a�A� . (1) 
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Quaternions can be also expressed in column vector form 
with respect to the basis (1, i, j ,k): 

 [ ] [ ]0 1 2 3 0
T TTa a a a a= = aA� . (2) 

Remark. To alleviate notation, the script A will denote: 
1. quaternions in complex number representation (1); 
2. and quaternions in column vector form (2). 

A vector quaternion is a three-dimensional vector b 
represented in quaternion notations, i.e.  

 [ ]0 TT= bB . (3) 

In this case the notations B and b will have the same 
meaning. See [4] for further details. 

B. Algebra  
A brief summary of the full quaternion algebra is 

provided, leaving the details to the Appendix and [4]. The 
norm of a quaternion A, denoted by |A|, is a scalar 
quaternion and is defined in the same way as the Euclidean 
norm (or l2 norm) of a general spatial vector: 

 [ ]
22 2 2 2 2

0 1 2 3 0 1 2 3
2

Ta a a a a a a a= + + + =A . (4) 

If |A|=1, A is called a unit quaternion, and deserves its 
own notation A . If A has non-unitary norm, it is called a 
full quaternion.  

Remark. Since scalars and vectors are quaternions, scalar 
and vector algebra applies.  

Let 0a= +aA , 0b= +bB  and 0c= +cC  be three 
quaternions. 

1) Multiplication  
According to [4], quaternion multiplication is defined as: 

 ( ) ( )0 0 0 0 0 0a b a b a b⊗ = + ⊗ + = + + − ⋅ + ×a b b a a b a bA B , (5) 

where the symbols · and × stand for dot product and cross 
product. An alternative expression of the norm in (4) can 
be obtained through quaternion multiplication, namely: 

 2 ∗= ⊗A A A , (6) 

where 0a∗ = −aA  denotes quaternion conjugate. 
The same product in (5) can be expressed in matrix 

form. First, rewrite the product quaternion C in vector form: 

 0 0 0

0 0
,   a b c

a b
− ⋅   = ⊗ = =+ + ×     

a b
b a a b cC A B�C . (7) 

Then, from matrix expressions for dot and cross products: 

 ( )
3 2

3 1

2 1

0
,    0

0
T

a a
a a C
a a

− 
⋅ = × = − = 

 − 
a b a b a b b a b , (8) 

equation (7) can be written as: 

 ( ) ( )
0 00 0 0

0 0

T Ta bc b a
a I C b I C

− −        = =   + −             
a b

a a b bc b a . (9) 

Quaternion multiplication is associative and distributive, 
but not commutative. 

2) Commutative property 
Although commutative law does not hold in general, the 

matrix expression (9) shows A and B to commute through 
sign change. Therefore, the following matrix 
representations of quaternions can be introduced: 

 ( ) ( )
0 0

0 0
, 

T Ta b
a I C b I C

+ −− −   = =   + −   
a b

a a b bA B , (10) 

where superscripts + and – denote the sign of the cross 
product matrix ( )C ⋅ and I denotes the identity matrix. 
Using notations defined in (10), the commutative property 
which is hidden in (9), can be expressed in the compact 
form: 
 + −= =C A B B A , (11) 
where one must pay attention that A and B are meant to be 
in column vector form. 

3) Inverse  
Each nonzero quaternion A admits an inverse A-1 such 

that 1 1−⊗ =A A . It is simple to proof that the inverse 
quaternion A-1 of A holds: 

 21− ∗=A A A . (12) 

Equation (12) states that if A is a unit quaternion, the 
inverse equals the conjugate. Instead, if A is a full 
quaternion, its norm has to be taken into account. 

C. Magnification and finite rotations 
As it will be shown below, full quaternions allow to 

describe at the same time vector rotation as unit 
quaternions and vector magnification. Consider a unit 
quaternion R  and a quaternion B. A well known method 
to represent a rotation of  B into ′B  by an angle θ  around 
an axis u is: 
 ∗′= ⊗ ⊗B R B R . (13) 

Since every unit quaternion admits the Euler parameters 
representation, it is possible to express R  in terms of θ  
and the unit vector u: 

 [ ] ( ) ( )0 1 2 3 cos 2 sin 2
TT Tr r r r θ θ= =  uR . (14) 

By applying (11) and (A.2), the matrix form in (13) ensues: 

 ( )T+ + ∗ + −′= =B R B R R R B . (15) 

