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Abstract— The paper presents the lateral acceleration con- 2 DOF controller for the lateral motion (on the plane in
trol design of non-linear missile model using the multiple Fig. 1). The airframe is roll stabilized\(= 45°), and no
single objective Pareto sampling method. The interpolated
controller design for the uncertain plants is carried out by
minimizing gain and phase margins, tracking and actuator
rate limit frequency domain based performance objectives. An
ad-hoc approach is taken to the controller interpolation. The
controller’s trade-offs are analyzed using the obtained Pareto
optimal solutions (corresponding to a given set of weight
vectors). The non-linear simulation results show that the
selected interpolated controller is a robust tracking controller
for all perturbation vertices.

I. INTRODUCTION

This paper looks at the application of multi-objective

evolutionary optimization to a robust autopilot designeTh L . .
aim is to synthesize the fixed-structure controller by shgpi COUPIing is assumed between pitch and yaw channels. With

the system’s open and closed-loop frequency respons@@se assumptions, the equations of motion are given by

results in the closed-loop responses are within the trgckin _ _

bounds. However, the demanded fast closed-loop responses N yqi(M’ oy +yc(M,0)¢ = Ur,

are constrained by the fin's rate limit. In this work, the = %pVS(Ova+VCyCC) —Ur,

actuator sluggishness is avoided by limiting the demanded

fin angle response at high frequency to be within the n;(M’ U)U+nT(M’10)T+n<(M’ 28

maximum fin deflection rate for a step input. Finding a pVSd(Cp, v+ zdCy, v +VCp . ¢) (1)

feasible control structure (and furthermore tuning it)ttha 21, 2

meet the frequency bounds can be very difficult, and th&here the variables are defined in Fig. 1. Heras the

resulting interpolated controller may not be stabiliziBy. side-slip velocity,r is the body rate( is the rudder fin

formulating the former to an optimization problem, thedeflections,y,, y. are semi-non-dimensional force deriva-

specific solutions on the Pareto front can be identified usiniyes due to lateral velocity and fin angle,,, n,, n¢

the evolution strategy (ES) and target vector method. Notere semi-non-dimensional force derivatives due to sigbe-sl

that the ES allows the inner and outer loop-shaping to beelocity, body rate and fin anglé! is the forward velocity.

carried out simultaneously. The resulting linear conéiall  Furthermore,m = 150 kg (125 kg) is the missile mass

are interpolated using a soundly-based gain schedulinghen full (all burnt),p = pg — 0.094h is the air density

approach. (po = 1.23 kg/m? is the sea level air density and is
This paper is organized as follows: The missile’s laterathe missile altitude in km)} is the total velocity in s,

dynamics and autopilot requirements are described in ses-= wd?/4 = 0.0314 m? is the reference ared & 0.2 m is

tion 1l. The problem formulation, the stability constraint the reference diameter) afid = 75 kg-m? (60 kg-m?) is the

and frequency domain based objective functions, is statéateral inertia when full (all burnt). For the coefficierds, ,

in section Ill. The implication of trade-offs and simulatio C, , C,,,, Cy,, C,, only discrete data points are available,

results are presented in section IV. obtained from wind tunnel experiments. The interpolation

formulas, involving the Mach numbe¥/ and incidencer,

_ have been evaluated with the results summarized in Table

A. Non-Linear Model I. V = VU2 +? is to total velocity. It is assumed that
The missile model used in this study is taken fronl/ > v, so that the total incidence can thus be taken

Horton’s MSc thesis [1]. It describes a 5 DOF model inas 0 = v/U, assino =~ o for small o. Finally, the

parametric format with severe cross-coupling and noraline Mach number is obviously defined a4 = V/a, where

behavior. This study will look at the reduced problem of ax = 340 m/s is the speed of sound.
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Fig. 1. Airframe axes and nomenclature.

Il. MISSILEMODEL AND AUTOPILOT REQUIREMENTS



Aerodynamic | Interpolated formula

: : : : : ! ! — Sea level
derivative e
35 4 -
Cy, —26 + 1.5M — 60|o]| »
Cly, —10 + 1.4M — 1.5]0] o
Ch.,. —500 — 30M + 200]o]
Chn, smCl, , where 2sf

Sm = d~1[(1.3 +m/500)
—(1.34 0.1M + 0.3|o])]
sfCy,, Where
sf=d 1[(1.3+ m/500) — 2.6]
TABLE | 1
AERODYNAMIC DERIVATIVES OF THE NON-LINEAR MODEL.

