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Abstract

In this paper, we present a tensorial (i.e., coordinate-free)

derivation of the equations of motion of a formation con-

sisting of N spacecraft each modeled as a rigid body. Specif-

ically, using spatial velocities and spatial forces we demon-

strate that the equations of motion for a single free rigid

body (i.e., a single spacecraft) can be naturally expressed

in four fundamental forms. The four forms of the dynamic

equations include (1) motion about the system center-of-

mass in terms of absolute rates-of-change, (2) motion about

the system center-of-mass in terms of body rates of change,

(3) motion about an arbitrary point fixed on the rigid body

in terms of absolute rates-of-change, and (4) motion about

an arbitrary point fixed on the rigid body in terms of body

rates-of-change. We then introduce the spatial Coriolis

dyadic and discuss how a proper choice of this non-unique

tensor leads to dynamic models of formations satisfying the

skew-symmetry property required by an important class

of nonlinear tracking control laws. Next, we demonstrate

that the equations of motion of the entire formation have

the same structure as the equations of motion of an indi-

vidual spacecraft. The results presented in this paper form

the cornerstone of a coordinate-free modeling environment

for developing dynamic models for various formation flying

applications.

1 Introduction

The ability to accurately capture the dynamic behavior
of separated spacecraft formations in both deep space
and in orbit around a central body is critical to the
success of many planned and future NASA missions.
For example, the development and assessment of high-
precision formation flying control laws will require a
spectrum of spacecraft dynamic models ranging from
point mass models to multi-flexible body models.

To this end, we develop a tensorial formulation of the
equations of motion of formations consisting of N sep-
arated spacecraft. In addition, by utilizing the con-
cept of a spatial vector (viz., a vectrix consisting of

both rotational and translational vector quantities) it
is possible to unify formation translational and rota-
tional dynamics into a single framework. The coordi-
nate free approach using spatial vectors allows one to
have maximal physical insight into the structure of for-
mation dynamics with a minimum of notational over-
head. The coordinate-free approach discussed here is
based on the use of direct tensor notation to formu-
late the equations of motion of the system. This ap-
proach is especially powerful in applications where a
large number of observers (i.e., reference frames) are
involved in the dynamic analysis. Further, once a spe-
cific set of generalized coordinates has been chosen, the
tensorial equations admit a concise matrix form which
is amenable to computer simulation. The coordinate-
free modeling architecture developed in this paper also
facilitates the design of nonlinear tracking control laws
for separated spacecraft formations.

The primary focus of this paper is on the application
of the coordinate-free approach to develop the equa-
tions of motion for formations consisting of N space-
craft, where each spacecraft is modeled as a single rigid
body. Much of the research done to date in the area
of formation flying dynamics has concentrated on the
development of 3 degree-of-freedom (3DOF) transla-
tional equations of motion along with associated dis-
turbance models. For example, the linearized trans-
lational motion equations of one spacecraft relative
to another spacecraft in a circular orbit (commonly
called the Clohessy-Wiltshire-Hill equations) has been
addressed by many researchers; e.g., see [9]. The as-
sumption of a circular reference orbit has been relaxed
in a number of papers; e.g., see [1] for an overview.
Using coordinate-free notation, [10] discusses the rela-
tive translational dynamics of formations in deep space
and provides insight into the validity of utilizing linear
dynamic models for control law design. A unified 6
DOF description of formation flying dynamics (as well
as guidance and control) has been elusive; notable ex-
ceptions are [7] and [13].

The rest of this paper is organized as follows. First,



we discuss material from rigid body kinematics and
tensor analysis required in the sequel. Then, using the
concept of spatial velocities and forces (i.e., combin-
ing linear/angular velocities and forces/torques into a
single entity), we demonstrate that the equations of
motion of a rigid body can be naturally expressed in
four distinct forms. Although each form is an exact de-
scription of the dynamics of a single rigid body, each
form is not equivalent for developing dynamic models
and control laws for separated spacecraft formations.
To this end, we then discuss the proper selection of the
spatial Coriolis dyadic, which is required in an impor-
tant class of adaptive control laws used for the control
of systems of bodies including underwater vehicles [2],
flexible space structures [6], and robotic systems [11].
Next, we demonstrate that the absolute equations of
motion of the N individual spacecraft can be concate-
nated to form the motion equations of the entire for-
mation. Moreover, it is shown that the equations of
motion at the formation-level have the same structure
as the equations of motion of a single rigid spacecraft.
The final form of the absolute equations of motion pro-
vide the first step toward a complete description of the
dynamics of formations and can be tailored to appli-
cations in various dynamic environments.

