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Frequency-Domain Analysis of Linear Time-Periodic Systems

Henrik Sandberg, Erik Mdllerstedt, and Bo Bernhardsson

Abstract— In this paper we study how a system with a time- whereu(t) andy(t) belong toL,(—,») = L,(R). Condi-

Yl g tok, 2
periodic impulse response may be expanded into a sum of tions for whenG can be represented as an integral equation
modulated time-invariant systems. This allows us to define a (2) is given in, for example, Sandberg [1], [2].

linear frequency-response operator for periodic systems;alled . o
the harmonic transfer function (HTF). Similar frequency- If there is a real positive numbdr such that

response operators have been derived before for sampled-@a
systems and periodic finite-dimensional state-space sysis.

The HTF is an infinite-dimensional operator that captures inen the operator (or the system it represents) is said to
the frequency coupling of a time-periodic system. The paper

includes analysis of convergence of truncated HTFs. For thki be periodic with period T. We will obtain a frequency-

reason the concepts of input/output roll-off are developedand ~domain representation of periodic systei@s originally
related to time-varying Markov parameters. represented in time (2). The search for a frequency-domain

representation is motivated by the fact that frequency do-

main methods are very successful in the study of time-

A. Notation invariant systems, i.e. systems whose impulse response
satisfyg(t,7) =g(t—1), forallt > 1.

git+T,7+T)=g(t, 1), foral t>T, 3

I. INTRODUCTION

Signals defined in continuous time on an interlvadill
belong to the spaceks, (1) or L,(I). The standard norms C. Previous Work
on these spaces will be denoted MLl(I) and |[|-[|_ (I
We will denote square-summable sequencegbhyand the
norm by||-|\€2. R denotes the real axif, the non-negative
real axis, andZ the set of all integersj is the imaginary
unit, and jR is the imaginary axis.

The study of periodic systems has a long history in
applied mathematics and control. One reason for the many
studies of periodic systems is that natural and man-made
systems often have the periodicity property (3). Some
examples are: planets and satellites in orbit, rotors of
wind mills and helicopters, sampled-data systems, and AC
] ) _ power systems. An excellent survey of periodic systems and

. In thIS. paper we study linear operato@ defined on  gntrol is that of Bittanti and Colaneri 3].
signalsu in L: Frequency-domain analysis of linear time-periodic sys-
y==0u tems in continuous time has been studied by several authors

We will restrict ourselves to the set of bounded operatorJQ the past. To the authors’ best knowledge Wereley in [4]

G. The set of bounded operators will be denoted_kyand computed the first frequency-response operator for linear
has a finitel.—induced norm: periodic finite-dimensional state-space systems. He dtalle
2 :

the operator theharmonic transfer functionHTF). It is
IGll_, = sup [|Gul_. (1) computed by using harmonic balance on a state-space sys-
flull, <1 2 tem, i.e., periodic matrices are expanded into Fourieeseri
nand the harmonics are equated. The HTF is an infinite-
$mensional operator, but it was shown in [4] in several

gr?i tg?gzlmGerI\Ssicr)ig:esstzgat-esd.alc?e fr(s)aralei’\;:trigagfstglel;tei}oﬁzlfés fumerical examples that by truncating higher harmonics one
P often obtains good accuracy. In the following we will use

certain Riccatl equauon_s can be used. In this paper V\(R/ereley’s term for the frequency-response operator, #at i
pursue frequency-domain methods.

Wi i the followina that the aivenis bounded the harmonic transfer function. This is well motivated as
¢ assume in the foflowing Ihat € givesis boundea —y, frequency-response operator in the following work in
(1) and has a representation in the time domain with

i | ¢ 1) =0 for t i e same way, even though it is derived under different
causalimpulse responsg(t, 7) (g(t,7) =0 fort <7): conditions and is computed differently.
t
v = [ gt.nurdr. @

B. Problem Formulation

The norm (1) may be computed in many ways dependi

Some existence questions were left untreated by Wereley,
so Zhou et al. have written a series of papers, including [5],
[6], where they have proved such results. To compute the

