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Abstract— A notion of q-integral (qI) observers for multiple-input
single output linear systems is introduced. Then the theory is extended
to nonlinear systems with single output. We show that theq-integral
observer guarantees robustness against both measurement errors and
unmodeled dynamics. An example is given to show the efficacy of the
proposed robust observers.

Index Terms— Lyapunov theory; Nonlinear observers; Robustness;
LMI design.

I. I NTRODUCTION

Numerous control strategies are based on the assumption that all
internal states of the control object are available for feedback. In
most cases, however, only a few of the states or some functions of
the states can be measured. This circumstance raises the need for
techniques, which makes it possible not only to estimate states, but
also to derive control laws that guarantee stability when using the
estimated states instead of the true ones. By observer we mean a
deterministic dynamical system which uses observed information
to compute an estimate of the state of the control system in such
as way that the error decays to zero. State reconstruction and
estimation are used in numerous different types of applications
and play a fundamental role in modern control theory, signal
processing, telecommunications, and fault detection. Diagnosis
and supervision of critical processes are of major importance
for reliability and safety in industry today. The application of
observers in fault detection and isolation provide one means to
these problems.

High-gain observers continue to be efficient tools to estimate
unmeasured states from the knowledge of the inputs and the
outputs of the system being observed. In such observer design, the
high-gain output injection is conceived to defeat the inherent non-
linearities, however, this proportional injection arises two serious
drawbacks: noise amplification and peaking phenomenon. In this
paper we plan to reformulate the high-gain observation scheme by
replacing the proportional P injection term with a multiple integral
injection term that involves theqth integral of the output. As a
matter of fact, the notion of adding an integral path is not quite
new. The first idea of proportional integral PI observers has been
proposed by Wojciechwski [12] and further developed by Beale
and Shafai [2], and Niemann et al [7].

The proposed observers differ from the conventional P and PI
observers proposed in [2], [7], [3]. Our goal is to cancel the
proportional term P from the observer dynamics and replace it
by a novel injection term that depends upon theqth integral of
the measured output. First, we begin by the development ofqI
observers for MISO linear systems. Subsequently, we exploit the
new structure of theqI observer to build robust observers for
Lipschitzian nonlinear systems. We show that theqI term permits
to decouple the effect of uncertainties from the state estimates
and makes the filtering operation internally incorporated in the
dynamics of the observer. Cancelling the proportional term from
the q-integral observer permits to filter the estimates whatever the
Lipschitz constant is.
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Throughout this paper, we noteIR the set of real num-
bers. |f(t)| is the absolute value of the functionf(t). A′

is the matrix transpose ofA. A
1
2 is the square root ofA.

‖A‖ = max
{√

λ : λ is the eigenvalue ofAT A
}

. λmin(A) : is

the smallest eigenvalue ofA. λmax(A) : is the largest eigenvalue of
A. S +(n, IR) denotes the set of positive definite matrices of order
n. I is the identity matrix with appropriate dimension. We note
<(λ) the real part of the complexλ. ẋ denotes the first derivative

of x with respect to time.
∫

q

y(s)ds =

∫ t

0

∫ t

0

· · ·
∫ t

0︸ ︷︷ ︸
q

y(s)ds is

the q-th integral of the scalar functiony(t).

II. A ROBUST LINEAR OBSERVER

Consider the uncertain MISO linear system

ẋ = A x + B u + v,
y = C x + d,

(1)

where the statex = x(t) and the inputu = u(t) are n and m
dimensional vectors, respectively.y = y(t) is a scalar output,
A ∈ IRn×n, B ∈ IRn×m and C ∈ IR1×n are the nominal
matrices, and the pair(A, C) is assumed to be rank observable.
v = v(x(t), t) ∈ IRn represents the bounded unmodeled dynamics
and d = d(t) ∈ IR is a bounded high-frequency disturbance
which comes corrupting the measurements. A classical Luenberger
observer is readily constructed as

˙̂x = A x̂ + L (y − Cx̂) + B u. (2)

From equations (1) and (2), the dynamics of the observer error
e = x̂− x is

ė = (A− LC) e + L d− v. (3)

It is clear that the perturbationd is amplified if the observer gain
L is large. Consequently, system (2) could not be a potential
candidate observer if we want to decouple the effect of noise from
the dynamics of the observer.