2 Differentiation of Vectors in Rotating
Frames of Reference

In this section we discuss background material from
rigid body kinematics and tensor analysis that is re-
quired in the sequel; see [4] and [5] for further informa-

tion. Consider a geometric vector ~Q describing some
physical quantity (e.g. velocity, force, etc.) of inter-
est. Here we are making the distinction between ge-

ometric or Gibbsian vectors and column matrices or
3-tuples of real numbers. A geometric vector ~Q is a
quantity possessing magnitude, direction, and obey-
ing the parallelogram law of addition in three dimen-
sional Euclidean point space E3. A geometric vector
should be thought of as an arrow or directed line seg-
ment in E3. In particular, a vector ~Q is a geometric
object that exists independently of any particular ba-
sis chosen for E3, while a column matrix of numbers
Q = [Q1, Q2, Q3]

T
∈ <3×1 is the representation of a

geometric vector in a particular basis. It follows that
a column matrix Q depends on both the underlying
vector and the particular frame of reference.

In rigid body kinematics we limit our attention to a
special class of basis vectors for E3 called reference
frames. A reference frame consists of a right-handed
set of three mutually orthonormal vectors located at an
arbitrary point (called the origin of the frame) in E3.

The basis vectors associated with a reference frame can
be easily manipulated by defining a vectrix 1 as follows:
~FA

4
= [~a1 ~a2 ~a3]

T
. In other words, the elements of

the vectrix ~FA are the basis vectors characterizing the
given frame of reference. In the sequel, a reference
frame will be denoted as FA and the vectrix associated
with the frame as ~FA.

Once a reference frame FA has been defined, a ge-
ometric vector can be represented uniquely as ~Q =
Q1~a1 + Q2~a2 + Q3~a3 or equivalently as ~Q = ~FT

AQA.

The real numbers Qi = ~Q · ~ai are called the compo-
nents of ~Q relative to FA. In short, QA is the col-
umn matrix whose entries are the components of ~Q

in FA. Note that when a different reference frame
FB is chosen, the same underlying geometric object
~Q will admit a different column matrix representation
QB = [Q′

1, Q
′
2, Q

′
3]

T
∈ <3×1.

Physically, a reference frame can be identified with an
observer who is rigidly mounted along the three mutu-
ally orthogonal axes of FA. In this paper, all observers
are assumed to measure the same absolute time irre-
spective of their state of motion.

A fundamental result that will be used in the sequel is
the Transport Theorem for geometric vectors [5]:

A

~Q=
B

~Q +
[

A~ωB
]

~Q (1)

Here ~Q denotes an arbitrary geometric vector, [~a]~b =

~a ×~b, A~ωB denotes the angular velocity of FB in FA,
A

~Q
4
= Q̇1~a1 + Q̇2~a2 + Q̇3~a3, and

B

~Q
4
= Q̇′

1
~b1 + Q̇′

2
~b2 + Q̇′

3
~b3.

The term
A

~Q (resp.
B

~Q) can be interpreted physically as

the rate of change of ~Q as seen by an observer rigidly
mounted to the axes of FA (resp. FB). As a conse-

quence, if ~Q is a vector fixed in FA (resp. FB) then
A

~Q= ~0 (resp.
B

~Q= ~0).

In the sequel we will also consider tensors of second
rank, called dyadics. In complete analogy with a vec-

tor, a dyadic
↔

T is a geometric object that is indepen-
dent of any observer. For our purposes, we regard

a dyadic as a linear operator
↔

T : E3 7→ E3; i.e., a
dyadic is a linear mapping on the space of geomet-
ric vectors. However, once a reference frame FA has
been introduced, a dyadic can be represented uniquely

as
↔

T = ~FT
ATA

~FA where the elements of the 3 × 3 ma-

trix TA are the components of
↔

T relative to FA. In

1Although this notational device apparently goes back to the
1960’s, the phrase vectrix (i.e., part vector, part matrix) was
popularized in [4].