This work was supported by the Swedish Research Councileio HTF in the original definition, the inverse of an infinite-
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this method is that the Floquet decomposition may be hattle norms as follows

to obtain in practice. 0 1/2

Méllerstedt and Bernhardsson used the HTF for the [[Ull,, = UG & = (/m|u(t)|2dt) (4)
modeling of power systems and converters. In [7], [8] they 1 . 12
showed that the frequency-response operator also could pe = [1a()|, iR = (/ |O(jw)|2dw) . (5)
computed from the impulse response of a system. The main 2 V2T \J-w

objectives in [7], [8] are modeling and to show that thesnd the equality of (4) and (5) follows from Plancherel's

suggested methods work well, so convergence and existengeorem.

questions are not considered there. The objective of thiswe will truncate the representations of signals and sys-

paper is to provide this justification. tems, and therefore it will be interesting to study how the
Sampled-data systems is a closely related area where adystems treat high-frequency signals. Hence a projection

of work has been done. Sampled-data systems are periodjgerator which we calP, is defined. Its representation in

systems of a special structure. To obtain the frequendiie frequency domain is given by

response usually two approaches are taken: the liftingeor th J(jw), |w <0
steady-state input-output approach. The lifting apprdach Yoliw) = (E\Qy)(joo) = Yiw), -7 (6)
used in for example Bamieh et al. [9] or Yamamoto et al. 0, |w>Q.

[10]. The steady-state approach is used in for example AraKliotice that P, is not causal in the time domain, and
et al. [11] or Dullerud [12]. The frequency-response OPemp || —1.Itis also convenient to defir@, =1 —P,,. In

ator derived in [11] (called the FR operator) has the samgger for a truncated system to be a good approximation we
form as the HTF. One can show that the two approach@g.eq some sort of roll-off, corresponding to strict progss

mentioned above are equivalent, see Yamamoto et al. [13}y |inear time-invariant systems, see Zhou [16]. We call a
A nice property of sampled-data systems is that closed-forg1ystem strictly proper if

solutions often are obtained. This is not the case for generi
periodic systems. The literature on sampled-data systems i IG—Py GRy ll, =0 as Q,Q; - w.

vast and many more good references could be mennone% give sufficient conditions for properness we first notice

A more general study of frequency-domain representgnat we can decompose the problem into two separate
tions of time-varying linear systems has also been predentggplems:

in Ball et al. [14].
IG =P, GRy, Il < (1 =Fqo )Gl + G =P ) L.

o o Definition 1 (Méllerstedt [7]): If for a systemG € L
D. Contribution and Organization there are positive constan® andk; such that

This paper is certainly not the first paper on frequency- (I =Py)Gll, <C;- Q ™k,
response operators for time-periodic systems. The ma#ﬁ'enG is said to haveoutput roll-off k, and if there are
contribution of this paper is a detailed computation of .. '
the harmonic transfer function from the impulse respons%oSItIVe constant€, andk, such that
and an extensive analysis of the convergence of square 1G(1 = Py)llL, <C,-Q7,
truncation of the HTF. In section Il we define input and
output roll-off and relate these concepts to time-varyin
Markov parameters. In section Il we expand the periodi
impulse response into a Fourier series. In section IV w
apply the Fourier transform to the Fourier series fro
section Il and obtain the harmonic transfer function. We
also see that input and output roll-off give convergencesrat

enG is said to havenput roll-off k,.

or systems with output roll-ok; and input roll-offk, we
ave strict properness and the following rate of convergenc
or truncated operatorBQlGPQz:

6—Po,GRy L, <€ 0 +C-0 % ()

for square truncations. For time-invariant systems we have the following propo-
sition:
Proposition 1:If G has a time-invariant impulse re-
Il. PROPERNESS ANDROLL-OFF sponse, that ig(t,7) =g(t—1) for all t > 7, then if it has

output roll-offky, it also has input-roll ofk;, and vice versa.