Mach number M
~

Cne

i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10
Time (s)

B. 2 DOF Autopilot Configuration Fig. 3. Velocity operating envelope.
The lateral autopilot configuration used in this paper is

shown in Fig. 2, wherd”(s) = 98700/ (s? + 4455+ 98700)
- L ) LOL Gr(s) Ga,. (5) 3.4 :
e g 3.2 -
’—‘H“’[.) !r =28 -
Fig. 2. 2 DOF autopilot configuration. 24 R
is the fin servo dynamics with maximum fin angle of . S S U U U S S
+0.3 rad and rate oft-15 rad/s, H,(s) = 253000/ (s> + o ncience s (a0) ot

710s 4 253000) is the rate gyro dynamicsH,, (s) =

394800/ (s + 890s + 394800) is the lateral accelerometer
dynamics and, = 0.9 m (0.8 m) is the accelerometer mo-
ment arm when full (all burnt). The open-loop transmission A |ist of performance specification (for a unit-step in-
put) is given in the time-domain using familiar figures as

Fig. 4. Operating envelope.

_ n¢s — (ncyv - nvyC) .
G’“C (S) - 2 — (yv —I—n,.)s + (U’FLU +yvn7‘) and follows: . '
5% — yenrs — U(neys — noye) 1. Settl!ng timet; < 0.25 s,
Ga, (s) = % YT SRR (2) 2. Settling time variationd;_| < 0.05 s,
o n¢s = (n¢yv — noyc) 3. Steady state errar,, < 10 %,
represent the missile dynamics, obtained by linearizing (1 4. Damping ratio,, ~ 0.7,
5. Gain marginGM > 9 dB, Phase margi®®M > 40°.
C. Closed-Loop Performance Specifications 6. Fin deflection|¢| < 0.0006 rad, fin deflection rate
|| < 0.015 rad/s.

The autopilot is required to track a lateral acceleration . o ) i
demanda,, over the whole flight envelope (see Fig. 3). From the results obtained in Fig. 4, the required fin angle

The airframe is constrained by limitations on structuréss 1S Well within the saturation level. Hence, the actuator

integrity, and for a modern missile requiring high maneuSaturation problem can be safely ignored in this case.

verability a typical maximum lateral acceleratiop . will 1. DESIGN OFLATERAL MISSILE AUTOPILOT
be +500 m/s’. Repall thats = v/U, Omaz CaN thusf A. Internal Stability
be found by equating (1) t6 and using the relationship o N
a,.. = Urs,. The operating envelope of the Mach number Thg sufficient and necessary conqun for_ the_ robust
M and incidencer corresponding ta,, . = +500 m/s? §tab|I|ty of the closed-loop systems (depicted in Figure 2)
is calculated and shown in figure 4. is that

Moreover, the autopilot must also be as robustl. 7'(s) = ay(s)/ay,(s) is stable.
to the variation in massm (the propellant is con- 2. Anon-minimum phase zero 6f,, (s)is notcanceled
stantly burned) and uncertainty in aerodynamic derivative by an unstable pole of'(s).
(Ac,,, Acyc A, ACW,A% = +5%), and not being In this work, the stability ofl'(s) is determined by solving
upset by fin saturation and sluggishness. the roots of the characteristic polynomial. To ensure irger
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stability, a minimum and stabl€’(s) is desired. This can
guarantee no RHP pole (and zero) cancellations.

Magnitude (dB)

B. Frequency Domain Performance Requirements

In this paper, the tracking performance specifications are
modeled in the frequency domain requirements which have
a convenient graphical interpretation in terms of tracking
ratios. With the design objectives given in sectionClJ-
the controller’s performances can then be measured by
evaluating the following robustness assessment functions

1) Gain and Phase Margins Based Cost Functioh: S v o 7 w0
look at the Nichols Chart qualitatively reveals that gaidl an e
phase margin can be defined in terrmuul}ix |T(jw)|, where Fig. 6.  Frequency responses of ti@;’s nominal ~Ga,(s) and
T(s) is for now defined as a unity-feedback closed-loop (lasGr¢(s) + Ga, (5)-
transmission ratio [2]. For instance, [T'(jw)| < M, =
3 dB, thenGM > 4 dB and PM > 45° are guaranteed
(see Figure 5).
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-15p : ; B Fig. 7. Frequency domain response specifications.
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2) Tracking Boundaries Based Cost Functiohhe sys-
Fig. 5. Nichols chart. tem’s tracking performance specifications are based upon
satisfying all of the frequency forcing function®y (jw)|
Adopting these relationships, the gain and phase margand| B (jw)| shown in Fig. 7. They represent the upper and
based cost function can be given by lower bounds of tracking performance specifications whom
an acceptable respongE(jw)| must lie within [3].
Following this design concept, the tracking boundaries
ased cost function can be defined by,

