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Abstract— Broadcasting provides important functionality
for wireless ad hoc networks. It is used in route discovery
procedure in on-demand routing protocols such as DSR and
AODV. In order to save wireless network capacity and avoid
packets collisions, numerous broadcasting algorithms have
been proposed to reduce the number of transmitting nodes.
It is important to analyze and compare the effectiveness of
all kinds of protocols. All the previous work in this area is
based on simulations and experiments. We are not aware
of any published paper dealing with rigorous theoretical
analysis. In this paper, we analyze two popular ad hoc
broadcasting protocols. The results show the relation between
the performance of each protocol and selection of parameters.

I. I NTRODUCTION

Many on-demand protocols such as DSR (Dynamic
Source Routing) and AODV (On Demand Distance Vector
Routing) rely on broadcasting techniques to initiate the
route discovery process. Nodes receiving route request
messages simply transmit them in traditional broadcasting
scheme called ‘flooding’. Although this simple broadcasting
technique is easy to realize, recent research has shown
that it will causebroadcast storm problem[4] in ad hoc
networks.
The broadcast storm problem is due to the excessive
amount of retransmissions resulting in severe message
collision and channel contention. Various methods to
alleviate the broadcast storm problem are proposed in
[2-11]. All of these methods are trying to reduce the
number of retransmitting nodes so as to increase the
network capacity and avoid message collisions. All these
schemes are divided into several classes and compared
by simulation in [1]. Here we would like to introduce
these methods briefly according to how much topology
information one node has to know in each protocol.
The counter-based algorithm in [4] blocks a node’s
re-transmission if the number of times it has received the
same message during a random period of time exceeds
some threshold. This scheme is simple and easy to apply,
and it requires no topology information. Probabilistic
schemes are also studied in [4]. Every node that receives
the message will retransmit it with some probabilityp.
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When p = 1 this method is equivalent to the traditional
flooding scheme. This technique was explored in more
detail in [5], which described the bimodal phenomenon
based on percolation theory. A probabilitypc may exist
for an infinite network where most of the nodes will
get the message ifp > pc and few nodes will get the
message ifp < pc. The authors of [5] proposed some
gossip schemes and did experiments in collision-free ideal
networks to show that using probability between 0.6 and
0.8, gossip algorithms result in significant performance
improvement. The above protocols are very simple for
application because they require no topology information.
On the other hand, their performance may not be as good
as those more complex algorithms.
The sender’s neighbors are denoted byone-hop nodes,
the neighbors of these one-hop nodes that are more than
one hop from the sender are denoted bytwo-hop nodes.
A distance-based algorithm was proposed in [4], where
the minimum distance from all the senders to the receiver
is used for re-transmission judgement. An area based
algorithm was also proposed in [4]. In this scheme, the
receiving node judges whether to retransmit or not by
calculating the area uncovered by the sending nodes. In
[2] the distance and the cover angle are employed in
retransmission decision. Another scheme based on one-hop
nodes location was proposed in [3], but it relies on the
sending node to select the retransmitting nodes. The
authors of [7] proposed dynamic probabilistic broadcasting
protocols wherep is calculated dynamically according to
some local topology information such as distance, density,
etc.. It achieves some improvements over the probabilistic
methods with fixedp according to the simulations, but it
still did not give any proof to show why one has chosen
this valuep.
Two-hop topology is required by a multipoint relaying
algorithm in [8]. The information is obtained by periodically
broadcasting ’Hello’ messages among neighbor nodes.
With this information, each node calculates thelocal cover
setor multipoint relay setof the one-hop nodes. The nodes
in this set retransmit the received message and others will
be refrained from retransmission. Unlike the algorithm
in [8], where the retransmitting nodes are appointed by
the central sending node, individual receiving nodes are



