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Abstract— This paper considers observer design for a class
of continuous-time descriptor systems with Lipschitz con-
straint. The constraint is a function of time, state and control
input variables of the system. A new and simple approach
is developed to design both full-order and reduced-order
observers of the system. The sufficient condition is equivalent
to the solvability of a linear matrix inequality. An illustrative
example is presented to show the effectiveness of the proposed
approach.

I. INTRODUCTION

State estimation or observer design has received consid-
erable attention in the last two decades. Many approaches
have been developed to design observers for descriptor
systems (see [5], [6], [7], [8], [9], [10], [11], [12], etc.). In
[6], [7], [8], [9], [10], observer designs for linear descriptor
systems are addressed. For example, full and reduced-order
observers for linear descriptor systems are given in [7], [8],
where a generalized Sylvester equation is applied. In [5],
local asymptotic observer is obtained for general nonlinear
descriptor systems by means of a coordinate transformation.
In addition, a reduced order observer design approach is
developed by means of generalized Sylvester equation. [5]
gives a design procedure, it is simple, but the sufficient
condition (62) of Theorem 3, which is the main result of [5],
may depend on the choice of matrix R and is usually hard
to satisfy. [11] considers a full order observer design for a
class of continuous nonlinear descriptor systems subject to
unknown inputs and faults. The approach is to divide the
systems into dynamic system and static system. [12] studies
observer issued for continuous nonlinear descriptor systems
in quasi-linear form and presents a method to construct
a full order state observer. The approach is based on
transforming the descriptor system as an equivalent system
of (explicit) differential equations on a restricted manifold,
and an observer for the descriptor system can be constructed
by common state space techniques for explicit systems. But
reduced order observer design is not considered in [11],
[12].
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In this paper, we will discuss observer design for
continuous-time descriptor systems with Lipschitz con-
straint. A new approach based on linear matrix inequality
(LMI) is developed to construct both full order and reduced
order observers. We will show that, under the same LMI
condition, the design procedure for full and reduced ob-
servers can be easily constructed. Besides, the two observers
both are global asymptotic estimators. It is noticed that
the approach in this paper is different from those in [5],
[11], [12]. Our sufficient condition is of a simpler form
and it is independent of any coordinate transformation. We
emphasize that when our LMI approach in this paper is
used to construct full order and reduced order observers for
nonsingular Lipschitz systems, our approach is also more
efficient than that developed in [13], [14].

The paper is organized as follows. Section II presents a
full order observer design. Section III develops a reduced
order observer design based on Section II. Finally, the
concluding remarks are made in Section V.

Notation W T : transpose of matrix W ∈ R
n×m; ‖W‖:

[λmax(W
TW )]

1

2 , i.e. the square root of the maximal eigen-
value of W TW ; X−T : transpose of matrix X−1; I (or Ir):
identity matrix of appropriate dimension(or r dimension);
‖x‖ =

√

(xTx), ‖x‖∞ = max{|xi|, 1 ≤ i ≤ n}, where
x = (x1 x2 · · · xn )

T ∈ R
n; Throughout this note, for

symmetric matrices X and Y , X > Y (X ≥ Y ) if X − Y

is positive positive definite (semi-definite); X < Y (X ≤
Y ) if X − Y is negative negative definite (semi-definite).
In a formula matrices are assumed to have compatible
dimensions if there is not explicit explanation.

II. FULL-ORDER OBSERVER DESIGN

Consider the following model described by a continuous-
time singular system with Lipschitz constraint.

Eẋ = Ax+BΦ(t, x, u), x(0) = x0,

y = Cx,

(1)

where x ∈ R
n is the system state, u ∈ R

m is the
system input, y ∈ R

r is the system output; A,E ∈ R
n×n,

B ∈ R
n×p and C ∈ R

r×n are constant matrices; E may
be singular. Without loss of generality, we shall assume
that 0 < rank(E) = s < n; x(0) = x0 is a compatible
initial condition; Φ = Φ(t, x, u) ∈ R

p is vector-valued
time-varying nonlinear function and satisfies the following
Lipschitz condition for all (t, x, u), (t, x̃, u) ∈ R × R

n ×
R

m.

‖Φ(t, x, u)− Φ(t, x̃, u)‖ ≤ ‖F (x− x̃)‖, (2)



where F is a constant matrix with appropriate dimension.
In this section, we consider the Luenberger-like full-order

observer as follows:

E ˙̂x = Ax̂+BΦ(t, x̂, u)− L(y − Cx̂), (3)

where L ∈ R
n×p is the observer parameter to be deter-

mined. Let e = x − x̂, then it follows from (1) and (3)
that

Eė = (A+ LC)e+B[Φ(t, x, u)− Φ(t, x̂, u)]. (4)

Now we are in position to state the following theorem which
presents a way to construct a full-order observer via matrix
inequalities.