If |§(jw)| <C-|w| % thenC, =C, =C andk, =k, =k.
Proof: Follows directly from Definition 1 and that

GQq = QuG for time-invariantG. [

Our goal is a frequency-domain descriptionGfand we
will many times represent the input signalt) and output
signal y(t) in L,(R), by their Fourier transformsi(jw)
and y{jw). w is the angular frequency. This presents nd-or time-varying impulse responses, input and output roll-
problems asL,(R) is isomorphic withL,(jR) under the off are more difficult to check. However, by making certain
Fourier transform, see Dym and McKean [15]. We definexpansions of (2) we can state necessary and sufficient

3358



TABLE |
INPUT AND OUTPUTMARKOV PARAMETERS OF TIMEVARYING
STATE-SPACE SYSTEMS

conditions for roll-off. For simplicity we assume that the
impulse response belongs t6™ in the regiont > T,
i.e., the impulse response i times continuously differ-

entiable. Furthermore, we assume that all the derivatives ~# Input Markov parameter  Output Markov parameter
have uniform exponential decay. Using integration by parts ‘1J- (E:)((tt))B(t) (E:)((tt)) B
repeatedly on the relatlop (2) for |r?pu.ts with support in 2 C)AD)B(t) — B (1)] C/(t) £COAD)B()
[a,t] we obtain the following expansion: 3. CHB'(t)—2AM)B'(t)  [C'(t)+2C (HA(t)
—A (LB +A(t)B(L)]  +CHA(t) +C(HA*()]B(t)
u(t u(t
ORIRELE g@(t,t>r§—2+
(—1)™ 19( )(tt / 9 t =’ all the derivatives of the impulse response have uniform
r @® exponential decay. Hence we have
8
Iyl
By making a similar expansion of the adjoint opera®@ir W < IQuGllL, < Q_él
2

we obtain the expansion:
and it follows thatG has output roll-offk,. The sufficiency

of ii) follows similarly using (8) instead of (9).
To prove the necessity of i) and ii) we choose a special
1 ! input signalu. One can choose a modulated Gaussian pulse
_— g(m-1) il (m)

T pmgI (t,u(t) + pm/a g (L, Du(mdr. (9) of frequencyQ. See [17] for details. ]

Here u(t)/p* is the ktimes integration operator: . Examp!e 1 (Finite—Dimensiqn.aI St_ate—Space Modeks):
fé,~~~ft2 (t,)dt, ---dt,, g(rk)(t,r) = dg(t,7)/dT%, and t|me_—va_ry|ng system Wlth a finite-dimensional state-space
g (t, 1) = d%g(t,7)/ot. For details see [17]. The realization can be written as
coefficients in the expansions are the time-varying Markov X(t) = A(t)x(t) + B(t)u(t)
parameters: y(t) = C(t)x(t) + D(t)u(t).

Definition 2 (Output and Input Markov Parameters):
For a system with impulse responsggt,7) the output
Markov parametersre defined as

y(t) = —:Jg(t,t)u(t)—i— ég{(t,t)u(t)—i—...

(12)

We assume that all matrices are bounded and as differen-
tiable as is required. The impulse response of the system is
given by g(t,1) = C(t)P,(t, 7)B(7) + D(t)d(t — 1), where

{9(t,0), g (t,t), o (t,1),...}, (10)  Pa is the transition matrix fox(t)_:A(t)x(t). The_ first few
Markov parameters are given in Table I. Notice how the
and theinput Markov parameterare defined as parameters reduce to the well-known Markov-parameters
of time-invariant systems, that 3,CB,CAB,CA?B, ...
{g(tvt)v_glr(tvt)vglrl(tvt)v"'}' (11)
These coefficients coincide with the regular Markov pa- !l FOURIEREXPANSIONS OFPERIODIC SYSTEMS
rameters{g(0),d'(0),g"(0),...} for time-invariant impulse ~ Until now we have only represented a systémin
responses. L, with a convolution integral in the time-domain. For

Theorem 1 (Markov Parameters and Roll-ofAssume time-invariant systems it is well known that convolution
thatg(t, 7) belongs tag™ int > 7, that all them derivatives becomes simple multiplication if we represent signals and
of the impulse response have uniform exponential decagystems in the frequency domain. We now look for an
and thatm > max{k,,k,}. ThenG has analogous frequency-domain representation of linear-time

i) output roll-off k;, if and only if thek, — 1 first output per_lodlq _systems. F(_)r reasons thaj[ will become cleargr late

Markov parameter are zero for all it simplifies to consider systems in a 98t The setB is

i) input roll-off k,, if and only if thek, — 1 first input defined as
Markov parameter are zero for dll B={G:||G|g <, g(t,T) is T-periodic and causl
Proof: We first show the sufficiency of i). If the first (13)

k; — 1 output Markov parameters are zero we have thghere
following expansion ofQ,G using (9):