@) J = max { |35 (jw)| — |To(jw)
K wr <w<w By (Gjw)| — [To(Gw)| '
where Ti(s) = ay(s)/ay,, (s), j is the operating region ’ o U U(j|T)|(jw)|O_(jT?!(jw)|
Qi’s vertices index,M,,, is the peak magnitude constraint, TO : B” , },(5)
My is —6 dB constant gain contour, ard is some large [ Zo(jw)| = | BL(jw)]

‘Tlr'j (]w)‘ - My . .
ma —2 = — if T1,.(s) is stabl
Jo,. = ‘-ULISOJ%(QJUI M,, — My 11.7( ) € b

/ Q otherwise

number. whereT;(jw) is the nominal tracking ratio. Note that; is
By using a standard block diagram reduction rulegs) — defined to be the frequency at whi¢h,(jw)| = —12 dB.
can be written as This frequency range is considered to be sufficient for the

resulting time response approximation.

3) Actuator Rate Limit Based Cost FunctioThe fin
servo can be modeled as a linear dynamic gaft) and
a series rate limiter illustrated in Figure 8. The input to
But then [l jwG, (jw) + Ga, (jw)| < |Ga, (jw)| and  the integrator cannot exceed the lint i.e. the output of
L=(la(jw)Gr (jw) + Ga, (jw)) = £-Ga, (jw) (see the rate limiter¢y,, satisfies|(q,,,, | < R. Now consider a
Fig. 6), thus the achieved gain and phase margins wilinusoidal input
always be greater than or equal to the designed values. Cq = Asinwt. (6)
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O f;r *) G [ ¢ where K, = logo K,, K, = log,, Kp, €tc..., is now

- ’ formed a variables vector for the ES. This allows quite large
ranges of all the parameters to be explored, and proves to
speed up the convergence of the ES.

Consider the operating regidh725 < M < 3.05 and
0.0275 < ¢ < 0.0825. Let M, = 3 dB and demanded
settling timet;, = 0.2 s. J; is for now considered as a
Ca,,.’s steady-state response is in the linear range (i.onstraint. Pur_suing the_method described in sectioA [V-
Can (1) = Ca(t) = Asinwt) if Aw < R. Thus, the rate the Pareto-optimal solutions (whebel < w(*) < 1.0) for
saturation can be avoided by limiting the demanded fiffifference control structures are shown in Fig. 10. It can
angle (»(s) = C(a(s)/ay,(s)) gain-bandwidth product to

Fig. 8. Actuator with rate limiter and linear dynamiéys).

5 T 7
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IV. OPTIMIZATION

be R, where R is from now the maximum fin deflection g / 2 & o

. . L ’ ’ 2"-c(s)

rate for a unit-step input. i N ,f S/ oy e

Using these results, the actuator rate limit based cost i A R K

function can be given by & ast G el T
3 2 o 4 -

Ty (jw)|w g’ R
Jy,, = max M (7 £ s R S T
7w, <w<lwu, R g J/ g N0 S

"
o

A. Multi-Objective Evolutionary Optimization Algorithms Lo 3

Basic scheme of the multi-objective evolution strategy osl- 4,
((x + X)-ES) used in this paper is as that described in. o
Instead of, using non-dominated ranking, finding all Pareto
solutions, it Iocat.es some §pECIfIC solutions on the Pare ig. 9. Pareto-optimal solutions for difference controlstures ab00*"
front corresponding to a given set of target vectors (€.generation.
weighted Min-Max)V = {vy,...,0r} [4]. Each genera-
tion, 7" weighted Min-Max distances are evaluated for alhe seen that a low-order feasible controller can be achieved
pi+A solutions, whose results are held in a maffix (sij).  with an additional of a prefilteF(s). This result is intuitive

05 1
Gain-phase margins objective value J

Note that ) () since in 2 DOF systems there is no direct relationship
Sij = Jfllax 4 w;0;, (8)  between the stability margins of the feedback system and
its time-domain response.
where w§.k) = 1/v](.k) and OE’“) is it individual's £th 2) Design of Linear Interpolated Controllertsing the

objective value. Each column of the mat§xs then ranked, fixed-structure controller described in section B\, we
with the best score population member on the correspondingke an ad-hoc approach to the interpolation where the
target vector being given a rank of 1, and the worst a ranéontrollers are interpolated by interpolation of polesoze
of u+ A. The rank values are stored in a matfix Now and gains [5]. Instead of using piecewise linear interpola-
R can be used to rank the population based on the numb@sn, the controller's poles, zeros and gains are relativel
of target vectors that are satisfied the best. simpler formulated as linear function of Mach numbdr
The primary advantages of this method is such that thend incidencer (K, = k{” + &%) + (5" + £ Mo,
target vectors can be arbitrary generated focusing on the, — k}@ + k;(ook)f + (k,(,l) + kz()yIM”gL etc...), whose
interested regions. Also the limits of the objective spacggefficients [AQNNAC p&l)) straightforwardly are now
and discontinuities within the Pareto set can be identifieghe optimization variables. !
by oP;:en@ng the distribution of the angular errofs & In addition, the operating regions are suggested to be
cos 05 - 0;) across the total weight set. overlapped as an attempt to preserve the stability and