Employing matrices E+  and E−  defined in (A.3) yields: 

 ( ) ( )( )
1 0 1 0

00
T RE E− ∗ + ∗

   ′= = =     
RB B B BR R . (16) 

The matrix R represents a 4×4 quaternion transformation 
in a four-dimension space. Since 1∗⊗ =R R , matrices +R  
and ( )T−R  are orthonormal and R is a linear operator with 
the property of leaving invariant quaternion norms. From 
(16) it is possible to separate a 3×3 rotation matrix: 

 ( ) ( )( ) ( ) ( )( )2
0 02

T T TR E E r I r C− ∗ + ∗= = − + +r r rr rR R . (17) 



 
 

 

Note that the above definition of R is consistent1 with the 
definition of direction cosine matrix given in [1].  

Now, one can apply the same concepts to a full 
quaternion R instead of the unit R . In this case equation 
(13) becomes: 
 ∗′= ⊗ ⊗B R B R . (18) 
Moreover, any full quaternion R can be factorized into the 
product of the norm and of the unit quaternion: 
 = ⊗R R R . (19) 

Then, using factorization (19), one can rewrite (18) by 
separating norm and rotational term as follows 

 ( )2 ∗′= ⊗ ⊗ ⊗B R R B R . (20) 

Expressing (20) in matrix form makes explicit two 
operations, norm amplification and rotation as in (15): 

 ( ) ( )2T T+ − + − ′= =  B R R B R R R B . (21) 

Employing matrices E+  and E−  defined in (A.3) yields: 

 2 21 0
0 R

 ′= =  
RB R B R B . (22) 

It is clear from previous equation, that while B is rotated as 
in (16), an amplification of the quaternion norm appears. 
Therefore, in case of full quaternions, product (18) applies 
two different transformations: 
3. a magnification, by the factor 2R , of the B norm; 
4. a rotation of B by an angle θ around the axis u (as 

stated by Euler Theorem). 
In the case B is a vector quaternion, the factorization 

(22) reduces to: 

 2 20 1 0 0 ' , =' 0 RR ρ ρ    = ⇒ =        
b bb bR R . (23) 

The use of full quaternions allows to generalize the 
description of the motion of an object in the three-
dimensional space: not only rotations but also translations 
can be parameterized. 

III. QUATERNION KINEMATICS AND DYNAMICS 
As stated in Section I, the goal of this paper is to rewrite 

the orbital dynamic and kinematic equations using full 
quaternions. To this end, first and second derivatives of a 
quaternion will be determined. 

Let ir  and or  be nonzero vectors which, according to 
Section II.A, can be considered as vector quaternions. 
Then, as in (18), it is possible to define a full quaternion P 
relating the vector ro to the reference vector ri through a 
rotation and a magnification: 

 ( ) ( )1 1
o i i o

− −∗ ∗= ⊗ ⊗ ⇔ = ⊗ ⊗r r r rP P P P . (24) 

 
1 Actually, the 3×3 matrix R in (17) is the transpose of the direction 

cosine matrix in [1], because the opposite rotation direction has been used. 

A. Kinematics 
Differentiating (24) yields: 

 ( ) ( )1 1 ,   o o o i i i
− −∗ ∗ ∗= ⊗ ⊗ + ⊗ ⊗ + = ⊗ ⊗r r r q q r� �� �P P P P P P .(25) 

Then, by taking the derivative of the product ( ) 1 1−⊗ =P P , 
one can define the quaternion W as shown below: 

 ( ) ( )1 1− −⊗ =− ⊗ =
ii

P P P P W . (26) 

From the above definition the quaternion kinematic 
equation follows: 

 = ⊗�P W P . (27) 
By factorizing P as in (19) and by remembering the 
definition (12), the previous equation develops into: 

 ∗= + ⊗
i i

W P P P P . (28) 

It is possible to proof that ∗⊗
i
P P  is a vector quaternion 

(see the Appendix). Therefore, one can rewrite W as: 

 0 0w w∗
⊥= + ⊗ = + = + +w w w

i i

&W P P P P , (29) 

where the decomposition of w into normal and parallel 
components ⊥w  and w&  with respect to ro has been 
exploited. Substituting (29) into (25) enlightens that the 
derivative of ro is unaffected by the parallel component w& : 

