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Abstract— This paper deals with the problem of stabilizing a
class of structures subject to an uncertain excitation due to the
temporary coupling of the main system with another uncertain
dynamical subsystem. A Lyapunov function based control
scheme is proposed to attenuate the structural vibration. In the
control design, the actuator dynamics is taken into account.
The control scheme is implemented by using only feedback
information of the main system. The effectiveness of the control
scheme is shown for a bridge platform with crossing vehicle.

I. INTRODUCTION

Vibrations in dynamical flexible structures, as those en-
countered in some civil engineering structures, are often
caused by environmental (seismic or wind) excitations and
human made (traffic or heavy machinery) excitations. One
way for attenuating the structural vibrations is to use the
active control systems so that the safety of the structure and
comfortability of the human beings are improved[1]. Robust
control methods have been used to account for uncertainties
in the structural models and the lack of knowledge of
the excitations[2]−[6]. This paper considers a class of
structures whose excitation comes through the uncertain
coupling with another dynamical system during a certain
time. One prototype of this class of systems is illustrated
by considering a bridge platform with an unknown moving
vehicle as a coupled exciting subsystem. A Lyapunov based
control scheme is proposed to reduce the vibration of bridge
induced by the crossing vehicle. In the control design,
only the feedback information from the controlled structure
(bridge) is used. Numerical simulation is done to show the
effectiveness of the proposed active control scheme for an
elastically suspended bridge when a truck crosses it.

II. PROBLEM FORMULATION

Consider the problem of controlling an elastically sus-
pended bridge with active elastic mounts on the left-hand
and right-hand sides and with crossing vehicles as shown
in Figure 1. The main variables to be measured are the
vertical deviationz of the center of mass of the bridge
and the inclinationΘ with respect to the horizon of the
bridge platform. Vibration of the bridge is produced when
a truck crosses the bridge with velocityv(t) within a time
interval [t0, tf ]. Without the loss of generality,t0 is set to
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zero andtf denotes the final time of interaction between the
structure and the truck. The truck is modelled by a mass
m with an elastic suspension of dampingc and stiffness
k. Additional variablesξ, η andζ are chosen according to
Figure 1. The mass of the platform is given byM , and the
moment of inertia with respect toC by the parameterJ .
The active control is implemented by two actuators located
between the ground and the bridge at the left and the
right ends respectively. The actuatorsA1 and A2 supply
vertical control forcesMu1 and Mu2 which complement
the resistant passive forcesF1 andF2 given by the elastic
supports.u1 and u2 are the control variables that relate
the forces supplied by the active actuatorsA1 andA2. The
objective is to attenuate the vibration of the bridge induced
by the crossing vehicle by using active forcesMu1 and
Mu2.

A. Equation of motion of the truck:

When the truck is not in the bridge (fort < 0 andt > tf ),
the equation of motion of the truck ism η̈ = k η0 − m g,
whereη0 is the position of relaxed suspension. Whent ∈
[0, tf ], the truck is crossing the bridge. Assume that the
declination angleΘ is small, then the dynamic motion of
the truck is described by the following equation

mη̈ = F −mg

F : = k[η0 − (η + ζ)]− c(η̇ + ζ̇)
ζ : = z + (ξ − a)Θ

(1)

B. Equations of motion of the bridge:

For t < 0 the bridge is in a steady state. Fort ∈ [0, tf ],
the dynamic behavior of the bridge is described by the
following equations of motion:


M z̈ = M g + F − F1 − F2 − u1 − u2

J Θ̈ = (ξ − a)F + aF1 − bF2 + au1 − bu2

F := k[η0 − (η + ζ)]− c(η̇ + ζ̇)
F1 = k1(−z1,0 + z − aΘ) + c1(ż − aΘ̇)
F2 = k2(−z2,0 + z + bΘ) + c2(ż + bΘ̇)

(2)

where z1,0 and z2,0 represent the vertical positions of
relaxed left-hand and right-hand suspension, respectively.

We consider the bridge as the main system and the truck
as the attached uncertain subsystem. The space state vari-
ables are split into the measurable ones,x := (z,Θ, ż, Θ̇)T ,
and the unmeasurable onesy := (η, η̇)T . u := (u1, u2)T

are control forces. The uncertain coupling between the
bridge and the truck is due to the scalar forceF . When



the truck has left the bridge fort > tf , the two systems are
obviously decoupled withF = 0 and then the equations of
motion of the bridge are{

M z̈ = M g − F1 − F2 − u1 − u2,

J Θ̈ = aF1 − bF2 + au1 − bu2.
(3)