1

t IG||g = (/ / glt,t—r)| 2dtdr> @)

y(t) = Q—kQ (gt(kll) (t,t)u(t) +/ gt(kl) (t, r)u(r)dr) . B KT
1 —00

P |I-|lg is a combination of a Hilbert-Schmidt norm and an

The first factor has the Fourier transform({w)* for [w| > ¢;-norm.
Q and is zero otherwise. Its inducég-norm is then 1Qk. If G has a causal periodic impulse response then for every
The second factors has an indudegnorm of C; <« as givenr € R,, the impulse responggt,t —r) is T-periodic
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in t. For Ge B, g(-,- —r) belongs toL,[0,T] for almost wherer =t —r. It has the following properties:

all r € R.. This follows from Fubini's theorem (see for j) Gy, belongs toB.

example Dym and McKean [15]). Hence, for almostrll jj) [G—GyllL, <2[|G—Gyllg — 0 asN — .

we can expand the impulse response in a Fourier series with  proof: See Appendix. -
convergence in,[0, T]:

A. Frequency Coupling and Steady-State Response

To see the difference between a time-invariant and a
time-periodic system it is instructive to study the steady-
LI state response to a harmonic input signal) = el“t with
g(r)= ?/0 e T%g(t,t —r)dt (16)  frequencyw. For time-invariant systems it is well known
that the output also is a harmonic of the same frequency.
This is, however, not the case for time-periodic systems. If
we for simplicity study a finite Fourier expansion Gf we

glt,t—r) = i g (rel' !, (15)

|=—o0

where

and w, = 2m1/T. We summarize the properties of the 8et
in the following proposition:
Proposition 2 (The set B)For a systen( in B it holds

obtain
that N
. 't
i) — jot _ _ el @t | alwr
Yy =Gye _/ ( gt—r1)e )e dr
Gl = sup [Gul, <2|Gs, =12, .
lull <1 N (17)
_ A (el (et o)t
and thusB is a subset of., |:ZN G (jwe
ii) the time-invariant Fourier coefficients are summable ]
and square-summable: This shows that the response includes a whole range
of frequencies, with a difference afy. This is a well-
g,(+) € L1[0,00) NL,[0,00) known property of linear periodic systems, see for example

Wereley [4] or Zhou et al. [5]. Hence these systems have
frequency coupling. It also shows that a frequency-domain
approach could be successful, as there is still a fairly Bmp

o (k)T (T 1/2 relation between frequencies in input and output.
i< (f7 [ ot o)
K=o \/KT 0 IV. THE HARMONIC TRANSFERFUNCTION
by using lifting on (2). By then using (3) and the triangular By including a sufficient amount of frequencies in the

forall | € Z.
Proof: i): In [7] it shown that

inequality, i) follows. Fourier expansioiBy of G, we can come arbitrarily close

ii): Follows by noticing that to G itself in Lo.—sense. Ley, = Gyu andy = Gu, then

, 1T ) from (2) and Lemma 1 we have
QOP< 1 [ lott-rPdt
0 ! A il oot

for all I. By then using the definition of thB-norm and the In(t) = '/700 ( g (t—1)e'™ ) u(t)dr
Cauchy-Schwarz inequality ii) follows. ] N I=-N (18)
Notice that||G||g might be a very poor upper estimate of = z [9|(')e“wb' «u(-)el o] (t)

|IGl|_,, so the norm is not used for explicit calculations. ==
The reason for introducing the sBtis that it simplifies the wherex is the standard convolution product. By applying

Fourier analysis. The s& is not empty: the Fourier transform on (18) we get

Example 2 (Exponentially stable systems are in Bl N
periodic systems that are uniformly exponentially stable, Iy (jw) = z 6 (jw— jloy)i(jow— jlay). (19)
i.e. there are positive constarKsk such that I==N

lo(t, 7)] <K-eXt-U t>71 The Fourier transform ofg,(t), denoted bygTjw), is
) ) ) well defined by Proposition 2 ii), and even bounded and
are inB. Hence, the systems considered in Theorem 1 aggntinuous for allw asg, €L,, see [15]. By Lemma 1 i)

in B. ] ) and Plancherel’'s theorem, we know tlygf(jw) converges
Next we see how truncated Fourier expansions of System$y(jw) in L,(jR) asN — oo, Therefore we can putl = e

in B behave. The following lemma proves convergence: (19) if we mean convergence ih,—sense, and not
Lemma 1 (Truncated Fourier representations): trun- pointwise convergence.