 0

0

2 2
2 ,  

o o o i o o i

o i

w
w

∗

⊥ ⊥ ⊥

= ⊗ + ⊗ + = + × + =
= ⊗ + = +

r r r q r w r q
r q w

� W W
W W

. (30) 

Since ro is a vector quaternion, equation (23) applies: 

 2 20 01 0 , =0 o P P i P
o iP

RR ρ ρ    = ⇒ =        
r rr rP P , (31) 

where RP is a rotation matrix. Comparing (30) with the first 
derivative of (31): 

 ( ){ }T T T
o P P P P o P P i o P P iI R R R Rρ ρ ρ ρ= + + =Ω +r r r r r�� � � � , (32) 

yields the following equalities: 

 ( ) ( ) ( )02 , 2 2 2T
P P P P PPw C R R R C Rρ ρ= ×= = ⇒ =w w w� �� .(33) 

One can recognize that 2w represents the angular 
velocity in the three dimensional space (see kinematic 
equations of motion in [1]) and 2wo represents the 
translation velocity along the ro direction. The ensemble 
(wo+w)=W  forms a full quaternion referred to as 
generalized angular velocity. This term has been chosen 
because in the traditional attitude representation through 
unit quaternions the term wo vanishes, and W becomes a 
pure angular velocity. 

Rewriting (27) and (30) in matrix notations yields: 

 
( )

00

   2

            /2/2

T
o o i

Tww

+ + + −
⊥

+ + ⊥
⊥

⊥ ⊥

= = +

−−   = = Ω Ω    

r r r

ww
ww

� � � P W P            W P P

W W
, (34) 

where ⊥Ω  equals Ω under the constraint ⊥=w w . 



 
 

 

Remark. Quaternion kinematics (27) is more general 
than vector kinematics (30). Since the angular rate w is 
unconstrained, the former equation has four degrees of 
freedom (d.o.f.). In (30), the parallel component w&  
disappears, then for describing the ro rotation, only the 
normal component ⊥w  needs. This is equivalent to state 
that, in (30), an orthogonality constraint applies to w. Then, 
d.o.f. reduce to three in agreement with classical 
mechanics. Therefore, equations (30) and (31) can be 
viewed as output equations of the state equation (27).  

B. Dynamics 
First define the generalized angular acceleration A as 

the derivative of the generalized angular rate W: 

 0 0 0a a w⊥= ⇒ + = + + = +a a a w&
� ��A W . (35) 

In (35), the decomposition of a into normal and parallel 
components with respect to ro has been exploited. 

Remark. Be aware that ⊥ ⊥≠w a�  and ≠w a& &� . 
Quaternion dynamics follows by taking the derivative of 

quaternion kinematics (27): 

 [ ]= ⊗ + ⊗ = + ⊗ ⊗ = ⊗�� � �P W P W P A W W P D P , (36) 

where the quaternion D gathers the effect of angular rate 
and acceleration. Scalar and vector parts of D are related to 
the components of W and A through: 

 ( ) ( )22
0 0 0 02d a w w= + = + − + +d w a wD . (37) 

The second derivative of ro can be obtained by exploiting 
(30) and (36): 

 ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

2
0 0 0

0

2

2 2 2 2 2 2

2 2 ,    2 2

o o o o

o o o o

o i i i

a w w

w

∗ ∗= ⊗ + ⊗ + ⊗ ⊗ + =

= + + × + × +  
+ × × + = + × +  

r r r r q

r r w r a r

w w r q q q w q q

��

�

D D W W

. (38) 

This expression has a clear similarity with the ordinary 
equation of the relative motion (see [2] or [5]). Therefore, a 
physical meaning can be assigned to each term in (38):  
1 q represents the acceleration of the reference vector ri; 
2 ( ) ( )02 2o oa + ×r a r  is the apparent acceleration of ro with 

respect to ri. In particular: (i) ( )02 oa r  is the apparent 
acceleration along ro; (ii) ( )2 o×a r  is the apparent 
acceleration along a normal direction to ro; 

3 ( ) ( )02 2 2 ow×  w r  is the Coriolis acceleration; 
4 ( ) ( ) ( )2

02 2 2o ow× × +  w w r r  is the centrifugal term. 
Further, developing (38) shows that the acceleration of ro 

does not depend on the parallel component a& : 

 
0

2 2
,  

o o o

a

∗
⊥

⊥ ⊥ ⊥ ⊥

= ⊗ + ⊗ ⊗ +
= + ⊗ = +

r r r q
a

�� D W W
D A W W A

. (39) 

Remark. Quaternion dynamics (36) is more general than 
vector dynamics (39). Since the angular acceleration a is 
unconstrained, the former equation has four d.o.f.. In (39), 
the parallel component a&  disappears, showing an 
orthogonality constraint on a, which corresponds to a d.o.f. 

reduction. Then, (39) has only three d.o.f., in agreement to 
with classical mechanics. 

