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Abstract— The paper presents the lateral acceleration con-
trol design of non-linear missile model using the multiple
single objective Pareto sampling method. The interpolated
controller design for the uncertain plants is carried out by
minimizing gain and phase margins, tracking and actuator
rate limit frequency domain based performance objectives. An
ad-hoc approach is taken to the controller interpolation. The
controller’s trade-offs are analyzed using the obtained Pareto
optimal solutions (corresponding to a given set of weight
vectors). The non-linear simulation results show that the
selected interpolated controller is a robust tracking controller
for all perturbation vertices.

I. I NTRODUCTION

This paper looks at the application of multi-objective
evolutionary optimization to a robust autopilot design. The
aim is to synthesize the fixed-structure controller by shaping
the system’s open and closed-loop frequency responses
results in the closed-loop responses are within the tracking
bounds. However, the demanded fast closed-loop responses
are constrained by the fin’s rate limit. In this work, the
actuator sluggishness is avoided by limiting the demanded
fin angle response at high frequency to be within the
maximum fin deflection rate for a step input. Finding a
feasible control structure (and furthermore tuning it) that
meet the frequency bounds can be very difficult, and the
resulting interpolated controller may not be stabilizing.By
formulating the former to an optimization problem, the
specific solutions on the Pareto front can be identified using
the evolution strategy (ES) and target vector method. Note
that the ES allows the inner and outer loop-shaping to be
carried out simultaneously. The resulting linear controllers
are interpolated using a soundly-based gain scheduling
approach.

This paper is organized as follows: The missile’s lateral
dynamics and autopilot requirements are described in sec-
tion II. The problem formulation, the stability constraints
and frequency domain based objective functions, is stated
in section III. The implication of trade-offs and simulation
results are presented in section IV.

II. M ISSILE MODEL AND AUTOPILOT REQUIREMENTS

A. Non-Linear Model

The missile model used in this study is taken from
Horton’s MSc thesis [1]. It describes a 5 DOF model in
parametric format with severe cross-coupling and non-linear
behavior. This study will look at the reduced problem of a

2 DOF controller for the lateral motion (on thexy plane in
Fig. 1). The airframe is roll stabilized (λ = 45◦), and no
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Fig. 1. Airframe axes and nomenclature.

coupling is assumed between pitch and yaw channels. With
these assumptions, the equations of motion are given by

v̇ = yv(M,σ)v + yζ(M,σ)ζ − Ur,

=
1

2m
ρV S(Cyv

v + V Cyζ
ζ) − Ur,

ṙ = nv(M,σ)v + nr(M,σ)r + nζ(M,σ)ζ,

=
1

2Iz

ρV Sd(Cnv
v +

1

2
dCnr

r + V Cnζ
ζ) (1)

where the variables are defined in Fig. 1. Herev is the
side-slip velocity,r is the body rate,ζ is the rudder fin
deflections,yv, yζ are semi-non-dimensional force deriva-
tives due to lateral velocity and fin angle,nv, nr, nζ

are semi-non-dimensional force derivatives due to side-slip
velocity, body rate and fin angle.U is the forward velocity.
Furthermore,m = 150 kg (125 kg) is the missile mass
when full (all burnt),ρ = ρ0 − 0.094h is the air density
(ρ0 = 1.23 kg/m3 is the sea level air density andh is
the missile altitude in km),V is the total velocity in m/s,
S = πd2/4 = 0.0314 m2 is the reference area (d = 0.2 m is
the reference diameter) andIz = 75 kg·m2 (60 kg·m2) is the
lateral inertia when full (all burnt). For the coefficientsCyv

,
Cyζ

, Cnv
, Cnr

, Cnζ
only discrete data points are available,

obtained from wind tunnel experiments. The interpolation
formulas, involving the Mach numberM and incidenceσ,
have been evaluated with the results summarized in Table
I. V =

√
U2 + v2 is to total velocity. It is assumed that

U ≫ v, so that the total incidenceσ can thus be taken
as σ = v/U , as sin σ ≈ σ for small σ. Finally, the
Mach number is obviously defined asM = V/a, where
a = 340 m/s is the speed of sound.