Theorem 2.1: There exists a full-order observer (3) for
system (1) if there exist two matrices P ∈ R

n×n and
Q ∈ R

r×n such that the following matrix inequalities are
solvable.

ET P = P T E ≥ 0,

Ω :=
(

AT P + P T A+ CT Q+QT C + F T F P T B
BT P −I

)

< 0.
(5)

Proof: Without loss of the generality, assume that solution
P from matrix inequalities (5) is non-singular. In fact, there
exist two non-singular matrices M,N ∈ R

n×n such that

MEN =

(

Is 0
0 0

)

, then let M−TPN =

(

P1 P2

P3 P4

)

,

where P1 ∈ R
s×s, P2 ∈ R

s×(n−s), P3 ∈ R
(n−s)×s, P4 ∈

R
(n−s)×(n−s). It is easy to show that ETP = PTE ≥ 0

implies that P2 = 0 and P1 ≥ 0, then P can be rewritten
as follows:

P =MT

(

P1 0
P3 P4

)

N−1. (6)

Partition (6) implies that there exists a sufficient small scalar
ε > 0 such that

Pε =MT

(

P1 + εIs 0
P3 P4 + εIn−s

)

N−1

is non-singular and also satisfies inequalities (5) at the same
time.

If Q and non-singular matrix P are solutions of inequal-
ities (5), then we show that (3) with gain

L = P−TQT (7)

is a full-order observer for system (1), that is, system (4) is
globally asymptotically stable.

(i) Let Ac = A+LC. Choosing the Lyapunov function
candidate as follows:

V = eTETPe. (8)

For convenience, let λ0 = λmin(−Ω) and φ = Φ(t, x, u)−
Φ(t, x̂, u), then λ0 > 0 and

‖φ‖ ≤ ‖Fe‖. (9)

The derivative of V along system (4) yields to

V̇ = (Ace+Bφ)TPe+ eTPT (Ace+Bφ)

≤ (Ace+Bφ)TPe+ eTPT (Ace+Bφ)

−φTφ+ eTFTFe

= ( eT φT ) Ω

(

e

φ

)

≤ −λ0‖e‖2.

(10)

Denote λm = λmax(E
TP ) , then λm > 0 and V =

eTETPe ≤ λm‖e‖2, that is, ‖e‖2 ≥ λ−1
m V . Thus, V̇ ≤

−λ0‖e‖2 ≤ −λ0λ
−1
m V , which implies that

V ≤ exp(−µt)V (0), (11)

where µ = λ0λ
−1
m .

From (5), we have that AT
c P + PTAc < 0. It follows

from [2] that the pair (E,Ac) is regular and impulse free.
Then there exist two non-singular matrices M,N ∈ R

n×n

such that the following standard decomposition holds.

MEN = diag{Is, 0}, MAcN = diag{A1, In−s}, (12)

where A1 ∈ R
s×s. Partition M and N in the form of

M = (MT
1 MT

2 )
T and N = (N1 N2 ), where M1 ∈

R
s×n, M2 ∈ R

(n−s)×n, N1 ∈ R
n×s, N2 ∈ R

n×(n−s).
Introducing a change of coordinates

N−1e =

(

e1
e2

)

, e1 ∈ R
s, e2 ∈ R

n−s, (13)

and using the same partition form of P as (6), then we
have that V = eTETPe = eT1 P1e1. In addition, denoting
λ1 = λmin(P1), then it is easy to show λ1 > 0. There it
follows from (11) that we have

‖e1‖ ≤
√

λ−1
1 V (0)exp(−1

2
µt) (14)

that is, e1 is exponentially asymptotically stable.
(ii) We now show that e2 is also exponentially asymp-

totically stable.
By means of the Schur Complement Lemma, the second

inequality of (5) implies that

AT
c P + PTAc + FTF + PTBBTP < 0 (15)

(15) is equivalent to

(MAcN)
T (M−TPN) + (M−TPN)T (MAcN)

+NTFTFN + (M−TPN)TMBBTMT (M−TPN)

< 0
(16)



Then it follows from decomposition (12) that we have

(

AT

1 P1 0
P3 P4

)

+
(

P1A1 P T

3

0 P T

4

)