IV. APPLICATIONS 
Once obtained the general kinematic and dynamic 

equations of full quaternions, a step to be done is applying 
them to orbital motion. Consider a point P with mass m 
moving in the space, subject to a force F. Two kinds of 
local reference frames, can be attached to the particle: 
1 a Local Orbital Reference Frame (LORF), fixed to the 

velocity vector v; 
2 a Local Vertical Local Horizontal frame (LVLH), 

fixed to the position vector r. 
Both frames and their orientation with respect to an 

inertial reference are shown in Fig. 1. The inertial frame 
{ }, , ,O= i j kR is a Cartesian reference with origin in O and 

unit vectors corresponding to i, j and k already introduced 
in (1). For each of the two orbital frames, the following 
problems will be solved: 
1. complete definition of the frame axes; 
2. assignment of a full quaternion to the frame; 
3. formulation of the differential equation of the full 

quaternion, i.e.: orbital equations in quaternion form. 
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Fig. 1. LORF and  LVLH with respect to the inertial frame. 

A. LORF Reference Frame 
The LORF { }, , ,O O O O OO= i j kR  is a Cartesian reference 

frame defined as follows: 
1. the origin OO  coincides with P; 
2. Oi  lies along the velocity direction; 
3. Oj  is normal to the instantaneous orbit plane (defined 

by position and velocity); 
4. Ok  completes the frame. 
 ( ),  ,   O O O O O= = × × = ×i v v j r v r v k i j . (40) 

The velocity vector and the orientation of the LORF triple 
can be expressed through the LORF quaternion OR . The 
definition of OR  is arbitrary: for example the axis i rotates 
into iO and the axis j rotates into jO: 

 ,     O O O O
∗ ∗⊗ ⊗ ⊗ ⊗Ov i j j� �R R R R . (41) 

Because there exists an infinite number of rotations 
satisfying (41), a further constraint must be introduced: the 
right equation specifies that the j-axis of the inertial frame 
must be rotated into the orbital plane normal direction.  

Factorizing the left equation in (41) as in (20) enlightens 
the norm OR  of the LORF quaternion to be equal to the 



 
 

 

square root of the velocity modulus, and the unitary part 
OR  to represent the orientation of the velocity unit vector 

with respect to the inertial frame: 

 
( )2 ,   1   

,   
v O O O v

O O O v

v

v

∗

∗

= = ⊗ ⊗ = ⇒

⇒ = ⊗ ⊗ =

v n i n

i n

R R R

R R R
. (42) 

Now, one can apply formula (30) of quaternion kinematics 
to compute the acceleration v� : 
 ,0 ,02 2 2 ,  O O O O O Ow w⊥ ⊥ ⊥= + × = ⊗ = +v v w v v w� W W , (43) 

where the derivative of i, being zero by definition, 
disappears and wO has been decomposed into the normal 
and parallel components O⊥w  and Ow &  with respect to v. 
The acceleration of the point mass is related to the force F 
through Newton’s Law and remembering that 0O⊥ ⋅ =w v : 

( ) ( )2 2
,0 1 2 ,  1 2O Om w m m⊥= ⇒ = ⋅ = ×�F v v v F w v v F . (44) 

Since v and F are vector quaternions, a more compact 
expression for the LORF angular rate can be used: 

 ( )( ) 11 2O O O Om −∗
⊥= + =− ⊗ ⊗ +w v v F v w& &W W . (45) 

Therefore, the orbital equations for LORF quaternion can 
be written in quaternion form: 

( )

( )

02

0

,   0
2

,                                     0

O O O O O O O

O O

m
∗

  
  = ⊗ = − ⊗ + ⊗ =    


= ⊗ ⊗ =

F v w
v

r i r r

&
�

�

R W R R R R

R R

, (46) 

or in matrix form (exploiting (11) and (A.2)) as follows: 

 
( ) ( )

( ) ( )