responsible for retransmission decisions in [10]. These
two-hop schemes are usually more effective than one-hop
schemes because the heuristic algorithms usually can
achieve near optimal local cover set. But the transmission
of two-hop topology information may consume a higher
percentage of capacity so as to harm the performance when
network density is increased.
Two most important performance metrics to evaluate the
efficiency of a broadcasting protocol are RE (Reachability)
and SRB (Saved Rebroadcast). RE is defined in [4] as the
number of mobile hosts receiving the broadcast message
divided by the total number of mobile hosts that are
reachable, directly or indirectly, from the source host.
SRB is defined as1 − k/n, where n is the number of
hosts receiving the broadcast message,k is the number
of hosts actually transmitted the message[4]. When REs
are the same for two protocols, higher SRB means better
performance. The effectiveness of all these algorithms are
demonstrated in the original papers and they are compared
later in [1] by ns-2 simulation. But there is no theoretic
work showing how well each of these algorithms performs
in different networks models. Without theoretic analysis,
we cannot know RE and SRB quantitatively in each
protocol. It is also difficult to choose parameters (such
as threshold values in some schemes) properly to achieve
optimal performance without formulas relating parameters
to performance metrics. This paper analyzes two popular
ad hoc broadcasting protocols and makes a first step
towards this important issue.

II. T HEORETICANALYSIS OF TWO BROADCASTING

PROTOCOLS

Here we consider two protocols widely known as
the distance-based algorithm and counter-based algorithm.
SRB(n) denotes the Saved Rebroadcast forn × 1 one-
dimensional network or(n + 1)× (n + 1) two-dimensional
networks. It is assumed that the whole topology is known
to our analysis, although the algorithms are decentralized
and require no information or only local information. For
the sake of simplicity, we begin with the situation where
no packet collisions occur and all the nodes are equally
distributed in the space. For the one-dimensional case, all
n nodes are lined up and the distance between two adjacent
nodes is 1. Here the transmission radiusR is set to positive
integers for simplicity.
In the counter-based algorithm, a node initiates a counter
with a value of one and sets a RAD (which is randomly
chosen between 0 andTmaxseconds) upon reception of a
previously unseen packet[1]. During the RAD, the counter
is incremented by one every time it receives a redundant
message. If the counter is larger than or equal to a threshold
C (C ∈ Z+, C ≥ 2) when the RAD timer expires, the node
should drop this message and do not retransmit it. Otherwise
the message should be retransmitted.
In the distance-based algorithm, a node initiates a RAD

(which is randomly chosen between 0 andTmaxseconds)
upon reception of a previously unseen packet. All the
redundant packets will be cached during the RAD period.
When the RAD expires, all sender locations are examined
to see if the minimum distance between the receiver and the
sender nodes is less than or equal to a thresholdd ∈ Z+.
If it is true, this node should drop this message and do not
retransmit it.

A. One-Dimensional Grid Network

For the one-dimensional case, the message is initiated
from the original sender O and transmitted to the nodes
located between 1 and +n. It is obvious that REs for these
two schemes are 100%. We provide lower bounds and upper
bounds for two kinds ofSRB: SRB(n) andE(SRB(n)).
SRB(n) stands for SRB of every broadcasting execution,
while E(SRB(n)) stands for expectation of SRB for all
broadcasting executions. Notice the bounds forSRB(n)
are also the bounds forE(SRB(n)).

Theorem 1:If C = 2, limn→∞E[SRB(n)] = 1− 3
2R+1

for the counter-based algorithm.

Fig. 1. Proof of Theorem 1

Proof: Among all the nodes that received a message
after each transmission, only the node whose timer expires
first can retransmit it and block other nodes from re-
transmission since the counter thresholdC = 2. In the
figure above, if nodei transmitted the message,i additional
nodes would receive it. Each of thesei nodes has probability
1/i to transmit the message again and block otheri − 1
nodes’ transmissions. LetSk be the number of new nodes
that received the message at thekth transmission, where
Sk can be any value in set1, 2, . . . , R. Let ak be a vector
whoseith element (1 ≤ i ≤ R) is the probabilityP (Sk = i)
(see Fig.1). Sinceak+1 depends only onak, it is a Markov
process. We have then

ak+1 = Pak (1)

whereP is the transition matrix and

P =
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We notice thatP 2 > 0 (componentwise), soP is regular.
Then the powerP k approaches a probability matrixQ



when k goes to infinity, whereQa0 = u for any initial
probability distribution vectora0 and u is the unique
stationary distribution[12]. We can compute the stationary
distribution by:

Pu = u (2)