Table 1: Four Forms of the Dynamic Equations
Form Reference Point Vector Derivatives

Form 1 Center-of-Mass Inertial
Form 2 Center-of-Mass Body
Form 3 Arbitrary Inertial
Form 4 Arbitrary Body

short, TA is the 3× 3 matrix whose entries Tij are the

representation of
↔

T in FA. Note that when a differ-
ent reference frame FB is chosen, the same underlying

geometric object
↔

T will admit a different matrix repre-
sentation, given by a different 3× 3 matrix TB ∈ <3×3

with entries T ′
ij .

The following generalization of the Transport Theorem
for dyadics will also be used in the sequel:

A
↔

T =

B
↔

T +
[

A~ωB
] ↔

T −
↔

T
[

A~ωB
]

(2)

Here
↔

T denotes an arbitrary second rank tensor,

A
↔

T
4
=

Ṫij~ai~aj ,

B
↔

T
4
= Ṫ ′

ij
~bi

~bj and the notation ~ai~aj (resp. ~bi
~bj)

denotes the dyadic (or tensor) product. Note that we
have employed the summation convention in the above
expressions.

Spacecraft Equations of Motion:
Rigid Body Models

In this section we show that the equations of motion
of a spacecraft modeled as a single rigid body can be
naturally expressed in four different forms. To obtain
maximum insight into the structure of the equations
of motion, coordinate-free vector/dyadic notation will
be utilized throughout. The four forms of the equa-
tions of motion are classified as follows: (1) motion
equations about the system center-of-mass in terms of
absolute rates-of-change, (2) motion equations about
the system center-of-mass in terms of body rates of
change, (3) motion equations about an arbitrary point
fixed on the rigid body in terms of absolute rates-of-
change, and (4) motion equations about an arbitrary
point fixed on the rigid body in terms of body rates-
of-change. The four forms2 of the equations of motion
are summarized in Table 1.

2Note that other forms of the equations of motion can result
when inertial derivatives are expressed with respect to an ob-
server having arbitrary motion relative to the body. See Green-
wood [3] for further details.

Euler’s Fundamental Laws of Mechanics
The following independent laws of mechanics, due to
Euler in 1775, characterize the momentum balance of
a single rigid body

N

~hc = ~τc (3)
N

~pc = ~f (4)

where ~pc is the absolute linear momentum of the body,
~hc is the absolute angular momentum about the mass
center of the system, ~f is the resultant external force
acting on the body, ~τc is the resultant torque about

the system center-of-mass, and
N

(•) denotes the rate-of-
change relative to an inertial frame (i.e., an inertially
fixed observer). Equation (3) is called the balance of

angular momentum and (4) is called the balance of lin-

ear momentum. We now define the spatial momentum

and spatial force vectors as follows:

~Hc
4
=

[

~hc

~pc

]

(5)

~Fc
4
=

[

~τc

~f

]

(6)

As a result, Euler’s Laws of Mechanics (3)-(4) can be
expressed in the concise form

N

~Hc = ~Fc (7)

The use of spatial vectors (i.e., the combination of lin-
ear and angular quantities) not only leads to a sim-
plified set of motion equations and deeper insight into
the dynamic behavior of rigid bodies, but also allows

the unification of translational and rotational motion

within a single framework. The spatial momentum
vector about the center-of-mass of a rigid body is re-
lated to the spatial velocity as follows

~Hc =
↔

Mc
~Vc (8)

where the spatial velocity is defined as

~Vc
4
=

[

~ω

~vc

]

(9)

and the spatial inertia dyadic is

↔

M c=

[

↔

Jc

↔

0
↔

0 m
↔

1

]

(10)

Here m denotes the (constant) mass of the body, ~vc

denotes the absolute velocity of the center-of-mass of

the body,
↔

Jc denotes the inertia dyadic of the body

about its center of mass,
↔

1 is the unit dyadic,
↔

0 is the
null dyadic, and ~ω = N~ωB is the angular velocity of
the body in FN . Note that the spatial inertia dyadic
↔

M c is symmetric.