2
0

0

1 2 , 0

,                                     0

O O O O O O O

T
O O

m− − −

+ −

  = = − + =  
 = =

v v F w

r i r r

&
�

�

R R W R R R

R R
.(47) 

Remark. As stated in Section III.A, the parallel 
component Ow &  does not give contribution to (43). This 
confirms the existence of an orthogonality constraint to wO, 
meaning that the four d.o.f. motion of the LORF quaternion 
is constrained in agreement with the classical mechanics 
three d.o.f. This is confirmed by Newton’s Law, showing 

Ow &  to be completely independent on F. The angular rate 
Ow &  affects only (46), and represents an angular rate of the 

unit vectors jO  and kO around the axis iO. But if such 
vectors underwent a rotation, the LORF frame would be 
lost. Therefore the quaternion constraint 0O =w &  follows. 

B. LVLH reference frame 
The LVLH frame { }, , ,V V V V VO= i j kR  is a Cartesian 

reference defined as follows: 
1. the origin OV coincides with P; 
2. iV lies along the position direction; 
3. jV is normal to the instantaneous orbit; 
4. kV completes the frame. 
 ( ),   ,   V V V V V= = × × = ×i r r j r v r v k i j . (48) 

The position vector and the orientation of the LVLH 
triple can be expressed through the LVLH quaternion VR . 
In accordance with (41) it can be defined as: 

 ,     V V V V V
∗ ∗⊗ ⊗ ⊗ ⊗r i j j� �R R R R . (49) 

Factorizing the left equation in (49) enlightens the norm 
VR  of the LVLH quaternion to be equal to the square root 

of the position modulus, and the unitary part VR  to be the 
orientation of r with respect to the inertial frame: 

 
( )2 ,   1   

,   
r V V V r

V V V r

r

r

∗

∗

= = ⊗ ⊗ = ⇒

⇒ = ⊗ ⊗ =

r n i n

i n

R R R

R R R
. (50) 

Now, one can apply the formula (30) of quaternion 
kinematics to compute the velocity v: 
 ,02 2 2V V Vw ⊥= = + × = ⊗r v r w r r� W , (51) 

where the decomposition of wV into normal and parallel 
components V ⊥w and Vw &  w.r.t. r has been exploited. The 
quaternion kinematics of the LVLH follows by (27): 

 V V V= ⊗�R W R , (52) 

and the LVLH dynamics follows from (36): 

 [ ]V V V V V V V= + ⊗ ⊗ = ⊗��R A W W R D R . (53) 

Then, recalling (38) and (39), the acceleration can be 
determined as: 

 

( ) ( ) ( )( )
( ) ( ) ( )

2
,0 ,0 ,02 2 2 2 2

2 2 2

2 2 , 

V V V V

V V V

V V V V V V V

a w w

∗
⊥ ⊥ ⊥

 = = + + × + 
+ × + × × =  

= ⊗ + ⊗ ⊗ = + ⊗

r v r r w r

a r w w r

r r

�� �

D W W D A W W

. (54) 

As done for LORF kinematics, one can relate 
acceleration expression to force F through Newton’s Law. 
Taking the dot product between position and force yields: 

 ( ) ( ){ }22 2
,0 ,02 2 2V V Va m w ⊥

 = ⋅ − −
 

r F r w . (55) 

The cross product between position and force brings to: 

 ( )( ),02

1 2 2 2 2 2
2V V V V Vw

m
⊥ ⊥ ⊥

 × = − − × 
  

r Fa w w w
r

& . (56) 

Expressions (55) and (56) can be compacted into: 

 
( ) ( )

( ) ( ) ( )

2
,0

2

1 2

2 2

V V V V V V V

V V V V

a

m

⊥ ⊥

∗

= + = + + =− +

= ⊗ + ⊗ + ⊗ ⊗ ⊗

a a a r F a

FF r r r r

A A Y

Y W W W W

& & &

. (57) 

Finally, the orbital equations for LVLH quaternion can be 
written in quaternion form: 

 
( )

( ) ( ) ( )
0

2
0

,                             0

1 2 ,              0

V V V V V

V V V V

 = ⊗ =


=− + =
r F a

R W R R R

W Y W W&

�

� . (58) 

Remark. As stated in Section III.B, the parallel 
component Va &  does not give contribution to (54). This 



 
 

 

confirms the existence of an orthogonality constraint to aV, 
meaning that the four d.o.f. motion of the LVLH 
quaternion is constrained in agreement with the classical 
mechanics three d.o.f. Moreover, from Newton’s Law, it 
follows that Va &  is unforced by F. The angular acceleration 

Va &  affects only (58), and represents an angular 
acceleration of the unit vectors jV  and kV around the axis iV. 
But if such vectors underwent a rotation, the LVLH frame 
would be lost. Therefore the constraint 0V =a &  follows. 