Aerodynamic Interpolated formula
derivative

Cyv −26 + 1.5M − 60|σ|
Cyζ

−10 + 1.4M − 1.5|σ|

Cnr −500 − 30M + 200|σ|
Cnv smCyv , where

sm = d−1[(1.3 + m/500)
−(1.3 + 0.1M + 0.3|σ|)]

Cnζ
sf Cyζ

, where
sf = d−1[(1.3 + m/500) − 2.6]

TABLE I

AERODYNAMIC DERIVATIVES OF THE NON-LINEAR MODEL .

B. 2 DOF Autopilot Configuration

The lateral autopilot configuration used in this paper is
shown in Fig. 2, whereF (s) = 98700/(s2 +445s+98700)

D(s)
+

−
C(s)

+

−
F (s) Grζ

(s) Gayr
(s)

Hr(s)Kr

las
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+
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(s)
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Fig. 2. 2 DOF autopilot configuration.

is the fin servo dynamics with maximum fin angle of
±0.3 rad and rate of±15 rad/s, Hr(s) = 253000/(s2 +
710s + 253000) is the rate gyro dynamics,Hay

(s) =
394800/(s2 + 890s + 394800) is the lateral accelerometer
dynamics andla = 0.9 m (0.8 m) is the accelerometer mo-
ment arm when full (all burnt). The open-loop transmission

Grζ
(s) =

nζs − (nζyv − nvyζ)

s2 − (yv + nr)s + (Unv + yvnr)
and

Gayr
(s) =

yζs
2 − yζnrs − U(nζyv − nvyζ)

nζs − (nζyv − nvyζ)
(2)

represent the missile dynamics, obtained by linearizing (1).

C. Closed-Loop Performance Specifications

The autopilot is required to track a lateral acceleration
demandayd

over the whole flight envelope (see Fig. 3).
The airframe is constrained by limitations on structure
integrity, and for a modern missile requiring high maneu-
verability a typical maximum lateral accelerationaymax

will
be ±500 m/s2. Recall thatσ = v/U , σmax can thus
be found by equating (1) to~0 and using the relationship
ayss

= Urss. The operating envelope of the Mach number
M and incidenceσ corresponding toaymax

= ±500 m/s2

is calculated and shown in figure 4.
Moreover, the autopilot must also be as robust

to the variation in massm (the propellant is con-
stantly burned) and uncertainty in aerodynamic derivatives
(∆Cyv

,∆Cyζ
,∆Cnv

,∆Cnr
,∆Cnζ

= ±5%), and not being
upset by fin saturation and sluggishness.
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Fig. 3. Velocity operating envelope.
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A list of performance specification (for a unit-step in-
put) is given in the time-domain using familiar figures as
follows:

1. Settling timets < 0.25 s,
2. Settling time variation|δts

| ≤ 0.05 s,
3. Steady state erroress ≤ 10 %,
4. Damping ratioζay

≈ 0.7,
5. Gain marginGM ≥ 9 dB, Phase marginPM ≥ 40◦.
6. Fin deflection|ζ| ≤ 0.0006 rad, fin deflection rate

|ζ̇| ≤ 0.015 rad/s.
From the results obtained in Fig. 4, the required fin angle

ζss is well within the saturation level. Hence, the actuator
saturation problem can be safely ignored in this case.

III. D ESIGN OFLATERAL M ISSILE AUTOPILOT

A. Internal Stability

The sufficient and necessary condition for the robust
stability of the closed-loop systems (depicted in Figure 2)
is that

1. T (s) = ay(s)/ayd
(s) is stable.

2. A non-minimum phase zero ofGayζ
(s) is not canceled

by an unstable pole ofC(s).
In this work, the stability ofT (s) is determined by solving
the roots of the characteristic polynomial. To ensure internal



stability, a minimum and stableC(s) is desired. This can
guarantee no RHP pole (and zero) cancellations.