+
(

NT

1

NT

2

)

F T F (N1 N2 )

+
(

P T

1 P T

3

0 P T

4

)(

M1

M2

)

BBT (MT

1 MT

2 )
(

P1 0
P3 P4

)

< 0
(17)

The block matrix at the second block row and the second
block column of the left-hand-side of (17) is negative
definite, that is,

P4 + PT
4 +NT

2 F
TFN2 + PT

4 M2BB
TMT

2 P4 < 0, (18)

then there exists a sufficient small positive scalar ε such that

P4 + PT
4 +NT

2 F
TFN2 + PT

4 (M2BB
TMT

2 + εI)P4 < 0,
(19)

which is equivalent to

[

P4 + (M2BB
TMT

2 + εI)−1
]T

·(M2BB
TMT

2 + εI)

·
[

P4 + (M2BB
TMT

2 + εI)−1
]

−(M2BB
TMT

2 + εI)−1 +NT
2 F

TFN2 < 0

(20)

which implies that

−(M2BB
TMT

2 + εI)−1 +NT
2 F

TFN2 < 0

Thus, there exists a sufficiently small scalar ε0 > 0 such
that

(1 + ε0)N
T
2 F

TFN2 < (M2BB
TMT

2 + εI)−1 (21)

Without loss of generality, we only discuss the case n−
s ≤ p, the other case is similar. Using the singular value
decomposition of matrix M2B as follows.

M2B = U1 ( Λ 0 )UT
2 , (22)

where U1 ∈ R
(n−s)×(n−s), U2 ∈ R

p×p are unitary matrices
and Λ ∈ R

(n−s)×(n−s) is a diagonal matrix with positive
diagonal elements in decreasing order.

Then

BTMT
2 (M2BB

TMT
2 + εI)−1M2B

= U2

(

Λ
0

)

UT
1

(

U1 ( Λ 0 )UT
2 U2

(

Λ
0

)

UT
1 + εI

)−1

· U1 ( Λ 0 )UT
2

= U2

(

Λ
0

)

(Λ2 + εI)−1 ( Λ 0 )UT
2

= U2

(

Λ2(Λ2 + εI)−1 0
0 0

)

UT
2

≤ U2U
T
2

= I
(23)

Noticing that e = N1e1+N2e2 and e2 = −M2Bφ, then
from (9) and (14) we have

‖φ‖ ≤ ‖Fe‖ = ‖FN1e1 + FN2e2‖

≤ ‖FN1e1‖+ ‖FN2e2‖

≤ µ1exp(− 1
2µt) + ‖FN2e2‖,

(24)

where µ1 = ‖FN1‖
√

λ−1
1 V (0).

Furthermore, (21) and (23) imply

‖FN2e2‖

= ‖FN2M2Bφ‖

=
√

φTBTMT
2 N

T
2 F

TFN2M2Bφ

≤ 1√
1+ε0

√

φTBTMT
2 (M2BBTMT

2 + εI)−1M2Bφ

≤ 1√
1+ε0

‖φ‖
(25)

Combining (24) and (25), we obtain

‖φ‖ ≤ µ1(1−
1√
1 + ε0

)−1exp(−1
2
µt) (26)

Thus, e2 = −M2Bφ implies that e2 is exponentially asymp-
totically stable. Therefore the error state e = N1e1 +N2e2
is also exponentially asymptotically stable, which completes
the proof.

Since (5) is not a strict LMI, in order to use LMI Toolbox
[3], (5) can be transformed into an equivalent LMI.

Let E⊥ ∈ R
(n−s)×n satisfying E⊥E = 0 and

rank(E⊥) = n− s. Then we have the following lemma.
Lemma 2.1: The conditions in Theorem 2.1 are equiv-

alent to the conditions that there exist a positive-definite



matrix X ∈ R
n×n, two matrices Y ∈ R

(n−s)×n and
Q ∈ R

r×n such that the following LMI is solvable.












AT (XE + ET
⊥Y )

+(XE + ET
⊥Y )

TA

+CTQ+QTC + FTF



 (XE +ET
⊥Y )

TB

BT (XE + ET
⊥Y ) −I









< 0

(27)
Proof: If (27) holds for some X and Y , and choosing

P = XE + ET
⊥Y , then ETP = PTE = ETXE ≥ 0. In

addition, it follows from the proof of Theorem 2.1 that we
have

P =MT

(

P1 0
P3 P4

)

N−1

where P1 > 0 and M,N defined by (12). Hence, after some
manipulations, we get

P =MT

(

P1 0
0 I

)

ME +MT

(

0
I

)

(P3 P4 )N
−1

(28)
Noticing ( 0 I )ME = ( 0 I )MENN−1 = 0, then
there exists a nonsingular matrix Γ ∈ R

(n−s)×(n−s)

such that E⊥ = Γ ( 0 I )M . Therefore X =
MTdiag{P1, I}M and Y = Γ−T (P3 P4 )N

−1 satisfy
that X > 0 and P = XE + ET

⊥Y , which completes the
proof.