C. Uniform Circular Motion 
This section ends with a simple example: the uniform 

circular motion of P around O, sketched in Fig. 2.  

O

P
r

v
iO

jO ≡ jV

kO ≡ iVkV

i
j

k

 
Fig. 2. Uniform circular motion around O 

LVLH and LORF quaternion definitions are the same as in 
(49) and (41). First, quaternion kinematics is applied, 
starting from LVLH case. The generalized angular velocity 
of the LVLH quaternion is: 
 , 0V V V⊥= =w w &W . (59) 

The generalized angular velocity is coincident with the 
angular rate of P around O, denoted with ( ) 2= ×ω r v r . 
This leads to the next result showing quaternion kinematic 
equation to be similar to classical vector form: 

 ( ){ ( )0 0
     0 0

V V V

V V

= × = ⊗
= =

r ω r w
r r

�� R R
R R , (60) 

where /2V =w ω . By applying (36), quaternion dynamic 
equation can be obtained. Quaternion dynamics, like 
kinematics, looks similar to classical vector form: 

 ( )
[ ]

( )
2 2

0 0

   
0 0

V V V V V V V

V V

 =− = + ⊗ ⊗ =−
 = = 
v ω r a w w w
v v

��� R R R
R R

, (61) 

where 0=Va  by definition of uniform motion.  
By using LORF, dynamics is represented by quaternion 

kinematics, because the quaternion describes point 
velocity, instead of position. LORF dynamics is: 

 ( ){ ( )0 0
     0 0

O O O

O O

= × = ⊗
= =

v ω v w
v v

�� R R
R R . (62) 

Kinematics follows from definition (41):  

 ( ){ ( ) ( ) ( ){
0
     0 0 0 0

O O

O O

∗

∗
= ⊗ ⊗=

= = ⊗ ⊗
r ir v

r r r i
�� R R
R R . (63) 

The last four equations show that the angular velocities of 
the LORF and LVLH quaternions are the same, namely 

/2 O V= =ω w w . This follows from the fact that, for uniform 

circular motion, position and velocity are always 
orthogonal, then rotating with the same angular rate. 

V. CONCLUSIONS AND FUTURE DEVELOPMENTS 
The orbit dynamics and kinematics for the point mass 

motion has been transformed from the classical vector 
notation into a new quaternion form. The LORF equations 
have been tested through MATLAB implementation. 
Among future developments, the design of  quaternion 
observer and control will cover the most important role. 

APPENDIX 

A. Algebra - Conjugate Multiplication properties 
When quaternion multiplication involves conjugates, 

commutative property (11) still hold. Then the product 
C ∗ ∗= ⊗A B can be written in matrix notation through: 

 ( ) ( ) ( ) ( )T TC + −∗ ∗ ∗ ∗ + ∗ − ∗= = = =A B B A A B B A . (A.1) 

From previous equation it follows: 

 ( ) ( ) ( ) ( )  and  T T+ −∗ + ∗ −= =A A B B . (A.2) 

B. Algebra - Some Interesting Matrices 
It is useful to introduce the following matrix notations: 

 
( ) ( )( )
( ) ( )( )

0

0

E x I C

E x I C

+

−

 = − + 
 = − − 

x x

x x

X

X
. (A.3) 

By exploiting the new notation, the matrix expression of 
quaternions introduced in (10) can be rewritten as: 

 
( )( ) ( )( )

( )( ) ( )( )

TT T

TT T

E E

E E

+ ∗ − ∗ −

− ∗ + ∗ +

   = =   

   = =   

A A A A A

B B B B B
. (A.4) 

C. Kinematics - Generalized angular velocity 
Rewriting the term ∗⊗

i
P P  in (26) by using the matrix 

notation (A.4), yields: 

 ( ) ( ) ( )
0T

E E
+ ∗ −

+ +
  = = = =     

w � � � �
PP P P P PP P P . (A.5) 
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