B. Frequency Domain Performance Requirements

In this paper, the tracking performance specifications are
modeled in the frequency domain requirements which have
a convenient graphical interpretation in terms of tracking
ratios. With the design objectives given in section II-C,
the controller’s performances can then be measured by
evaluating the following robustness assessment functions:

1) Gain and Phase Margins Based Cost Function:A
look at the Nichols Chart qualitatively reveals that gain and
phase margin can be defined in term ofmax

ω
|T (jω)|, where

T (s) is for now defined as a unity-feedback closed-loop
transmission ratio [2]. For instance, if|T (jω)| ≤ Mp =
3 dB, thenGM > 4 dB andPM > 45◦ are guaranteed
(see Figure 5).
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Fig. 5. Nichols chart.

Adopting these relationships, the gain and phase margin
based cost function can be given by

J2ij
=







max
ωL1

≤ω≤ωU1

|T1ij
(jω)| − M0

Mp1
− M0

if T1ij
(s) is stable,

Ω otherwise,
(3)

where T1(s) = ay(s)/ayd1
(s), j is the operating region

Qi’s vertices index,Mp1
is the peak magnitude constraint,

M0 is −6 dB constant gain contour, andΩ is some large
number.

By using a standard block diagram reduction rules,L(s)
can be written as

L(s) =
−C(s)F (s)(lasGrζ

(s) + Gayζ
(s))Hay

(s)

1 − KrF (s)Grζ
(s)Hr(s)

. (4)

But then |lajωGrζ
(jω) + Gayζ

(jω)| ≤ |Gayζ
(jω)| and

∠−(la(jω)Grζ
(jω) + Gayζ

(jω)) ≥ ∠−Gayζ
(jω) (see

Fig. 6), thus the achieved gain and phase margins will
always be greater than or equal to the designed values.

10
−1

10
0

10
1

10
2

10
3

20

40

60

80

100

Frequency ω (rad/s)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

10
2

10
3

−200

−150

−100

−50

0

50

Frequency ω (rad/s)

P
ha

se
 (

de
g)

G
a

y
ζ
(jω)

l
a
jω G

rζ
(jω)+G

a
y
ζ
(jω)

Fig. 6. Frequency responses of theQi’s nominal −Gayζ
(s) and

−(lasGrζ
(s) + Gayζ
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Fig. 7. Frequency domain response specifications.

2) Tracking Boundaries Based Cost Function:The sys-
tem’s tracking performance specifications are based upon
satisfying all of the frequency forcing functions|BU (jω)|
and|BL(jω)| shown in Fig. 7. They represent the upper and
lower bounds of tracking performance specifications whom
an acceptable response|T (jω)| must lie within [3].

Following this design concept, the tracking boundaries
based cost function can be defined by,

J3ij
= max

ωL≤ω≤ωU

{ |Tij(jω)| − |T0(jω)|
|BU (jω)| − |T0(jω)| ,

|T0(jω)| − |Tij(jω)|
|T0(jω)| − |BL(jω)|

}

, (5)

whereT0(jω) is the nominal tracking ratio. Note thatωU is
defined to be the frequency at which|T0(jω)| = −12 dB.
This frequency range is considered to be sufficient for the
resulting time response approximation.

3) Actuator Rate Limit Based Cost Function:The fin
servo can be modeled as a linear dynamic partF (s) and
a series rate limiter illustrated in Figure 8. The input to
the integrator cannot exceed the limitR, i.e. the output of
the rate limiterζdlim

satisfies|ζ̇dlim
| ≤ R. Now consider a

sinusoidal input
ζd = A sin ωt. (6)
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Fig. 8. Actuator with rate limiter and linear dynamicsF (s).