cated Fourier expansion @ in B with N frequencies is  In Araki et al. [11] the Sample-Data(SD)-Fourier trans-

defined as form was defined, and it is also useful here. The SD-
N transform is an isometric isomorphism betwesgijR) and
Gy: Oy(t,T)= z gt — T)ejl‘*’bt’ a Hilbert space we denote h.)%(jlo). It maps the Fourier
1N transform into an infinite-dimensional column-vectorued
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function. The SD-transform af(jw) is denoted by (jw) G(jw) is a bounded operator ofy for almost allw in 1,

and is defined as and
U(jw)=[.. G(jo+je) 0(jo) ajo-ja) .. IG|.,, = ess selumeawmm, (24)
0]
As the vector contains repeated versionsuffa), it is °
enough to defmeJ(Jw) for wely=(—wy/2, /2] to be where||-||» represents the induceg—norm.
ablezto take the inverse SD-transform. We deflne the norm  Proof: Very similar to the proof of Theorem 5 in Araki
in L5(jlo) @ et al. [11].
R 1 R 1/2 [ ]
150y = 32 ([ 101 o) | |
L . 12 (20) A. Computation and Truncation of HTFs
=—= 0(jw+ jkay)|?d . i ]
N (/ll)k;wlu(lwﬂ )| w) To compute the norm (1) of a syste®< L., with roll

off, the following observation, which follows directly fno
For signalsu € L,, we now have three representations(7), is useful

u(t), d(jw), andU(jw). In fact, the following extended T« K
Plancherel’s theorem is true: 0<[|Gll, = [IPg,GRy, I, <C;p- Q1 +C,-Q,%2. (25)

Iull,, = ||U(')HL = ||0(.)||L (R = ||L](.)||LZ (ity)" (21) Theorem 2 gives us a way to compute the indutge
norm, given a HTFG(jw). It is not essential thaG(jw)
If uhas finiteL,-norm, therU(Joo) isin/, (its elements are corresponds to a causal operator in time for (24) to hold, it

square summable) for almost alle 1, that is||U (jw) ll,, < is true for every frequency-domain relation (22). Hence we
o almost everywhere. . _ can apply it to the apprommaﬂdﬂ) GP,_. The central ele-

We can write (19) wherN = o in matrix-vector form ment of the HTF ofP, _GPR,, becomes a finite-dimensional
using the SD-transform: matrix:

oo _ Corollary 1: If Ge B, Q; = (N; +1/2)ay, and Q, =
V(iw) =G(jwu(jw), we lo = (—wp/2,wp/2]. (22) (N2+1/2)oo0 then the HTI% ofP, 1GP is given byzthe

whereG(jw) is equal to: matnxG( 2(Jw)
@NFNZ(J.(U+J‘N20—’0) gN1+N2(Jw Ny )
Goliw+jay) Gi(jw) G(jw—jay) : :
ga(jo+jay) Goljw) Gjo—awy) gfLNz(j(“’.‘"sz“L’o) @Nz(ijszwo) ;
0 (jwtjwy) §4(jw) Gliw—jay) nger(jc;)—ijzwo) ngﬁNz(ch—sz%)
- of dimension(2N, + 1) x (2N, +1).

We call G(jw) the harmonic transfer functiofHTF) of G.  Hence we can represent a linear periodic systers -
This was the term used by Wereley in [4]. A similar objecbitrarily well with finite-dimensional matrices and comput
was called the FR operator by Araki et al. in [11] in theits norm as

case of sampled-data systems. The difference between these (A .

efforts is the way the elements &f(jw) are computed. In HPQlesz“Lm - 2)16?3(0 (G<N1sz>(Jw)) ’ (26)
the sampled-data case explicit formulas are given in [11]. . . . .
In the time-periodic state-space case formulas are given eTe"(') IS t_he maximum smgular value of a matrix. The
[4], [5], and in the impulse response case formulas are givénax!mum is indeed o_b_tamed__ in (26) as the elements are
here. continuous by Proposition 2 ii). By griding the frequency