First (Fundamental) Form of the Equations of
Motion
In this section we obtain the equations of motion of a
single rigid body about the center-of-mass in terms of
absolute derivatives.

Substituting the expression for the spatial momentum
(8) into the momentum balance (7) and performing the
inertial derivative we find

↔

Mc

N

~V c +

N
↔

Mc
~Vc = ~Fc (11)

In order to determine

N
↔

M c we generalize (2) for use with
spatial dyadics:

N
↔

Mc=

B
↔

Mc +
[

~Ω
]

↔

M c −
↔

M c

[

~Ω
]

(12)

where
[

~Ω
]

4
=

[

[~ω]
↔

0
↔

0 [~ω]

]

(13)

Noting that

B
↔

M c=
↔

0 for a rigid body of constant mass,
we find that the equations of motion are

↔

Mc

N

~V c +
↔

C1
~Vc = ~Fc (14)

where

↔

C1 =

N
↔

Mc (15)

=
[

~Ω
]

↔

M c −
↔

M c

[

~Ω
]

(16)

Expanding out (14) we find

[

↔

Jc

↔

0
↔

0 m
↔

1

]





N

~ω
N

~vc



 +

[

[~ω]
↔

Jc ~ω
~0

]

=

[

~τc

~f

]

(17)

Equation (17) (resp. (14)) will be called the funda-

mental form of the equations of motion for a single
rigid body.

Second Form of the Equations of Motion
In this section we develop the equations of motion
about the center-of-mass in terms of body rates-of-
change.

Applying the transport formula (1) to the vectors ~ω

and ~vc we find
N

~ω=
B

~ω and
N

~v c=
B

~vc +[~ω]~vc. Note that in
terms of spatial velocities the above equations can be
written as

N

~V c=
B

~V c +
[

~Ω
]

~Vc (18)

where
[

~Ω
]

is as defined in (13). Also [~ω]~ω = ~0 has been
used in (18).

Substituting (18) into (14) results in

↔

Mc (
B

~Vc +
[

~Ω
]

~Vc)+
↔

C1
~Vc = ~Fc (19)

Rearranging we find

↔

Mc

B

~V c +
↔

C2
~Vc = ~Fc (20)

where
↔

C2 =
↔

C1 +
↔

M c

[

~Ω
]

(21)

=
[

~Ω
]

↔

M c (22)

Expanding out (20) the explicit form of the equations
of motion are
[ ↔

Jc

↔

0
↔

0 m
↔

1

]





B

~ω
B

~vc



 +

[

[~ω]
↔

Jc ~ω

m [~ω]~vc

]

=

[

~τc

~f

]

(23)

Third Form of the Equations of Motion
In this section we derive the equations of motion of a
single rigid body about an arbitrary point fixed on the
body in terms of inertial rates-of-change.

For an arbitrary point, denoted o, fixed to a rigid body

~vc = ~vo + [~ω]~rc/o (24)

~τo = ~τc + [~rc/o]~f (25)

where ~rc/o denotes the vector from point o to point
c. Using spatial velocities and forces (24)-(25) can be
expressed concisely as follows

~Vc =
↔

T ~Vo (26)

~Fo =
↔

T T ~Fc (27)

where
↔

T
4
=

[

↔

1
↔

0

−[~rc/o]
↔

1

]

(28)

and [~rc/o]
T

= −[~rc/o]. Note that have used the fact

that ~ωc = ~ωo = ~ω and ~fc = ~fo = ~f in (26)-(27).

The absolute derivative of (26) is given by

N

~Vc=

N
↔

T ~V0+
↔

T

N

~V o (29)

Substituting (29) and (26) into (11) and pre-

multiplying by
↔

T
T

we find

↔

Mo

N

~V o +
↔

C3
~Vo = ~Fo (30)



where
↔

Mo =
↔

T
T ↔

M c

↔

T (31)

↔

C3 =
↔

T
T ↔

M c

N
↔

T +
↔

T
T ↔

C1

↔

T (32)

and ~Fo =
↔

T
T

~Fc. Expanding out the expression for
↔

Mo

we find

~Mo =

[

↔

Jc −[~rc/o][~rc/o] m[~rc/o]

−m[~rc/o] m
↔

1

]