A. Robust observer design

Our goal is to decouple the effect of uncertainties from the
observer gain, for this purpose, we define theq-integral observer
as

ξ̇1 = ξ2 − kξ1 ξ1,

ξ̇2 = ξ3 − kξ2 ξ1,
...

ξ̇q = y − Cẑ − kξq ξ1,
˙̂z = A ẑ −KI ξ1 + B u,

(4)

whereξ ∈ IRq×1 is the state of theξ-subsystem,̂z is the observer
state vector,KI ∈ IRn×1 is the integral gain of the observer and
Kξ =

[
kξ1 kξ2 · · · kξq

]′ ∈ IRq×1 is the ξ-subsystem
gain. System (4) can be rewritten as follows

ξ̇ =
(
Aξ − K̃ξ

)
ξ + Bξ (y − Cẑ) ,

˙̂z = A ẑ − K̃I ξ + B u,
(5)



where

Aξ =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0


q×q

, Bξ =


0
0
...
1


q×1

, (6)

K̃I =
[

KI 0n×q−1

]
n×q

, K̃ξ =
[

Kξ 0q×q−1

]
q×q

. (7)

Notice that the main difference between (4) and (2) is that the P
injection termL(y − Cx̂) in (2) is replaced byKIξ1 in (4). The
relationship betweenξ1 and(y−Cx̂) is given by theξ-subsystem
(4). ξ1 can be seen as the output ofq−th order filter whose input
is (y − Cx̂). By increasing the orderq, ξ1 is filtered more and
more and a great amount of noise shall be eliminated from the
observer dynamics. Let̃e = ẑ−x, then from equation (5) and (1),
we have[

ξ̇
˙̃e

]
=

[
Aξ − K̃ξ −Bξ C

−K̃I A

] [
ξ
ẽ

]
+

[
Bξ

0n×1

]
d

−
[

0q×1

v

]
. (8)

Observer (5) is internally stable if and only if the gains̃KI and
K̃ξ are chosen such that the eigenvalues of the matrix[

Aξ − K̃ξ −Bξ C

−K̃I A

]
(n+q)×(n+q)

(9)

have negative real parts. If we compare (8) and (3), we conclude
that the q-integral observer decouples the disturbanced and
permits to have a good filtering quality. Notice that the design
of K̃I , and K̃ξ cannot be done independently. We will give a
direct method to choose then + q parameters for any observable
pair (A, C). The whole design is summarized in the following
theorem.

Theorem 1:Consider system (1) and let

F =

[
Aξ −Bξ C

0n×q A

]
(n+q)×(n+q)

, G =

[
Bξ

0n×1

]
(n+q)×1

,

C̄ =
[

1 0 · · · 0
]
1×(n+q)

, w̃ =

[
0q×1

v

]
(n+q)×1

.

If the positive parameterµ is selected such that

< (λi (F )) > −µ/2 (10)

for every eigenvalueλi of F , then[
ξ̇
˙̂z

]
=

(
F − P−1C̄′C̄

) [
ξ
ẑ

]
+ G y,

−µP − F ′P − PF + C̄′C̄ = 0.