In the above models, consider that the structural param-
eters of the bridge (M , J , c1, c2, k1, k2) are known, while
the parameters related to the truck (m, c, k, η0, ξ, ξ̇) are
assumed to be uncertain but bounded; i.e.,

k

m
= ω0 + ∆ω, with |∆ω| ≤ ω̄,

c

m
= σ0 + ∆σ, with |∆σ| ≤ σ̄,

k

M
= Ω, with Ω ≤ Ω̄,

c

M
= Υ, with Υ ≤ Ῡ,

|η0| ≤ η̄0, |ξ̇(t)| ≤ ¯̇
ξ

(4)

whereω0 andσ0 are known nominal values and̄ω, σ̄, Ω̄, Ῡ,
¯̇
ξ andη̄0 are known bounds. Finally the equations of motion
(1) and (2) can be rewritten into the following form:{

ẋ = Acx + Bu + g(x,y, t),
ẏ = Ary + f(x,y, t) (5)

where the parameters of the matricesAc, B and Ar

are known. The functionsg and f include the uncertain
coupling effects.

Ac =


0 0
0 0

−k1 + k2

M

ak1 − bk2

M
ak1 − bk2

J
−a2k1 + b2k2

J
1 0
0 1

− c1 + c2

M

ac1 − bc2

M
ac1 − bc2

J
−a2c1 + b2c2

J

 (6)

B =


0 0
0 0

− 1

M
− 1

M
a

J
− b

J

 , and g =

 0
0
g3

g4

 (7)

Here for t ∈ [0, tf ]:

g3(x,y, t) := − k

M
z− 1

M
[k(ξ − a) + cξ̇]Θ− c

M
ż

− c

M
(ξ − a)Θ̇− k

M
η − c

M
η̇ +

k

M
η0

+
k1

M
z1,0 +

k2

M
z2,0 + g (8)

g4(x,y, t) := − k

J
(ξ − a)z − 1

J
[k(ξ − a)2 + cξ̇(ξ − a)]

Θ− c

J
(ξ − a)ż − c

J
(ξ − a)2Θ̇− k

J
(ξ − a)

η − c

J
(ξ − a)η̇ +

k

J
(ξ − a)η0 −

ak1

J
z1,0

+
bk2

J
z2,0 (9)

while, for t > tf ,

g3 :=
k1

M
z1,0 +

k2

M
z2,0 + g (10)

g4 := −ak1

J
z1,0 +

bk2

J
z2,0 (11)

Ar =
(

0 1
−ω0 −σ0

)
(12)

f(x,y, t) =
(

0
f2

)
(13)

For t ∈ [0, tf ],

f2 = − k

m
z − 1

m
[k(ξ − a) + cξ̇]Θ− c

m
ż − c

m

(ξ − a)Θ̇−∆ω η −∆σ η̇ +
k

m
η0 − g (14)

and for t > tf ,

f2 = −∆ω η −∆σ η̇ +
k

m
η0 − g (15)

Denotee = (e1, e2)T

ei(x,y, t) = ei,1(t)z + ei,2(t)Θ + ei,3(t)ż + ei,4(t)Θ̇
+ei,5(t)η + ei,6(t)η̇ + ei,7(t) (16)

Now, it can be verified thatAc andAr are stable matrices
and the functione(x,y, ·) is continuous for allt except a
set {0, tf} and there exist known non-negative scalarsαc

i ,
αr

i , δi, such that, for allx,y and t, one has

g = [B1 ,B2] [e1 , e2]T (17)

where

B1 =


0
0

− 1
Ma

J

 , B2 =


0
0

− 1
M

− b

J

 (18)

and
‖ei(x,y, t)‖ ≤ αc

i‖x‖+ αr
i ‖y‖+ δi (19)

with

αc
i =

√
α2

1 + α2
2 + α2

3 + α2
4, (20)

αr
i =

√
α2

5 + α2
6, (21)

δi = α7. (22)



where
α1 = Ω̄ (23)

α2 =


1

(a + b)

(
Ω̄a2 + (aΩ̄ + Ῡ¯̇

ξ)a + aῩ¯̇
ξ
)

, if a ≥ b

1
(a + b)

(
Ω̄b2 + (bΩ̄ + Ῡ¯̇

ξ)b + bῩ¯̇
ξ
)

, if a < b

α3 = Ῡ (24)

α4 =


2a2

(a + b)
Ῡ, if a ≥ b

2b2

(a + b)
Ῡ, if a < b

(25)

α5 = Ω̄ (26)

α6 = Ῡ (27)

α7 = max

{
1

(a + b)

[
Ω̄(a + b)η̄0 +

(a + b)k1z1,0 + g

M

]
,

1
(a + b)

[
Ω̄(a + b)η̄0 +

(a + b)k2z2,0 + ag

M

]}
Indeed, solving the linear systemg = Be, it is easy to

get thate = (e1, e2)T , where

e1 =
−bMgc,3 + Jgc,4

(a + b)M
; e2 = −aMgc,3 + Jgc,4

(a + b)M
. (28)

III. CONTROLLER DESIGN

The objective of active control is to attenuate the vi-
bration of the bridge induced by a crossing truck through
the uncertain coupling between the dynamics of the bridge
and the truck. The controller design will be based on
the Lyapunov theory[7]−[8], in which only the feedback
information of the bridge (not the truck) is used.