(33)

To find an explicit formula for
↔

C3 note that

N
↔

T =

B
↔

T +
[

~Ω
]

↔

T −
↔

T

[

~Ω
]

(34)

where

B
↔

T =
↔

0 since ~rc/o is fixed in the body. Substitut-

ing (34) into the above expression for
↔

C3 and expand-
ing yields

↔

C3=

[

[~ω]
↔

Jc −

↔

Jc [~ω] − m[~rc/o][~ω][~rc/o] + m[~rc/o][~rc/o][~ω]
↔

0

−m[~ω][~rc/o] + m[~rc/o][~ω]
↔

0

]

(35)

We immediately find

↔

C3
~Vo =

[

[~ω]
↔

Jc ~ω + m[~rc/o] [~ω] [~ω]~rc/o

m [~ω] [~ω]~rc/o

]

(36)

The following fact will be used to simplify (36):

Proposition 1 If ~a and ~b are arbitrary vectors then

[~a][~b][~b]~a = −[~b][~a][~a]~b.

Proof: For any vector ~z, [~z]~z = ~0. Letting ~z = ~a ×

~b = [~a]~b we find [~a×~b][~a]~b = ~0. Upon using the identity

[~a ×~b] = [~a][~b] − [~b][~a] and the fact that [~a]~b = −[~b]~a
the result follows.

Applying Proposition 1 to (36),
we find m[~rc/o] [~ω] [~ω]~rc/o = −m [~ω] [~rc/o][~rc/o]~ω. As
a result,

↔

C3
~Vo =

[

[~ω](
↔

Jc −m
[

~rc/o

] [

~rc/o

]

)~ω
m [~ω] [~ω]~rc/o

]

(37)

Note that
↔

Jo=
↔

Jc −m
[

~rc/o

] [

~rc/o

]

by the parallel axis
theorem.

Collecting together (33) and (37), the equations of mo-
tion of a rigid body about an arbitrary point fixed on
the body in terms of inertial rates of change is
[

↔

Jo m[~rc/o]

−m[~rc/o] m
↔

1

][

N

~ω
N

~vo

]

+

[

[~ω]
↔

Jo ~ω

m [~ω] [~ω]~rc/o

]

=

[

~τo

~f

]

(38)

Fourth Form of the Equations of Motion
In this section we derive two representations of the
equations of motion of a rigid body about an arbitrary
point fixed to the body in terms of body-fixed rates of
change.

First Representation: Applying the trans-

port formula
N

~V o=
B

~V o +
[

~Ω
]

~Vo to (30) we obtain

↔

Mo

B

~V o +
↔

C4
~Vo = ~Fo (39)

where
↔

C4 =
↔

C3 +
↔

Mo

[

~Ω
]

(40)

Substituting (35) into (40) and expanding we find

↔

C4=

[

[~ω]
↔

Jc −m[~rc/o][~ω][~rc/o] + m[~rc/o][~rc/o][~ω] m[~rc/o][~ω]
−m[~ω][~rc/o] m[~ω]

]

(41)

It follows that
↔

C4
~Vo =

[

[~ω]
↔

Jc ~ω + m[~rc/o] [~ω] [~ω]~rc/o + m[~rc/o][~ω]~vo

m[~ω]~vo + m [~ω] [~ω]~rc/o

]

(42)
Applying Proposition 1 to the term m[~rc/o] [~ω] [~ω]~rc/o

in (42), we find that the equations of motion about an
arbitrary point on a rigid body in terms of body-fixed
rates-of-change are

[

↔

Jo m[~rc/o]

−m[~rc/o] m
↔

1

][

B

~ω
B

~vo

]

+

[

[~ω]
↔

Jo ~ω + m[~rc/o] [~ω]~vo

m [~ω]~v0 + m [~ω] [~ω]~rc/o

]

=

[

~τo

~f

]

(43)

Note that (43) can be also be derived by applying the
transport formula directly to (38).