(11)

is a robust observer of (1) which decouples both the noise
effect and the unmodeled dynamics from the observer states.
Furthermore, ifd = 0 andv = 0, then

lim
t→∞

(x− ẑ) = 0. (12)

Proof. The eigenvalue condition is met if and only if the matrix
−

(
µ
2

I + F
)

is Hurwitz. This in turn, is equivalent to the exis-
tence of a positive definite matrixP ∈ S +(n+q, IR) that satisfies
the Lyapunov matrix equation

−
(µ

2
I + F

)′
P − P

(µ

2
I + F

)
= −C̄′C̄. (13)

Here, the integral gain of the observer is given by

P−1C̄′ =

[
Kξ

KI

]
. (14)

Put w = ẑ − x, wherex is the state vector of system (1), and

defineρ =

[
ξ
w

]
. By takingV = ρ′ Pρ as a Lyapunov function

candidate associated to the following system

ρ̇ =
(
F − P−1C̄′C̄

)
ρ + G d− w̃, (15)

one could easily show that

V̇ ≤ −µV + 2ρ′ P G d− 2ρ′ P w̃

≤ −µV + 2
∥∥∥ρ′ P

1
2

∥∥∥ ∥∥∥P
1
2 G

∥∥∥ |d|
+ 2

∥∥∥ρ′ P
1
2

∥∥∥ ∥∥∥P
1
2

∥∥∥ ‖w̃‖
which implies that

V̇
1
2 ≤ −µ

2
V

1
2 +

∥∥∥P
1
2 G

∥∥∥ |d|
≤ −µ

2
V

1
2 +

|d|
λmin(P−

1
2 )

+
‖w‖

λmin(P−
1
2 )

(16)

Now we shall prove that uncertainties can be reduced by increasing
the value of µ. For this purpose, we introduce the following
lemma.

Lemma 1:Let µ1 and µ2 be two positive real constants such
that

< (λi (F )) > −µ1

2
, < (λi (F )) > −µ2

2
, (17)

for every eigenvalueλi of F , and letP1 andP2 be the solutions
of the following Lyapunov-like matrix equations

−µ1P1 − F ′P1 − P1F + C̄′C̄ = 0, (18)

−µ2P2 − F ′P2 − P2F + C̄′C̄ = 0. (19)

Then for anyµ1 < µ2, P−1
1 < P−1

2 .
Proof. The difference between (18) and (19) gives

−µ1P1 + µ2P2 − F ′ (P1 − P2)− (P1 − P2) F = 0. (20)

The last equation can be rewritten as

−
(
F +

µ1

2
I
)′

(P1 − P2)− (P1 − P2)
(
F +

µ1

2
I
)

=

−(µ2 − µ1)P2. (21)

Since −
(
F +

µ1

2
I
)

and −
(
F +

µ2

2
I
)

are Hurwitz by the
eigenvalue condition (17), thenP1 and P2 are positive definite.
Using the fact that(µ2−µ1)P2 > 0 and the matrix−

(
F + µ1

2
I
)

is Hurwitz, then the solutionP1 − P2 of the Lyapunov equation
(21) is positive definite, orP−1

1 − P−1
2 < 0.

From inequality (16) and using results of lemma 1, we conclude
that when the observer gainP−1C̄′ is high (i.e.,

∥∥∥P−
1
2

∥∥∥ is high),
the amount of noise is reduced since the norm of the perturbation
is multiplied by 1/λmin(P−

1
2 ). In addition, the observer is also

able to reduce the effects of model uncertainties by increasing the
value ofµ, see (16).

Remark 1:The proposed observer design has a relationship
with H∞-filtering. The main difference between the two ap-
proaches is that the proposed solution of the observer gain is given
by the solution of a Lyapunov-like equation which always exists
for a suitable choice ofµ. Furtheremore, if for a certainµ > µ?,
the matrixP is positive definite, then we realize that choosingµ



large does not affect the existence ofP and hence, the uncertain
term along with noise disturbance are significantly reduced.

Remark 2:Observer (4) is not the only possible scheme to re-
duce the effect of uncertainties. Theξ-subsystem can be rewritten
in controllable canonical form, which gives the following observer
scheme

ξ̇1 = ξ2,

ξ̇2 = ξ3,
...