In order to design the controller, define a Lyapunov
function candidate:

V (xxx) =
1
2
xxxT (t)PPPxxx(t) (29)

wherePPP = (pij) ∈ R4×4 is the positive definite solution
of the Lyapunov equation

PAPAPA + AAAT PPP + QQQ = 000 (30)

for a given symmetric positive definite matrixQQQ = (qij) ∈
R4×4. By using equations (31)-(32), the derivative of V(xxx,t)
is obtained

V̇ (xxx, t) = xxxT PBPBPB1u1 + xxxT PBPBPB2u2 + xxxT PBPBPB1e1

+xxxT PBPBPB2e2 −
1
2
xxxT QQQxxx

≤ H(xxx, uuu) + H(yyy) (31)

where

H(yyy) =: (αr
1||xxxT PBPBPB1||+ αr

2||xxxT PBPBPB2||) · ||yyy|| (32)

and

H(xxx, uuu) =: H1(xxx, uuu1) + H2(xxx, uuu2)−
1
2
xxxT QQQxxx (33)

where

Hi(xxx, uuui) = δi||xxxT PBPBPBi||+ αc
i ||xxxT PBPBPBi|| · ||xxx||

+xxxT PBPBPBiui (34)

Since the state variableyyy(t) of the coupled uncertain
subsystem (the truck) is usually not measurable, the ob-
jective of control is to minimize thėV (xxx) by making the
H(xxx, uuu) < 0. If we denoteuuud

i (t) as the “desired” control
force (without taking into account the actuator dynamics),
then the following “desired ” control law will be used :

uuud
i = −kkkp

i xxx− (δi + αc
i ||xxx||)sgn(xxxT PBPBPBi) (35)

where
kkkp

i =
1
4
BBBT

i PPP (36)

It is easy to verify thatH(xxx, uuu) < 0 is accomplished.
In practice, the continuous approximation is used for the
control law (35) to attenuate the high-frequency chattering

sgn(·) =⇒ (·)
|(·)|+ γ

(37)

whereγ is a positive small constant. Thus, the correspond-
ing continuous “desired” control law is

uuud
i = −kkkp

i xxx− (δi + αc
i ||xxx||)

xxxT PBPBPBi

|xxxT PBPBPBi|+ γi
(38)

Now, assume that active actuators, theA1 and A2 one,
are used for the implementation of the control action
generated by the “desired” controllers (35) or (38). The
dynamic behavior of the active actuators is described by
the following equation[9]:

vi(t) = τiu̇i(t) + ui(t) + kf
i ż(t), i = 1, 2 (39)

whereui(t) is the average output actuator force,vi(t) the
voltage signal applied to the actuator,τ is the actuator time
delay andkf

i is a constant which relates the friction force
produced in the actuator with the velocity of the piston. For
simplicity, in the subsequent sectionsui(t) and vi(t) will
be called theactuator control forceand actuator control
command, respectively. By taking into account the actuator
dynamics, a control command lawv(t) is designed such that
the ”real” actuator control forceu(t) tracks asymptotically



the ”desired” actuator control forceud(t) before obtained,
which.
Denoteũuu(t) as the tracking error between the “real” control
actionuuu(t) and the “desired” control actionuuud(t); i.e.,

ũuu(t) = uuu(t)− uuud(t) (40)

Suppose that the actuator parametersτ andkf are known
positive constants and the velocityż measurable. Then the
following command control law is proposed:

vi(t) = τiu̇
d
i (t) + ud

i (t) + kf
i ż(t), i = 1, 2 (41)

Apply the real control forceuuu(t) = [u1(t) , u2(t)]T (39)
to the bridge platform and define a new Lyapunov function
candidateV (xxx, ũuu)

V (xxx, ũuu) = V1(xxx) + V2(ũuu) (42)

with

V1(xxx) =
1
2
xxxT PPPxxx V2(ũuu) =

1
2
ũuuT τττ ũuu (43)

whereτττ = diag(τ1 , τ2)

¿From the eqn.(40) we obtain:

uuu(t) = uuud(t) + ũuu(t) (44)

Then, the derivative ofV (xxx, ũuu) is obtained as follows by
using eqns. (41, 35), (39) and (40):