The solution is:

u =
[

1
1+2+...+R

2
1+2+...+R . . . R

1+2+...+R

]T

Suppose totallyxn nodes transmit the message. Letvi(xn)
represents the fraction of the transmissions that the process
can be expected to be in statesi (i new news receive the
message for one transmission). According to the Law of
Large Numbers for regular Markov chains,E[vi(xn)] → ui

if xn → ∞. Additionally,
∑R

i=1 ivi(xn)xn

n = 1. We have
the following equation:

lim
n→∞

R∑

i=1

iuiE[
xn

n
] = 1 (3)

From this equation andSRB(n) = 1 − xn

n , we have
limn→∞E[SRB(n)] = 1− 3

2R+1 .
Theorem 2:For any2 < C < R, lim infn→∞ SRB(n)

≥ 1− C
R+1 , limsupn→∞ SRB(n) ≤ 1− C

2R+C−1 for the
counter-based algorithm.

Proof: Supposex nodes transmit the message in an
arbitrarily selectedR + 1 consecutive nodes.x can only
achieve its maximum when these nodes receive this message
only from themselves (none of other nodes sent them the
message). Sox ≤ C and the lower bound is proved.
Now supposek nodes transmitted the message in all the
n nodes. Each of thesek nodes (the original senderO is
not included) should have received at least one copy of this
message and each of othern−k nodes should have received
at leastC copies of this message. So the number of the total
message copies should be at least(n − k)C + k. In each
transmission, at most2R nodes receive a copy, so we have
then:

2Rk ≥ (n− k)C + k (4)

The ratio k
n ≥ C

2R+C−1 and noticeSRB(n) = 1 − k
n , the

upper bound is proved.
Remark: From the above theorems we can see that smaller
C/R leads to better performance.C = 2 is the optimal
threshold value that can achieve the highest SRB for all
R > 2.

Theorem 3:When R−1
2 ≤ d ≤ R− 1,

limn→∞E[SRB(n)] = 1 − 2
R+d+1 for the distance-

based algorithm.
Proof: If node i transmitted a message, then all the

nodes in [i, i + d] will be blocked from retransmitting
it. Any node i + d + j (1 ≤ j ≤ R− d) can transmit
it with probability 1/(R − d). But only one node can
perform the transmission. This is because the maximum

Fig. 2. Proof of Theorem 3

distance between two nodes in[i + d + 1, i + R] is
R − 1 − d ≤ R − 1 − R−1

2 ≤ d. Let the state space
s = (d + 1, d + 2, ..., R). The (R− d)× (R− d) transition
matrix

P =


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The stationary distributionu = [ 1
R−d . . . . . . 1

R−d ]T .
So limn→∞E[SRB(n)] = 1− 2

R+d+1 .
Theorem 4:For any0 < d < R, d ∈ Z+, lim infn→∞

SRB(n) ≥ 1− 1
d+1 , lim supn→∞SRB(n)≤ 1− 1

2d+1 for
the distance-based algorithm.

Proof: The smallest distance between two adjacent
nodes which transmitted the same message (that means
the nodes between them did not transmit the message) is
d + 1. One the other hand, the largest distance between
two adjacent nodes which transmitted the same message is
2d + 1 (otherwise at least one node between them will not
be blocked from transmission). So the inequalities follow
readily.
Remark: The largest SRB is achieved when threshold
d = R− 1 (d can not be larger thanR, or RE is 0%.). The
optimal value is1− 1/R, which is larger than the optimal
value of the counter-based scheme1− 3

2R+1 for R > 1.

B. Two-Dimensional Grid Network

The structure of a two-dimensional grid network is as
follows:
All the nodes are located at(i, j)(−n/2 ≤ i, j ≤ +n/2)
and the original message senderO is located at (0,0). This
forms a grid network with(n + 1)2 nodes (not including
O). Suppose all the nodes received a message in each
broadcasting execution,SRB(n) = k

(n+1)2−1 , where nodes
received the message do not include the original sender
and k denotes the number of transmitting nodes. We will
useSRB(n) = k

n2 for simplicity, and this approximation
will not effect our results. We still use the coordinates to
represent these nodes and assumeR to be integers as in
the one-dimensional case.