ζdlim
’s steady-state response is in the linear range (i.e.

ζdlim
(t) = ζd(t) = A sin ωt) if Aω ≤ R. Thus, the rate

saturation can be avoided by limiting the demanded fin
angle (T2(s) = ζd(s)/ayd

(s)) gain-bandwidth product to
be R, whereR is from now the maximum fin deflection
rate for a unit-step input.

Using these results, the actuator rate limit based cost
function can be given by

J4ij
= max

ωL2
≤ω≤ωU2

|T2ij
(jω)|ω
R

. (7)

IV. OPTIMIZATION

A. Multi-Objective Evolutionary Optimization Algorithms

Basic scheme of the multi-objective evolution strategy
((µ + λ)-ES) used in this paper is as that described in.
Instead of, using non-dominated ranking, finding all Pareto
solutions, it locates some specific solutions on the Pareto
front corresponding to a given set of target vectors (e.g.
weighted Min-Max)V = {~v1, . . . , ~vT } [4]. Each genera-
tion, T weighted Min-Max distances are evaluated for all
µ+λ solutions, whose results are held in a matrixS = (sij).
Note that

sij = max
j=1,...,4

w
(k)
j O

(k)
i , (8)

where w
(k)
j = 1/v

(k)
j and O

(k)
i is ith individual’s kth

objective value. Each column of the matrixS is then ranked,
with the best score population member on the corresponding
target vector being given a rank of 1, and the worst a rank
of µ + λ. The rank values are stored in a matrixR. Now
R can be used to rank the population based on the number
of target vectors that are satisfied the best.

The primary advantages of this method is such that the
target vectors can be arbitrary generated focusing on the
interested regions. Also the limits of the objective space
and discontinuities within the Pareto set can be identified
by observing the distribution of the angular errors (θi =
cos−1v̂j · Ôi) across the total weight set.

B. Robust Gain-Scheduled Controller

1) Feasible Fixed-Structure Controller:Suppose the
controller’s order is prespecified (e.g.Kr, C(s) = Kp(s +
zp)/(s + pp) andD(s) = Kf (s + zf )/(s + pf )). Then, the
optimization variables areKr, Kp, zp, pp, Kd, zd andpd.
This is similar for difference control structures. Likewise
classical loop-shaping, these set of parameters are then
translated into the logarithmic space, thus

~x = [K̄r, K̄p, z̄p, p̄p, K̄d, z̄d, p̄d], (9)

where K̄r = log10 Kr, K̄p = log10 Kp, etc..., is now
formed a variables vector for the ES. This allows quite large
ranges of all the parameters to be explored, and proves to
speed up the convergence of the ES.

Consider the operating region2.725 ≤ M ≤ 3.05 and
0.0275 ≤ σ ≤ 0.0825. Let Mp = 3 dB and demanded
settling time tsd

= 0.2 s. J4 is for now considered as a
constraint. Pursuing the method described in section IV-A ,
the Pareto-optimal solutions (where0.1 ≤ w(k) ≤ 1.0) for
difference control structures are shown in Fig. 10. It can
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Fig. 9. Pareto-optimal solutions for difference control structures at500th

generation.

be seen that a low-order feasible controller can be achieved
with an additional of a prefilterF (s). This result is intuitive
since in 2 DOF systems there is no direct relationship
between the stability margins of the feedback system and
its time-domain response.

2) Design of Linear Interpolated Controller:Using the
fixed-structure controller described in section IV-B-1, we
take an ad-hoc approach to the interpolation where the
controllers are interpolated by interpolation of poles, zeros
and gains [5]. Instead of using piecewise linear interpola-
tion, the controller’s poles, zeros and gains are relatively
simpler formulated as linear function of Mach numberM

and incidenceσ (Kr = k
(0)
r + k

(0)
rM + (k

(1)
r + k

(1)
rM M)|σ|,

Kp = k
(0)
p + k

(0)
pM + (k

(1)
p + k

(1)
pM M)|σ|, etc...), whose

coefficients (k(0)
r , k

(0)
rM ,...,p(1)

dM
) straightforwardly are now

the optimization variables.
In addition, the operating regions are suggested to be

overlapped as an attempt to preserve the stability and
performance of the resulting interpolated controller (seeFig.
10). By trial and error, 9 subdivisions of the operating range
is sufficient in this case.