By means of Lemma 2.1, we have the following theorem
which is direct result from Theorem 2.1.

Theorem 2.2: There exists a full-order observer (3) for
system (1) if there exist a positive-definite matrix X ∈
R

n×n, two matrices Y ∈ R
(n−s)×n and Q ∈ R

r×n such
that LMI (27) is solvable.

Remark 2.1: If E = I , then the results of Theorems 2.1
and 2.2 is similar to that in [13], but our approach based
on LMI is more effective and simpler.

Remark 2.2: In [5], [11], some coordinate transformation
for the original system is made in order to construct full
order observer. In contrast, the full order observer design in
this paper is easier to construct for it only depends on the
solution of an LMI.

III. REDUCED ORDER OBSERVER DESIGN

In order to construct a reduced order observer, the sepa-
ration principle will be applied. At first, we use a coordinate
transformation to decompose (1) and present an estimator
for the substate which can not be measured directly from
the measurable output. Then we show the error between the
estimator and the substate is globally asymptotically stable.
To this end, we make the following assumption.

Assumption 3.1: Assume that rank(C) = r and

rank

(

E

C

)

= n.

Remark 3.1: It is easy to show r+ s ≥ n. Using a coor-
dinate transformation, we reconstruct a r-th order dynamics
rather than a s-th order dynamics from the original system
(1).

Based on the above assumption, there exists a matrix D ∈
R

(n−r)×n such that rank
(

C

D

)

= n. Let N =

(

C

D

)−1

,

then CN = ( Ir 0 ) and

n = rank

(

E

C

)

= rank

((

E

C

)

N

)

= rank





EN

(

Ir
0

)

EN

(

0
In−r

)

Ir 0





(29)

That is,

rank

(

EN

(

0
In−r

))

= n− r

which implies that there exists a matrix M0 ∈ R
n×r such

that

rank

(

M0 EN

(

0
In−r

))

= n

Let M =

(

M0 EN

(

0
In−r

))−1

, then we have that

MEN is of the following structure:

MEN =

(

E1 0
E2 In−r

)

(30)

where E1 ∈ R
r×r and E2 ∈ R

(n−r)×r.
Denoting

MAN =

(

A11 A12

A21 A22

)

(31)

where A11 ∈ R
r×r, A12 ∈ R

r×(n−r), A21 ∈ R
(n−r)×r,

A22 ∈ R
(n−r)×(n−r).

Introducing the following new state v = Dx + (LE1 +
E2)y ∈ R

n−r, where L ∈ R
(n−r)×r is the observer gain

to be determined. Then we have

x = N

(

Ir 0
−E2 − LE1 In−r

)(

y

v

)

,

v = (L In−r )MEx

(32)

If we can obtain the estimate of v, then x can be easily
estimated by (32) because y is measurable output. The
dynamics of state v can be represented by

v̇ = (L In−r )MEẋ

= (L In−r )M(Ax+BΦ)

= (L In−r )MAN

(

Ir 0
−E2 − LE1 In−r

)(

y

v

)

+(L In−r )MBΦ
(33)



That is,

v̇ = (A22 + LA12)v

+[A21 + LA11 − (A22 + LA12)(E2 + LE1)]y

+(L In−r )MB

· Φ
(

t,N

(

Ir 0
−E2 − LE1 In−r

)(

y

v

)

, u

)

(34)
In view of (34), we can construct the reduced-order observer
for v as follows.
˙̂v = (A22 + LA12)v̂

+ [A21 + LA11 − (A22 + LA12)(E2 + LE1)] y

+(L In−r )

· MBΦ

(

t,N

(

Ir 0
−E2 − LE1 In−r

)(

y

v̂

)

, u

)

(35)
Denoting δ = v − v̂, then from (34) and (35), we have

δ̇ = (A22 + LA12)δ + (L In−r )MBφδ (36)

where

φδ = Φ

(

t,N

(

Ir 0
−E2 − LE1 In−r

)(

y

v

)

, u

)

−Φ
(

t,N

(

Ir 0
−E2 − LE1 In−r

)(

y

v̂

)

, u

)

(37)
Theorem 3.1: Under Assumption 3.1 there exists a

reduced-order observer in the form of (35) for system (1)
if the conditions in Theorem 2.1 hold.