Theorem 5:RE of the distance-based algorithm is 100%
for d < R.



Fig. 3. Proof of Theorem 5

Proof: We prove Theorem 5 by contradiction. Suppose
there is a nodei which did not receive a message. We will
show that any other nodej did not receive the message
either. The circle centering at nodei with radius R will
be denoted by ‘circlei’. According to the assumption, all
the nodes within circlei did not transmit this message.
At first we will show that any node whose location is
no more thanR − d from node i did not receive this
message. If not, suppose nodeh received this message
and |h − i| ≤ R− d,where |h − i| denotes the distance
from nodeh to i. There must exist some nodep which
sent nodeh this message and|h − p| ≤ d. So we have
|i − p| ≤ |i− h|+ |h− p| ≤ R− d + d = R. This means
that nodei can receive this message fromp, which leads
to the contradiction with the assumption.
Next we return to prove that nodej 6= i did not receive the
message. Suppose the coordinates of nodei are (0, 0) and
node j is located at (jx, jy). Without loss of generality,
assumejx ≥ 0, jy ≥ 0. Let q be the node locating at
(R − d, 0). We have proved thatq did not receive the
message. By iteratively using this result form times, where
(R − d)(m − 1) < jx ≤ (R − d)m, we conclude that
the node at (jx, 0) did not receive this message. Similarly,
starting from (jx, 0), we obtain that nodej = (jx, jy) did
not receive this message. Since nodej is arbitrarily chosen,
all the nodes in this two-dimensional grid must not have
received the message, which contradicts the fact that at least
the nodes withinR distance from the original sender have
received it. Therefore RE of the distance-based scheme is
100% if d < R.

Theorem 5 shows no lower bound is required for the
threshold d to ensure 100% RE for the distance-based
algorithm. But it is a different situation in the counter-
based algorithm. A counter-example in the case of
two-dimensional grid networks can be easily given as
follows: takeC = 2 in a 5× 5 grid network withR = 5.
Node O is the original message sender and node
i1, j1, i2, j2 re-transmitted the message sequently. After
these four transmissions, all the black nodes have received
this message at least twice and are blocked from re-

transmission. Other white nodes did not receive the
message and RE of this execution is less than 100%.
The following theorem gives a sufficient condition which

Fig. 4. An example whenC = 2 andRE < 100%

defines the range of parameterC when all the nodes can
receive the message in every broadcasting execution.

Theorem 6:RE of the counter-based algorithm is 100%
if C > 2R + 1.

Fig. 5. Proof of Theorem 6

Proof: Suppose at least one node did not receive the
message as shown in Fig.3. White dots represent nodes that
did not receive the message, black dots represent nodes that
received the message. We can always find two adjacent
nodesi, j, where nodei is black and located atO1 and
node j is white and located atO2. Since nodei received
the message but did not transmit it (otherwise nodej would
have received it), nodei must have at least receivedC
copies of this message from some nodes locating inside
circle O1 but outside circleO2 (do not include those nodes
whose distances toO2 are equal toR). There are2R + 1
nodes in this area. To see this, notice that:

|AC| =
√

R2 − |O1C|2 (5)

|BD| =
√

R2 − |O2D|2 (6)

So
|AB| = |CD| = |O1O2| = 1 (7)



There is exactly one node betweenA andB (do not include
B). The number of nodes that may send nodei the message
is at most2R + 1. ThereforeC ≤ 2R + 1 and the theorem
follows.

Lemma 1:The number of nodes in a circle centering at
(0,0) is less than3.3R2 if R > 1.

Proof: Supposebac denotes the largest integer that is
not more thana. The number of nodesS(R) within a circle
centering at(0, 0) with radiusR is calculated by:

S(R) =
R∑

i=−R

(2b
√

R2 − i2c+ 1)

≤
R∑

i=−R

(2
√

R2 − i2 + 1)

= 4R + 1 + 4
R∑

i=1

√
R2 − i2

≤ 4R + 1 + 4

√√√√R

R∑

i=1

(R2 − i2)

= 4R + 1 +
4√
6
R

√
4R2 − 3R− 1

< 4R + 1 +
8√
6
R2 (8)

Jensen’s inequality is used above. Notice that

S(R)− 3.3R2 < −0.03R2 + 4R + 1 (9)

Because two real-number roots of−0.03R2 + 4R + 1 = 0
are less than 150, we have:

S(R)− 3.3R2 < 0 (10)

for all R ≥ 150.
Additionally, we verified this lemma by a small computer
program for1 < R < 150 (It is easy to do so since all the
coordinates are integers). So this lemma is proved for all
integersR > 1.