Now recall that the small settling timets is required
besides acceptable stability margins, tracking responsesand
fin rate (see section II-C). Thus, addition optimization vari-
abletsd

and objective functionJ1 = tsd
/tsmax

are needed,
wheretsd

is the demanded settling time andtsmax
= 0.25 s.

Hence,

~x = [tsd
, k̄(0)

r , . . . , p̄
(1)
fM

] (10)
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Fig. 10. Two overlap operating regions.

is therefore a new variables vector.
Following the initial design, the cumulative trade-off

graphs (where0.5 ≤ w(k) ≤ 1.0) for the linear interpo-
latated controller is shown in Fig. 11. Note that when the
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Fig. 11. Cumulative trade-off graph of the linear interpolated controller
at 500th-generation.

design linear controllers are interpolated, the actual non-
linear performances of the resulting controller are likely
to degrade. Thus, the solution associated with the target
vector (0.8, 0.6, 0.6, 1.0) is preferred in this case (dashed
line in Fig. 11). Its results corresponding to the minimizing
objectives are in Table II and Fig.12-14. The resulting

Poles, Zeros Interpolated formula
and Gains

Kr 0.0662 + 1.092 × 10−5M + (0.00136 − 0.00864M)|σ|
Kp 0.000256 − 1.457 × 10−7M + (2.056 × 10−5 + 5.621 × 10−6)|σ|
zp 32.616 + 0.379M + (3.547 + 1.167M)|σ|
pp 14.183 + 0.124M + (−13.024 − 0.252M)|σ|
Kf 0.0536 + 2.681 × 10−5M + (−0.00423 + 0.000295M)σ|
zf 613.783 + 1.468M + (29.178 + 1.166M)|σ|
pf 26.471 − 0.263M + (−1.935 − 0.164M)|σ|

TABLE II

POLES, ZEROS ANDGAINS INTERPOLATEDFORMULAS.

design has a relative small settling time, satisfied fin rate
limit, and more importantly good robustness properties (sta-
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Fig. 12. Qi’ nominal open-loop frequency responses.
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Fig. 13. Qi’ nominal closed-loop frequency responses.

bility margins and tracking performances. Notice that the
influence of the non-minimum phase zero on the demanded
fin angle frequency response (occurrence of the side-lope)
is clearly visible (see Fig. 14). Employing the non-linear
2 DOF model described in section II-A (including the rate
limiter), the time responses of the interpolated controller
are shown in Fig 15. The simulation results show that the
resulting controller is robust for all perturbation vertices.

V. CONCLUSIONS

The paper presents the lateral acceleration control design
of a non-linear missile model using the multi-objective
evolutionary optimization method. The aim is to arrive with
a fast closed-loop response without violating the actuator
constraints. In this work, this fin rate constraint function
is formulated in term of the gain-frequency product. The
feasible controller is initially determined by analyzing the
Pareto optimal solutions (point-wise design) for difference
control structures. The result shows that a low-order feasible
controller can achieved with the additional of a prefilter. Us-
ing the described fixed-structure controller, the interpolated
controller, whose poles, zeros and gains are linear function
of Mach numberM and incidenceσ, is chosen from the
cumulative trade-offs graph (corresponding to a given set
of weight vectors). The non-linear simulation results show
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Fig. 15. Lateral acceleration control responses of the perturbed systems.
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Fig. 14. Qi’ nominal closed-loop actuator demand frequency responses.

that the selected interpolated controller is indeed robustfor
all perturbation vertices.
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