Proof: In order to show that dynamics (35) is a reduced-
order observer for system (1), we only need to show that
error dynamics (36) are globally exponentially stable.

For convenience, let

M−TPN =

(

P1 P2

P3 P4

)

, (38)

where P1 ∈ R
r×r, P2 ∈ R

r×(n−r), P3 ∈ R
(n−r)×r, P4 ∈

R
(n−r)×(n−r).
Based on the new decomposition of matrices E and A

in (30) and (31), from matrix inequalities (5) we have that
ETP = PTE ≥ 0 implies that (MEN)TM−TPN =
(M−TPN)TMEN ≥ 0, that is, P4 ≥ 0. Without loss of
the generality, we assume P4 > 0.

In fact, if P4 is singular, then there exists a sufficient
small positive scalar ε such that Pε := P + εMTME

(instead of P ) satisfies matrix inequalities (5). In this case,
(38) will be in the following form:

M−TPεN = M−TPN + εMEN

=

(

P1 + εE1 P2

P3 + εE2 P4 + εI

) (39)

then P4 + εI > 0.
Choosing

L = P−1
4 PT

2 . (40)

By pre- and post-multiplying the second LMI in (5) with
diag{N, In−r}T and its transpose, respectively, reminding
(30), (31) and CN = ( Ir 0 ), after some manipulations,
we have









Ω11 P4

(

LT

I

)T

MB

(MB)T
(

LT

I

)

P4 −I









< 0 (41)

where

Ω11 := P4(A22 + LA12) + (A22 + LA12)
TP4

+

(

0
In−r

)T

NTFTFN

(

0
In−r

) (42)

In addition, from (2) we have

‖φδ‖ ≤ ‖FN
(

0
In−r

)

δ‖ (43)

For error dynamics (36) with (40), choosing the following
Lyapunov function

V = δTP4δ (44)

then the derivative of Lyapunov function (44) along dynam-
ics (36) yields

V̇ = 2δTP4(A22 + LA12)δ + 2δ
TP4 (L I )MBφδ

≤ 2δTP4(A22 + LA12)δ + 2δ
TP4 (L I )MBφδ

−φT
δ φδ + δT

(

0
In−r

)T

NTFTFN

(

0
In−r

)

δ

= ( δT φT
δ ) Ω0

(

δ

φδ

)

< 0
(45)

where Ω0 represents the left-hand-side of inequality (41).
Therefore δ is exponentially stable, which completes the
proof.

Similarly to Theorem 2.2, Theorem 3.1 is equivalent to
the following theorem in which the observer gain can be
construct by means of the solution of an LMI.

Theorem 3.2: Under Assumption 3.1, there exists a
reduced-order observer in the form of (35) for system (1)
if there exist a positive-definite matrix X ∈ R

n×n, two
matrices Y ∈ R

(n−s)×n and Q ∈ R
r×n such that LMI

(27) is solvable.
Remark 3.2: It is an interesting fact that constructible

condition (27) for both full order and reduced order ob-
servers are the same under LIM approach. Comparing with
generalized Sylvester equation approach developed in [5],



Theorems 3.1 and 3.2 present a new and simple method
to design reduced order observer. Our sufficient condition
in Theorems 3.1 and 3.2 is independent of coordinate
transformation, only dependent of the solution of LMI (27).
However, [5] requires the solution of a special generalized
Sylvester equation. (see Theorem 3 of [5]). This constraint
may depend on the choice of matrix R, that is, coordinate
transformation of the discussed system.

Remark 3.3: It is easy to see that the system discussed
in [14] is a special case of systems (1). If E = I , we
can directly obtain the reduced order observer design from
Theorems 3.1 and 2.2. It is interesting to find that our
unified observer design for nonsingular systems by means
of LMI is simpler and easier than the approach used in [14],
while different cases of system matrices are discussed for
design in [14].

IV. AN ILLUSTRATIVE EXAMPLE

Consider the system with the following system matrices:

E =

(

1 0
0 0

)

, A =

(

2 1
0 1

)

, B =

(

0.5 0.2
0.3 0.6

)

,

C = ( 2 1 ) , F =

(

1 0
0 1

)

(46)
Choose E⊥ = ( 0 1 ), and then by solving LMI (27) we
have

X =

(

0.7149 0.0000
0.0000 1.1618

)

, Y = ( 0.0599 −0.9775 ) ,

Q = (−1.2278 0.1166 )
(47)

Hence the observer gain (7) is obtained as follows.