V̇ (xxx, ũuu) ≤ H(xxx, uuu, ũuu) + H(yyy) (45)

where

H(xxx, uuu, ũuu) =: H(xxx, uuu)− ũuuT ũuu− 1
4
xxxT PBBPBBPBBT PxPxPx

+xxxT PBPBPBũuu

= H(xxx, uuu)− (ũuu− 1
2
xxxT PBPBPB)T (ũuu

−1
2
xxxT PBPBPB) ≤ H(xxx, uuu) < 0 (46)

Therefore, the “real” control forceuuu(t) (taking into account
the actuator dynamics) can minimize the derivative of
Lyapunov functionV̇ (xxx, ũuu) by making H(xxx, uuu, ũuu) < 0,
which is similar to the case when a “desired” control force
uuud(t) (without taking into account the actuator dynamics)
is applied to the bridge platform.

IV. NUMERICAL SIMULATION RESULTS

In the numerical simulation, an actively suspended bridge
platform prototype is considered as the main system and the
excitation is induced by a truck when it crosses the bridge
[10]. The following parameters are used for the controller
design and numerical simulation:

A. Nominal parameters and bounds for uncertainties:

η̄0 = 1 [m], ω0 = 40 [N/(m kg)], ω̄ = 20 [N/(m kg)],
σ0 = 1 [Ns/(m Kg)], σ̄ = 5 [Ns/(m Kg)], Ω̄ = 5 [N/(m
kg)], Ῡ = 0.5 [Ns/(m Kg)], ¯̇ξ = 8.33 [m/s] (̄ξ̇ = 30 [km/h]),
k0 = 4 · 105 [N/m], c0 = 104 [Ns/m].

B. Bridge:

M = 105 Kg, J = 2·107 Kg m2, a = b = 25 m, ki = 4·106

N/m andci = 4 ·104 N s/m for eachi = 1, 2. z1,0 = z2,0 =
−0.125 m, which correspond to the equilibrium position for
the platform without truck and no control.

C. Truck:

The parameters of the truck, which are unknown for the
controller design, are the following:m = 104 Kg, ξ̇ = 8.33
m/s (ξ̇ = 30 Km/h), k = 4 · 105 N/m, c = 104 N s/m,
η0 = 0.75 m.

D. Active actuators[9]:

kf
l = kf

2 = 15 kg/s andτ1 = τ2 = 0.18 s.

With the above parameters, we obtain:

ααα = [ 5 129.165 0.5 12.5 5 0.5 500.0025 ]T

αc
1 = αc

2 = 129.8657, δc
1 = δc

2 = 5×10−5, γ1 = γ2 = 0.01
kkkp

1 = [−0.0016 0.0001 − 0.1582 0.0063 ]
kkkp

2 = [−0.0016 − 0.0001 − 0.1582 − 0.0063 ].

The platform is excited by the crossing of the truck
for time t ∈ [0, 6] seconds, and aftert = 6 seconds
no excitation is evolved between the platform and the
truck. The time history of structural vibration of the bridge
platform for the uncontrolled case (dash line) and the
controlled case (solid line) are shown in Figures 2 and 3.
Concretely, Figure 2 shows the main effect of the control,
which is to add damping to the bridge platform. Without
control, the platform has very low damping, thus exhibiting
a highly oscillatory response. The damping coefficients of
the two end supports arec1 = c2 = 4× 104 N s/m, which
corresponds to a damping factor of4.5% approximately.
The control modifies this behavior, forcing a practically
overdamped response. It is seen how the vertical deflection
z of the center of mass of the platform evolves slowly but
smoothly towards its equilibrium position with the truck.
After t = 6 seconds the excitation disappears and the
platform deflection evolves to recover the initial equilibrium
position. Figure 4 shows that the inclinationΘ of the
bridge has not been significantly improved because the
linear control. Figure 5 displays the vertical displacement
of the truck which has not been deteriored and figures 6 and
7 display the control signalsu1 andu2, which are feasible
for practical actuators.

V. CONCLUSIONS

An active Lyapunov based control scheme has been
proposed in this paper to attenuate the vibrations of a main
system excited by an temporarily coupled uncertain sub-
system. Only the feedback information of the main system
has been used in the control design, without measuring
the response of the coupled uncertain subsystem. It has
been shown that the active controller also works well when
the actuator dynamics is taken into account. The results of



numerical simulation have illustrated the effectiveness of the
proposed control scheme for an active controlled suspended
bridge platform with crossing vehicles.
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Fig. 1. Actively controlled bridge platform with crossing vehicle

Fig. 2. Vertical displacement of the bridge

Fig. 3. Vertical velocity of the bridge

Fig. 4. Inclination angle of the bridge



Fig. 5. Vertical displacement of the truck

Fig. 6. Control force of the actuator A1

Fig. 7. Control force of the actuator A2
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