Second Representation: An alternate repre-
sentation of (43) results from applying the Jacobi iden-

tity ~a × (~b × ~c) +~b × (~c × ~a) + ~c × (~a ×~b) = ~0 to the
term m[~rc/o][~ω]~vo:

m[~rc/o][~ω]~vo = −[~ω][~vo]~rc/o − [~vo][~rc/o]~ω (44)

= [~ω][~rc/o]~vo − [~vo][~rc/o]~ω (45)

We immediately find
[

↔

Jo m[~rc/o]

−m[~rc/o] m
↔

1

][

B

~ω
B

~vo

]

+

[

[~ω]
↔

Jo ~ω + m [~ω] [~rc/o]~vo − m [~vo] [~rc/o]~ω
m [~ω]~v0 + m [~ω] [~ω]~rc/o

]

=

[

~τo

~f

]

(46)

Adding the zero vector in the form of m[~vo]~vo to (46)
yields

[

~Jo m[~rc/o]

−m[~rc/o] m~1

]

[

B

~ω
B

~vo

]

+

[

[~ω] ~Jo~ω + m [~ω] [~rc/o]~vo − m [~vo] [~rc/o]~ω + m[~vo]~vo

m [~ω]~v0 + m [~ω] [~ω]~rc/o

]

=

[

~τo

~f

]



After some manipulation the above equation can be
expressed as follows

↔

Mo

B

~V o +
↔

C4
~Vo = ~Fo (47)

where

↔

C4 = −

[

~ΩV

] ↔

Mo (48)

and
[

~ΩV

]

4
=

[

[~ω] [~vo]
↔

0 [~ω]

]

(49)

Equation (47) is a coordinate-free version of the Lie
group based equations of motion of a single rigid body
described in [8].

Kinematic Equations
In order to provide a complete description of the mo-
tion of a single rigid body (i.e., a single spacecraft), a
set of kinematic equations for each body is required.
For a single unconstrained rigid body the kinematic
differential equations (relative to the center-of-mass of

the body) are given by
N

~rc= ~vc and

N
↔

R= [~ω]
↔

R. Here
↔

R denotes the rotation dyadic describing the orienta-
tion of FB (with origin at the center-of-mass of the
body c) relative to FN , ~rc denotes the position of the
center-of-mass of the rigid body relative to the ori-
gin of the inertial frame, and ~vc denotes the absolute
velocity of the center-of-mass of the rigid body rela-
tive to an inertially fixed observer. Note that a set of
kinematic equations similar to those given above can
be developed about an arbitrary point o fixed on the
rigid body.

The Spatial Coriolis Dyadic

In the last section we developed the following four al-
ternate forms of the equations of motion of a single
rigid body:

↔

M1

N

~V c +
↔

C1
~Vc = ~Fc (50)

↔

M2

B

~V c +
↔

C2
~Vc = ~Fc (51)

↔

M3

N

~V o +
↔

C3
~Vo = ~Fo (52)

↔

M4

B

~V o +
↔

C4
~Vo = ~Fo (53)

where
↔

M1=
↔

M2=
↔

Mc and
↔

M3=
↔

M4=
↔

Mo. Although the

products
↔

C1
~Vc,

↔

C2
~Vc,

↔

C3
~Vo,

↔

C4
~Vo are unique, the

spatial Coriolis dyadic
↔

Ci i = 1, 2, 3, 4 is not. As will

be shown, this is a consequence of the fact that
↔

Ci is
itself a function of the spatial velocity.

For the purpose of dynamic modeling and simulation,
the non-uniqueness of the spatial Coriolis dyadic is not

an important issue as any admissible choice of
↔

Ci leads
to the correct linear/angular accelerations. However,
when developing nonlinear tracking control laws for
separated spacecraft (see [2] for applications to under-
water vehicles) the choice of the spatial Coriolis dyadic

is critical. Specifically,
↔

C i must be defined in such a

way that it renders

N
↔

M i −2
↔

C i skew-symmetric. For ex-
ample, in [11] a globally stable adaptive control law for
robotic vehicles is designed that results in asymptotic
tracking of a desired reference trajectory qd(t) ∈ <n

where qd denotes specific generalized coordinates. The
stability proof of the adaptive control law requires that
sT (Ṁ −2C)s = 0 where s ∈ <n is a function of both q

and q̇ and M is the system mass matrix [11]. As a re-
sult, the matrix representation of the Coriolis dyadic,
denoted C, must be constructed in such a way to ren-
der the matrix (Ṁ − 2C) skew-symmetric3 The ex-
plicit relationship between the matrices M and C and

the dyadics
↔

M and
↔

C for a multibody spacecraft is
discussed in [8].