ξ̇q = y − Cẑ − kξ1 ξ1 − kξ2 ξ2 − · · · − kξq ξn,
˙̂z = A ẑ −KI ξ1 + B u.

(22)

In matrix notation, observer (22) takes the form

ξ̇ =
(
Aξ −BξK

′
ξ

)
ξ + Bξ (y − Cẑ) ,

˙̂z = A ẑ −KI ξ1 + B u.
(23)

By forming the observation error̂e = ẑ − x wherex is the state
vector of (1) and̂z is the ẑ-state vector of (22), we obtain[

ξ̇
˙̂e

]
=

[
Aξ −BξK

′
ξ −Bξ C

−K̃I A

] [
ξ
ê

]
+

[
Bξ

0n×1

]
d

−
[

0q×1

v

]
. (24)

Evidently, the observation error is stable if and only if the
eigenvalues of the matrix[

Aξ −BξK
′
ξ −Bξ C

−K̃I A

]
, (25)

are stable.

B. Other scheme of robust observers

The aim of this subsection is to present another scheme of robust
observers that behave more resistant to measurement errors of high
levels. The basic idea is to augment the original system withq
integrators and feed back the observer dynamics with the exact
q-th integral of the noisy output. The amount of noise that may
contain the system output will be enfeebled with the presence of
the successiveq integrators.

Consider the linear system (1) augmented with theq-chain of
integrators

ẋ = A x + B u + v,

ξ̇1 = ξ2,

ξ̇2 = ξ3,
...
ξ̇q = y,

(26)

whereξ(0) = 0 andy = Cx+d is the system noisy output. Here,
the ξ-subsystem is not a part of the observer dynamics but just
an augmentation of the original system that permits us to extract
the q-th integral of the noisy output. The corresponding observer
is given by

˙̂
ξ1 = ξ̂2 − kξ1

(
ξ̂1 − ξ1

)
,

˙̂
ξ2 = ξ̂3 − kξ2

(
ξ̂1 − ξ1

)
,

...
˙̂
ξq = Cx̂− kξq

(
ξ̂1 − ξ1

)
,

˙̂x = A x̂ + B u−KI

(
ξ̂1 − ξ1

)
,

(27)

Fig. 1. The noisy output.

where the observer gainKξ andKI are defined as in section II.
The last system can be rewritten as

˙̂
ξi = ξ̂i+1 − kξi

(
ξ̂1 −

∫
q

y(s)ds

)
, 1 ≤ i ≤ q − 1

˙̂
ξq = Cx̂− kξq

(
ξ̂1 −

∫
q

y(s)ds

)
,

˙̂x = A x̂ + B u−KI

(
ξ̂1 −

∫
q

y(s)ds

)
.

It is clear, in this representation, that the observer is alimented
with the q-th integral ofy, but in the meantime, the order of the
observer is augmented byq supplementary dynamical equations.
If we note

e =

[
ξ̂ − ξ
x̂− x

]
, (28)

then

ė =

[
Aξ − K̃ξ BξC

−K̃I A

]
e−

[
Bξ

0n×1

]
d−

[
0q×1

v

]
, (29)

where K̃ξ, K̃I , Aξ, Bξ are defined as in section II. With an
appropriate choice of̃KI and K̃ξ, the observer error dynamics
(29) can be made stable.

Remark 3:Observer (27) is in the ideal case to apply result of
theorem 1. The determination of̃Kξ, K̃I can be obtained from
the Lyapunov matrix equation (11) by replacing the matrixF by[

Aξ BξC
0n×q A

]
. (30)

C. An example

Consider the linear system

ẋ =

[
0 1
0 0

]
x +

[
0
2

]
sin(t),

y = x1 + d,
(31)

whered is a norm-bounded noise, andsin(t) is considered as a
known input. The objective is to show the effectiveness of observer
(27) for q = 2. In figure 1, we give the noisy outputy and in
figure 2 and 3, we show the performances of observer (27). The
simulation is made forkξ1 = 4, kξ2 = 6, k1 = 4, k2 = 1.