We may now state the counterpart of Theorem 4 and |§terval I, and by computing the maximum singular value
in Araki et al. [11]. A similar result for time-periodic stat we get an estimate dfG|, and the rate of convergence

space systems is derived by Wereley and Zhou et al. in [ ,epe”‘?'s upon the roll-off o6 according to (25). Square

[6]. We include it here also as it is a useful result in th uncations of the frequency-response operator are com-

following monly used to estimate the norm of a system, see for
Theorem 2 (L-norm formula): For linear periodic sys- example [6], [11]. In [11] the rate of convergence was

R ~1/2
temsG in B, we can define the HTB(jw) as above, and ShOV‘_’n to be bounded bg-N /2 for (2N+1) x (2N+ 1),
for any input signali € L, it holds that matrices and some constatt\We now see that by checking

. the Markov parameters we can improve this bound.
IylI2 = 1 H\“(('w)”Z dow As we can approximate the infinite-dimensional HTF
YilL, 2 Jw)lle N ) o .
n 23) with finite-rank matrices arbitrarily well, it also followtbat
input or output roll-off implies thatG(jw) is a compact
operator on/, for almost all w. A large output roll-off
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means that the operator decays quickly in the up-downg] B. Bamieh and J. Pearson, “A general framework for linperi-

direction, and a |arge input roll-off means that the operato odic systems with applications td., sampled-data control[/EEE

d ickly in the left-right di . Transactions on Automatic Contyolol. 37, pp. 418-435, 1992.
ecays quickly in the left-right direction [10] Y. Yamamoto and P. P. Khargonekar, “Frequency respoofe

sampled-data systemslEEE Transactions on Automatic Contol
V. CONCLUSION vol. 41, no. 2, pp. 166-176, February 1996.
[11] M. Araki, Y. Ito, and T. Hagiwara, “Frequency respondesampled-
In this paper we have studied linear time-periodic systems data systems,Automatica vol. 32, no. 4, pp. 483-497, 1996.
from a frequency-domain point of view. Previous studie&t?l G: E. Dullerud Control of Uncertain Sampled-Data System&am-
. - bridge, MA, USA: Birkhduser Boston, 1996.
in this field are often based on a state-space approach, $B8 Y. Yamamoto and M. Araki, “Frequency response of samilata
Wereley [4] and Zhou et al. [5], whereas we have here taken  systems — their equivalence and relationshipgyear algebra appl.
; ; £ vol. 205/206, pp. 1319-1339, 1994,
an .ImF.)UI.Se response approach. We have identified a set Z[] J. Ball, I. Gohbpeprg, and M. Kaashoek, “A frequency resgmfunction
periodic impulse responses, denotedBythat allow us to for linear time-varying systemsMath. Control Signals Systems
expand the corresponding systems into a sum of modulated vol. 8, no. 4, pp. 334-351, 1995.

time-invariant systems, with convergence in an indl Icgad [15] H. Dym and H. McKean[ourier series and integrals Academic
. Press, 1972.

norm sense. We can construct a linear .frequenCY'reSp(?rﬁ@ K. Zhou and J. DoyleEssentials of Robust Control Upper Saddle

operator for these systems, the harmonic transfer function River, New Jersey: Prentice Hall, 1998.

imi _ 7] H. Sandberg, E. Mollerstedt, and B. Bernhardsson, d&eacy-
.Slmllar frequency-response operators have appearedebefdiL domain analysis of linear time-periodic systems,” 2004 nsitted
in for example [_4], [5], [11], but they have been computed  for journal publication.
and analyzed differently.

We have put effort into the problem of how truncated APPENDIX
harmonic transfer functions converge. This problem ha8. Proof of Lemma 1
been approached by introducing the concepts of input andFijrst introduce the error function
output roll-off. For time-invariant systems the input and T
output roll-off are identical. Necessary and sufficient-rol W(r) =/ lg(t,t—r) z g (r)e! et 2dt.
off conditions have been stated in terms of time-varying 0 I=—N
Markov parameters. The HTF of a system with roll-off carDue to the convergence of the Fourier series (15) it holds
be truncated into a finite-dimensional matrix, and explicifor almost allr that

convergence rates have been given. T
0<.. WM<yl < [ lett-nfdt @7)
0

and limy_,, () = 0.
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