It is also known [8] that the equations of motion of a
multibody spacecraft (i.e., a spacecraft consisting of a
collection of hinge connected rigid bodies) inherit the
skew-symmetry property from the equations of motion
at the individual body level. As a result, it is impor-
tant to define the appropriate spatial Coriolis dyadic
↔

Ci at the level of each individual rigid body. To this
end, the following result is useful.

Proposition 2 If
↔

Ci is skew-symmetric then

N
↔

M i

−2
↔

Ci is skew-symmetric.

Proof: Recalling

N
↔

M i=
[

~Ω
]

↔

M i −
↔

M i

[

~Ω
]

it fol-

lows immediately that

N
↔

M i= −

N
↔

M
T

i . Observing that
the difference of two skew-symmetric tensors is skew-
symmetric establishes the result.

We now discuss some specific choices of the spatial

Coriolis dyadic that render

N
↔

M i −2
↔

C i skew-symmetric.
3It is important to note that if s = q̇, then q̇T (Ṁ − 2C)q̇ = 0

irrespective of the skew-symmetry of Ṁ − 2C. This statement
is a property of finite-dimensional natural systems; see [8] for
additional details and references.



Beginning with the fundamental form of the equations
of motion (14) we find from expanding (16) that

↔

C1=

[

[~ω]
↔

Jc −
↔

Jc [~ω]
↔

0
↔

0
↔

0

]

(54)

Noting that
↔

C1 is skew-symmetric, it follows that the
fundamental form of the equations of motion are man-

ifestly skew-symmetric. We will denote
↔

C1 in (54) by
↔

C1

ss

.

The Coriolis dyadic associated with the second form
of the equations of motion (20) is not skew-symmetric.
In order to develop a skew-symmetric representation
we expand (22) and find

↔

C2=

[

[~ω]
↔

Jc

↔

0
↔

0 m[~ω]

]

(55)

A skew-symmetric Coriolis dyadic results by modifying
(55) as follows

↔

C2

ss

=

[

[~ω]
↔

Jc −
↔

Jc [~ω]
↔

0
↔

0 m[~ω]

]

(56)

Note that although we have modified the Coriolis
dyadic, the second form of the equations of motion

(20) has not changed since
↔

C2

ss
~Vc =

↔

C2
~Vc. The above

technique of adding the zero vector in a judicious fash-
ion is the key to developing the appropriate spatial
Coriolis dyadic for use in nonlinear spacecraft control.

The fourth form of the equations of motion leads to
several admissible skew-symmetric forms. For exam-
ple, although (41) is not skew-symmetric, a skew-
symmetric representation of the fourth form of the
equations of motion results from the following mod-
ification of (41)

↔

C4

ss

=

[

[~ω]
↔

Jo −
↔

Jo [~ω] m
[

~rc/o

]

[~ω]
−m [~ω]

[

~rc/o

]

m [~ω]

]

(57)

The skew-symmetric spatial Coriolis dyadic given in
(57) can be used to construct another skew-symmetric
form of the equations of motion. To this end consider
the product

↔

C4

ss
~V0 =

[

[~ω]
↔

Jo ~ω−
↔

Jo [~ω] ~ω + m
[

~rc/o

]

[~ω]~vo

−m [~ω]
[

~rc/o

]

~ω + m [~ω]~vo

]

(58)

Applying the identity [~a][~b]~a = [~a × ~b]~a to the term

[~ω]
[

~rc/o

]

~ω, using the identity [~a]~b = −[~b]~a, and sub-
tracting the zero term m[~vo]~vo yields

↔

C4

ss
~V0 =

[

−

[

↔

Jo ~ω

]

~ω−
↔

Jo [~ω] ~ω + m
[

~rc/o

]

[~ω]~vo − m[~vo]~vo

−m
[

~ω × ~rc/o

]

~ω − m [~vo] ~ω

]

(59)

To simplify (59) the following result is required:

Proposition 3 If ~a,~b and ~c are arbitrary vectors then

[~a][~b]~c = −[~b × ~a]~c + [~c × ~a]~b

Proof: We find from rearranging the Jacobi identity
~a× (~b×~c) +~b× (~c×~a) +~c× (~a×~b) = ~0 that [~a][~b]~c =

−[~b][~c]~a − [~c][~a]~b = −[~b][~c]~a + [~c][~b]~a = −[~b](~c × ~a) +

[~c](~b × ~a) = [~c × ~a]~b − [~b × ~a]~c.