L = (XE + ET
⊥Y )

−TQT =

(

−1.7076
−0.1193

)

(48)

Thus, a full order observer for system (1) is system (3)
with the observer gain presented by (48).

Next we present the reduced order observer for system
(1).

Choose D = ( 1 0 ), M0 = ( 0 1 )
T , then

M =

(

0 1
1 0

)

, N =

(

0 1
1 −2

)

,

MEN =

(

0 0
1 0

)

, MAN =

(

1 −2
1 0

)

(49)

From the above solutions of LMI (27), we have

P = XE + ET
⊥Y =

(

0.7149 0
0.0599 −0.9775

)

(50)

which yields

M−TPN =

(

P11 P12

P21 P22

)

=

(

−0.9775 2.0149
0 0.7149

)

(51)

Hence an observer gain (40) is

L = P−1
4 PT

2 = 2.8186 (52)

Therefore, a reduced order observer in the form of (35) is
given as follows.

˙̂v = −5.6372v̂ + 3.8186y

+( 1.3456 1.8912 )Φ

[

t,

(

v̂

y − 2v̂

)

, u

]

(53)

V. CONCLUSION

This paper addresses the issues of full-order and reduced-
order observer design for a class of descriptor systems with
Lipschitz constraint. It is shown that the design of both
observers can be reformulated as the same LMI. This paper
presents a simple way to seek the observers. It can be easily
seen that the approach in this paper can be extended to
Lipschitz descriptor systems with multiple time-delays or
H∞ observer design.

REFERENCES

[1] J. H. Chou, and W. H. Liao, “Stability robustness of continuous-time
perturbed descriptor systems,” IEEE Trans. Circuits Syst. I, vol. 46,
pp. 1153-1155, Sept. 1999.

[2] I. Masubuchia, Y. Kamitaneb, A. Oharac, and N. Sudad, “H∞
Control for Descriptor Systems: A Matrix Inequalities Approach,”
Automatica, vol. 33, pp. 669-673, 1997.

[3] P. Gahinet, A. Nemirovsky, A. J. Laub, and M. Chilali, LMI Control
Toolbox, The Math Works Inc. 1995.

[4] V. A. Yakubovich, “The S-procedure in nonlinear control theory,”
Vestnik Leningrad Univ. Math., vol. 4, pp. 73-93, 1977. (English
translation)

[5] M. Boutayeb and M. Darouach, “Observers design for nonlinear
descriptor systems,” Proceedings of the 34th IEEE Conference on
Decision and Control, vol. 3, pp. 2369-2374, 1995.

[6] L. Dai, Singular Control Systems, Berlin, Germany: Springer-Verlag,
1989.

[7] M. Darouach and M. Boutayeb, “Design of observers for descriptor
systems,” IEEE Trans. Automat. Contr., vol. 40, pp. 1323-1327, 1995.

[8] M. Darouach, M. Zasadzinski, and M. Hayar, “Reduced-order ob-
server design for descriptor systems with unknown inputs,” IEEE
Trans. Automat. Contr., vol. 41, pp. 1068-1072,1996.

[9] M. Hou and P. C. Muller, “Observer design for descriptor systems,”
IEEE Trans. Automat. Contr., vol. 44, pp. 164-169, 1999.

[10] D. Koenig and S. Mammar, “Design of proportional-integral observer
for unknown input descriptor systems,” IEEE Trans. Automat. Contr.,
vol. 47, pp. 2057- 2062, 2002.

[11] D. N. Shields, “Observer design and detection for nonlinear descrip-
tor systems,” International Journal of Control, vol. 67(2), pp. 153-
168, 1997.

[12] G. Zimmera J. Meierb, “On observing nonlinear descriptor systems,”
Systems & Control Letters, vol. 32, pp. 43-48, 1997.

[13] R. Rajamani, “Observers for Lipschitz nonlinear systems,” IEEE
Trans. Automat. Contr., vol. 43, pp. 397-401, 1998.

[14] F. L. Zhu and Z. Z. Han, “A note on observers for Lipschitz nonlinear
systems,” IEEE Trans. Automat. Contr., vol. 47, pp. 1751-1754, 2002.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP07.5
	Page0: 3474
	Page1: 3475
	Page2: 3476
	Page3: 3477
	Page4: 3478
	Page5: 3479