Fig. 2. The idealx1 and its estimate.

Fig. 3. The statex2 and its estimate.

III. E XTENSION TO NONLINEAR SYSTEMS

A. On observer design for nonlinear systems

For linear systems the observability condition implies exis-
tence of exponentially converging observers. For general nonlinear
systems the different definitions and properties on observability
described in the literature are fundamental, but the relation to
observers and the observer design is far more complex then for the
linear case. A standard approach to solve the state reconstruction
problem is to use a copy of the observed system and to add some
correction terms attenuating the difference of the outputs [6], [11],
[5], [4], [9], [10]. Many standard nonlinearities, as for instance
trigonometric functions, or terms asx2 can be bounded by linear
functions satisfying Lipschitz conditions. This property has been
exploited by Thau [11] to construct a nonlinear observer to systems
of the form

ẋ = Ax + f(x, u, t) + φ(y, u, t),
y = Cx.

(32)

wheref(x, u, t) is Lipschitz with respect to the statex with a
Lipschitz constantγ. Thau proposed the model-based observer

˙̂x = Ax̂ + f(x̂, u, t) + L (y − ŷ) + φ (y, u, t) ,
ŷ = Cx̂,

(33)

and proved that if the Lyapunov equation

(A− LC)′ P + P (A− LC) = −Q, P > 0, Q > 0, (34)

is satisfied with

γ ≤ λmin (Q)

2λmax (P )
, (35)

then the errore = x − x̂ decays exponentially to zero. The
result of Thau ensures the stability of the observer estimates, but
unfortunately, equations (33), (35) provides very little insight how
the observer gainL can be found. The eigenvalues of the matrix
(A− LC) can be placed arbitrarily, but the crucial part is the
relation between these eigenvalues and the spectral radius of the
matrix P . In article [8], the authors showed that the ratio (35) can
be maximized forQ = I. Raghavan and Hedrick have proposed a
method to construct the observer gainL. The design strategy was
based on theory for quadratic stabilization of uncertain systems
[9]. Recently, Rajamani [10] studied extensively the conditions of
existence of the observer gainL and has proposed an algorithm for
its computation. However, the structure of the nonlinearities were
not fully utilized witch makes the results somewhat conservative
as the observer gain, if found, will give an asymptotically observer
for all nonlinearities satisfying the Lipschitz conditions. Arcak and
Kokotović [1] has considered locally Lipschitz nonlinear systems
and the observer design decomposes the error dynamics into a
linear system in feedback with a multivariable sector nonlinearity.
Linear matrix inequalities (LMIs) are used to state the conditions
for the existence of a stable observer error dynamics with respect
to the imposed observer structure. As we have showed latter, the
presence of the P termL (y − Cx̂) in the proposed observers
will amplifies enormously the noise that contains the outputy,
especially when the constant Lipschitz is high.

As it was mentioned in reference [9], linear transformation
can be used to reduce the value of the Lipschitz constant. In
their design the observer gain is calculated through an algebraic
Riccati equation (ARE), which depends on the Lipschitz constant
of nonlinearities. The authors have proposed an algorithm how can
one design progressively the observer gain by testing the solution
of the ARE. In this subsection, we develop an efficient LMI-based
algorithm that can inform as about the allowed maximum value of
the Lipschitz constant and compute the maximum observer gainL
if it exists. We summarize the design in the following statement.

Theorem 2:Consider the nonlinear system

ẋ = A x + f (x, u) + g(y, u), (36)

y = C x, (37)

where x ∈ M ⊂ IRn and f : M × IRm → IRn is a
Lipschitz nonlinearity of Lipschitz constantγ and f(0, 0) = 0.
The nominal matricesA ∈ IRn×n, andC ∈ IRp×n are assumed
to be detectable. If there exist a positive definite matrixP , and a
matrix Y ∈ IRn×p such that the optimization problem

min
P, Y

ρ (38)

subject to[
A′P + PA− C′Y ′ − Y C + I P

P −ρ I

]
< 0 (39)

is feasible, then system

˙̂x = A x̂ + f (x̂, u) + g(y, u) + P−1Y (y − Cx̂) , (40)

is an asymptotic observer if1
γ2 ≥ ρ.