Applying Proposition 3 to the term [~rc/o][~ω]~vo in (59),
we find after some rearranging

↔

C4

ss

=

[

−[
↔

Jo ~ω] + m
[

~vo × ~rc/o

]

−m
[

~ω × ~rc/o

]

− m [~vo]

−m
[

~ω × ~rc/o

]

− m [~vo]
↔

0

]

(60)

The form of the Coriolis dyadic given in (60) is similar
to the result obtained by Fossen in [2].

3 Equations of Motion for Formations

In this section we demonstrate that the equations of
motion of an entire formation of N rigid spacecraft
has the same structure as the equations of motion of a
single rigid spacecraft. In order to discuss collections
of rigid bodies, the previous notation introduced for
a single rigid body (cf. (50)) must be modified. To
this end, the equations of motion of the ith spacecraft
i = 1, 2, . . . , N are denoted

↔

M i (p)
N

~V i (p)+
↔

Ci (p)~Vi(p) = ~Fi(p) (61)

where point p is either the center-of-mass c or a general
point on the body o of the ith spacecraft Here the

Coriolis dyadic
↔

C i (p) is assumed to be any admissible
skew-symmetric dyadic (consistent with the point p)
as discussed in the previous section.

By stacking the equations of motion of each spacecraft
as follows:

↔

M
4
= diag[

↔

M1 (p),
↔

M2 (p), . . . ,
↔

MN (p)] (62)

~V
4
= col[~V1(p), ~V2(p), . . . , ~VN (p)] (63)

↔

C
4
= diag[

↔

C1 (p),
↔

C2 (p), . . . ,
↔

CN (p)] (64)

~F
4
= col[~F1(p), ~F2(p), . . . , ~FN (p)] (65)

we immediately find that the global equations of mo-

tion of the formation can be expressed as:

↔

M

N

~V +
↔

C ~V = ~F (66)



Note that equation (66), describing the global dynam-
ics of the formation, has the same structure as the
equations of motion of a single rigid body. Although
we have used inertial derivatives in (66), body fixed
derivatives can also be used. The following property
of the formation equations of motion is of interest for
the design of formation control laws:

Proposition 4 If
↔

C i (p) is skew-symmetric for i =

1, 2, . . . , N then

N
↔

M −2
↔

C is also skew-symmetric.

Proof: The proof follows from applying Proposition

2 directly to the definitions of
↔

M and
↔

C given above.

As will be demonstrated in a later paper, the global
(absolute) formation equations of motion (66) form
the starting point for describing a formation as a vir-
tual multi-body system with a branched-chain (or tree)
topology For example, once a particular spacecraft has
been designated as the leader (i.e., the basebody of
the virtual multibody chain), the remaining spacecraft
are analogous to the rigid links of a multibody chain.
Each follower spacecraft is “attached” to the basebody
spacecraft via a 6DOF free-free joint. Here, a free-free
joint represents unconstrained motion between bodies.
As a result, in the virtual multi-body framework, the
relative equations of motion of the formation become
the primary concern. Due to space limitations, the rel-
ative equations of motion will be developed in a future
paper.

4 Conclusions

In this paper we have developed a tensorial (i.e.,
coordinate-free) derivation of the equations of motion
of a formation consisting of N spacecraft each mod-
eled as a rigid body. The results presented here are
the first step toward developing a coordinate-free ar-
chitecture for formation flying dynamic modeling and
control. Future work will address (1) characterizing
the relative dynamics of formations using the concept
of a virtual multi-body system, (2) developing the ap-
propriate environmental disturbance models, (3) de-
veloping explicit techniques to linearize and perform
sensitivity analysis on the formation equations of mo-
tion, and (4) developing the equations of motion for
formations where each individual spacecraft is itself a
multi-body system.
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