B. Robust Gain-Scheduled Controller performance of the resulting interpolated controller (Sige

) ) 10). By trial and error, 9 subdivisions of the operating mng
1) Feasible Fixed-Structure Controller:Suppose the s gfficient in this case.

controller's order is prespecified (e.4.., C(s) = Kp(s + Now recall that the small settling time, is required

2p) /(s +pp) @nd D(s) = Ky(s +27)/(s +py)). Then, the  poqiges acceptable stability margins, tracking respoeaise's

opym.lzat!or? varlablgs arey, Kp, zp, pp, Ka, za an<.jpd.' fin rate (see section IG). Thus, addition optimization vari-
This is similar for difference control structures. Likewis ablet,, and objective function/, = ¢, /t are needed
Sd — Y84 Smax ’

classical Iqop-shaplng, _thes_e set of parameters are f eret,, is the demanded settling time and, . = 0.25 s.
translated into the logarithmic space, thus Hence o

T = [KT,KPaZPvﬁ;mKdvzdvﬁd]a (9) = [t5d71%’l("0)7"'7p§;\/1} (10)
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Fig. 10. Two overlap operating regions.

0.2

40 T

Open-loop gain [L(j)] (dB)

-80F - . -80dB|

; : . i L ~100dB|
-225 -180 -135 -90 -45 o
Open-loop phase [IL(jw) (deg)

L I
360 -315 -270

Fig. 12. ;' nominal open-loop frequency responses.

20

is therefore a new variables vector.

Following the initial design, the cumulative trade-off
graphs (whered.5 < w*) < 1.0) for the linear interpo-
latated controller is shown in Fig. 11. Note that when the

Y

09f

0.8

Objective value J,

0.6

05F

04

07— .

Fig. 11.

Obiective function index i

at 500t"-generation.

Cumulative trade-off graph of the linear interpethtontroller

Closed-loop gain [a Ja, | (4B)

~100 i i i
107

10
Frequency o (radls)

Fig. 13. @;’ nominal closed-loop frequency responses.

bility margins and tracking performances. Notice that the
influence of the non-minimum phase zero on the demanded
fin angle frequency response (occurrence of the side-lope)
is clearly visible (see Fig. 14). Employing the non-linear
2 DOF model described in section A{including the rate
limiter), the time responses of the interpolated controlle

design linear controllers are interpolated, the actual-nomre shown in Fig 15. The simulation results show that the
linear performances of the resulting controller are likelyesulting controller is robust for all perturbation veetic
to degrade. Thus, the solution associated with the target

vector (0.8,0.6,0.6,1.0) is preferred in this case (dashed
line in Fig. 11). Its results corresponding to the minimgin
The resultingf a non-linear missile model using the multi-objective

objectives

are in Table Il and Fig.12-14.

Poles, Zeros| Interpolated formula
and Gains ‘ ‘

K, 0.0662 + 1.092 x 10~ ° M + (0.00136 — 0.00864M)][q|
Ky 0.000256 — 1.457 x 10~ "M + (2.056 x 10—° + 5.621 x 10~9)[o]|
2p 32.616 + 0.379M + (3.547 + 1.167M)]o]
Do 14.183 + 0.124M + (—13.024 — 0.252M)]a]
Ky 0.0536 + 2.681 x 10~ °M + (—0.00423 + 0.000295M )|
z5 613.783 + 1.468M + (29.178 + 1.166M)][o]
Df 26.471 — 0.263M + (—1.935 — 0.164M)][a]

TABLE I

POLES, ZEROS AND GAINS INTERPOLATED FORMULAS.

V. CONCLUSIONS
The paper presents the lateral acceleration control design

evolutionary optimization method. The aim is to arrive with
a fast closed-loop response without violating the actuator
constraints. In this work, this fin rate constraint function
is formulated in term of the gain-frequency product. The
feasible controller is initially determined by analyzinget
Pareto optimal solutions (point-wise design) for diffezen
control structures. The result shows that a low-order asi
controller can achieved with the additional of a prefiltes-U
ing the described fixed-structure controller, the intesyoed
controller, whose poles, zeros and gains are linear fumctio
of Mach numberM and incidencer, is chosen from the

design has a relative small settling time, satisfied fin rateumulative trade-offs graph (corresponding to a given set
limit, and more importantly good robustness properties- (st of weight vectors). The non-linear simulation results show
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Fig. 14. @, nominal closed-loop actuator demand frequency responses.

that the selected interpolated controller is indeed rofarst
all perturbation vertices.
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