Proof. By forming the dynamics of the observer errore = x̂− x
from Eq. (36), we have

ė =
(
A− P−1Y C

)
e + f (x̂, u)− f (x, u) . (41)



By taking the quadratic Lyapunov functione′Pe, its first time
derivative is

V̇ = ė′Pe + e′P ė
= e′ (A′P + PA− C′Y ′ − Y C) e
+ 2e′P (f (x̂, u)− f (x, u))

Using

2e′P (f (x̂, u)− f (x, u))

≤ 2‖e‖‖P (f (x̂, u)− f (x, u)) ‖
≤ γ2e′PPe + e′e

then we conclude that the observer error is stable if and only if

A′P + PA− C′Y ′ − Y C + γ2PP + I < 0. (42)

By the Schur complement lemma, the last inequality is equivalent
to (39) with ρ = 1

γ2 . This ends the proof.
We see that the observer gainL = P−1Y depends on the

maximum valueγ which makes (39) satisfied. If the optimization
problem (38) and (39) fails, then based on the obtained minimum
valueρ, one can then choose an appropriate linear transformation
which can reduce the value of the existing Lipschitz constantγ,
at least, to 1√

ρ
.

B. Practical observer design

We have seen in the previous subsection that the existence of the
observer gain depends on the solvability of an LMI problem. As
we have mentionned before, if the Lipschitz constant is high then
the solution of the LMI problem may fail. In this subsection, we
plan to generalize the results of section I to the nonlinear case
where the nonlinearityf(x, u) is upper bounded by a certain
constant γ

2
for all admissibleu. Here, γ is not the Lipschitz

constant off(·, ·) but its maximum over a compact setM ⊂ IRn.
Theorem 3:Consider the nonlinear system

ẋ = A x + f(x, u) + g(y, u) + v,

ξ̇1 = ξ2,

ξ̇2 = ξ3,
...
ξ̇q = Cx + d,

(43)

wherex = x(t) ∈ M ⊂ IRn is the state vector,u = u(t) ∈ U is
the control input that belongs to the set of admissible bounded
inputs U , and f is a globally Lipschitz function that verifies

sup
x∈M, u∈U

‖f(x, u)‖ ≤ γ

2
. The disturbancesv = v(x(t), t) and

d = d(t) are defined as in section II. Let

F̃ =

[
Aξ Bξ C

0n×q A

]
(n+q)×(n+q)

, (44)

and letP ∈ IR(n+q)×(n+q) be the solution of the Lyapunov matrix
equation

−µP − F̃ ′P − PF̃ = −C̄′C̄. (45)

Then for anyµ such that

<
(
λi(F̃ )

)
> −µ/2, (46)

for every eigenvalue of̃F , the system[
˙̂
ξ
˙̂x

]
= F̃

[
ξ̂
x̂

]
− P−1C̄′C̄

[
ξ̂ − ξ
x̂

]
+

[
0q×1

f(x̂, u)

]
+

[
0q×1

g(y, u)

]
− χ,

is a robust observer of (43) that decouples the effects of uncer-
tainties from the observer states and guarantees the exponential
decay of the observation error to the origin ifd = v = 0. χ is a
nonlinear term defined as

χ =

{
γ2 ‖P‖
‖C̄e‖2 P−1C̄′

(
ξ̂1 − ξ1

)
if

∥∥C̄e
∥∥ 6= 0,

0, otherwise,
(47)

andAξ, Bξ, C̄ are defined as in section II.
The formula of χ is just a conceptual rule to guarantee the
convergence of the observer error. In practice we can fixχ as

χ =

{
γ2 ‖P‖
‖C̄e‖2 P−1C̄′

(
ξ̂1 − ξ1

)
if

∥∥C̄e
∥∥ ≥ ε,

0, if
∥∥C̄e

∥∥ < ε,
(48)

where ε is any desired error. Remark also that the high-gain
term given byχ can not deteriorate the quality of estimation since
ξ1 and ξ̂1 represent theqth integral of the noisy output and its
estimate, respectively.