Theorem 7:For anyC > 2R + 1, lim infn→∞ SRBn

≥ 1 − 2C
R2 , lim supn→∞SRBn≤ 1 − C

3.3R2+C−1 for the
counter-based scheme.

Proof: According to Theorem 6, RE of the counter-
based scheme is 100% forC > 2R + 1. The whole
grid network can be covered byd√2n/Re2 squares with
diagonal lengthR. Here dae denotes the smallest integer
that is not less thana. Similar to the one-dimensional case,
at mostC transmitting nodes can be in one such square.
So theSRBn satisfies:

SRBn ≥ 1− d√2n/Re2C
n2

> 1− (
√

2n/R + 1)2C
n2

(11)

We have then

lim inf
n→∞

SRBn ≥ 1− 2C

R2
(12)

The lower bound is proved.
To prove the upper bound, assumek nodes transmitted the
message. The number of the total received message copies
should be at least(n2 − k)C + k. According to Lemma 1,
at most3.3R2 nodes received a copy in each transmission.
So we have

3.3R2k > (n2 − k)C + k (13)

SRBn = 1− k

n2

< 1− C

3.3R2 + C − 1
(14)

Theorem 8:For any 0 < d < R,lim infn→∞SRBn≥
1− 2

d2 , lim supn→∞SRBn ≤ 1− 1
(2d+1)2 for the distance-

based scheme.
Proof: The whole grid network can be covered by

d√2n/de2 squares with diagonal lengthd. At most one
node in each square can transmit the message. So the
SRBn satisfies:

SRBn ≥ 1− d√2n/de2
n2

> 1− (
√

2n/d + 1)2

n2
(15)

We have then

lim inf
n→∞

SRBn ≥ 1− 2
d2

(16)

The whole network can be partly covered by
bn/(2d + 1)c2 (2d + 1) × (2d + 1) squares without
overlapping. Each of these squares contains at least one
transmitting node. So theSRBn satisfies:

SRBn < 1− bn/(2d + 1)c2
n2

< 1− (n/(2d + 1)− 1)2

n2
(17)

Therefore the upper bound is proved.

III. C ONCLUSION

In this paper, we analyze two ad hoc broadcasting proto-
cols in one-dimensional grid networks and two-dimensional
grid networks. Sufficient conditions are given to achieve
100% RE for networks using each of these two algorithms.
We can compute the exact limitlimn→∞E[SRB(n)] in
one-dimensional networks whenC = 2 for the counter-
based algorithm andR−1

2 ≤ d ≤ R− 1 for the distance-
based algorithm. In other cases, lower bounds and upper
bounds are obtained which indicate the relation between
SRB and threshold values. A more complex problem is



how to analyze these algorithms if nodes are randomly
distributed in a unit-area disc. The results in [13] show that
for πR2(n) = log(n)+c(n)

n the network is asymptotically
connected with probability one if and only ifc(n) → ∞.
Here n denotes the total number of nodes in the unit-area
disc. We are investigating the characteristics ofRE and
SRB when the whole network is asymptotically connected.
Another important issue is energy conservation, which is
also the main reason to reduce the number of rebroadcasting
nodes. From the analysis, it is obvious thatSRB will be
large if R is chosen to be large (For example, choose
R = n for the one-dimensional case). But increasingR
does not necessarily result in performance improvement.
This is because more energy will be consumed in each
transmission in spite of less transmissions are needed to
cover all the nodes. There exists a trade-off between the
number of transmitting nodes and the energy consumed
by each transmitting node. Generally the energy consumed
by each node is considered as a nonlinear function ofR
and there should exist optimal valuesR, C, d that achieve
the minimum total energy consumed by all the nodes. We
are working on this interesting problem and will report the
results in our future work.
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