Proof of theorem 3.Define the observation error ase =[
ξ̂ − ξ
x̂− x

]
. Then, we have

ė =
(
F̃ − P−1C̄′C̄

)
e + ∆f −G d− w̃ − χ, (49)

whereG, w̃ are defined as in section II, and

∆f =

[
0q×1

f(x̂, u)− f(x, u)

]
. (50)

Taking V = e′Pe as a Laypunov function candidate for (49), we
have

V̇ = e′
(
F̃ ′P + PF̃ − 2C̄′C̄

)
e + 2e′P∆f − 2e′Pχ

− 2e′P G d− 2e′P w̃
= e′

(
−µP − C̄′C̄

)
e + 2e′P∆f − 2e′P χ

− 2e′P G d− 2e′P w̃

We have forP > 0, the matrix[
P −I
−I 2P

]
> 0. (51)

This comes from the fact that for anyP > 0[
I P

] [
P −I
−I 2P

] [
I
P

]
= P > 0. (52)

This implies that for given vectorsα ∈ IRq+n, β ∈ IRq+n

[
α′ β′

] [
P −I
−I 2P

] [
α
β

]
> 0. (53)

This gives

2α′β ≤ α′Pα + 2β′P−1β. (54)

Let e = α, P∆f = β, then

2e′P∆f ≤ e′Pe + 2∆f ′P∆f. (55)

Substituting the last inequality in (51), we obtain

V̇ ≤ −(µ− 1)e′Pe + 2∆f ′P∆f − 2e′P χ

+ 2
∥∥∥e′P

1
2

∥∥∥ ∥∥∥P
1
2 G

∥∥∥ ‖d‖+ 2
∥∥∥e′P

1
2

∥∥∥ ∥∥∥P
1
2

∥∥∥ ‖w̃‖
≤ −(µ− 1)V + 2∆f ′P∆f − 2e′P χ

+ 2
√

V
∥∥∥P

1
2 G

∥∥∥ ‖d‖+ 2
√

V
∥∥∥P

1
2

∥∥∥ ‖w̃‖ .



From the definition ofχ, we have for
∥∥C̄e

∥∥ 6= 0

2∆f ′P∆f − 2e′P χ ≤ 2 ‖P‖ ‖∆f‖2 − 2e′P χ

= 2γ2 ‖P‖ − 2
γ2 ‖P‖∥∥C̄e

∥∥2 e′C̄′C̄e

= 0.

(56)

Let W =
√

V , then

Ẇ ≤ − (µ− 1)

2
W +

∥∥∥P
1
2 G

∥∥∥ ‖d‖+
∥∥∥P

1
2

∥∥∥ ‖w̃‖ (57)

Then we conclude that the observer error is stable. Furthermore,
the norm

∥∥∥P
1
2

∥∥∥ can be made as small as possible by increasing
the parameterµ, see the proof of lemma 1.

IV. CONCLUSIONS

In this paper we have examined the problem of robust ob-
server design for both MISO linear and nonlinear systems. The
observer strategy is based on Lyapunov theory and linear matrix
inequalities. Under certain conditions, we showed that unmodeled
dynamics and measurement errors can be enfeebled by injection
of theqth integral of the measured output instead of the usual pro-
portional injection term. For nonlinear systems subject to bounded
nonlinearities, the problem of high-gain observer design with
guaranteed robustness against measurement errors is considered.
The extension of the present work to MIMO systems is under
investigation.
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