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Abstract— This talk presents a new method for optimizing
and automating component sizing in CMOS analog circuits. It
is shown that a wide variety of circuit performance measures
have a special form, i.e., they are posynomial functions of
the design variables. As a result, circuit design problems can
be posed as geometric programs, a special type of convex
optimization problem for which very efficient global optimiza-
tion methods exist. The synthesis method is therefore fast,
and determines the globally optimal design; in particular, the
final solution is completely independent of the starting point,
and infeasible specifications are unambiguously detected. Also,
because the method is highly efficient, in practice it can be
used to carry out robust designs and quickly explore the design
space. We show that despite the restricted form of geometric
programs, a large variety of circuit design problems can be
posed as geometric programs.

I. INTRODUCTION

In current mixed-mode integrated circuits, the analog cir-
cuits represent only a small part of the total area. However,
their design is very complex: a wide range of specifications
have to be met and sensitivity to process variations is very
high. Unlike the sophisticated synthesis CAD tools available
for digital circuits, analog synthesis CAD tools are practi-
cally non existent and the vast majority of analog circuits
are still designed ”manually” by experts [1]. Thus, the
development time for analog blocks is far out of proportion
to the die area that they consume. This issue is exacerbated
by the tremendous shortage of analog designers [2].

In this paper, we describe an efficient approach to ana-
log circuit design automation. The circuit performance is
described with a set of analytical design equations that
have a special form (i.e., they are convex) and the design
problem is cast as a convex optimization problem, which
is then solved very efficiently and globally by a numerical
algorithm.

This paper is organized as follows. In §II, we describe
geometric programming, the optimization problem which is
the basis of the method. In §III, we describe the transistor
and circuit models used. In §IV, we give several op-amp
and analog-to-digital converter (ADC) design examples and
show some measured results.

II. GEOMETRIC PROGRAMMING

Let x be a vector (x1, . . . , xn) of n real, positive vari-
ables. A function f is called a posynomial function of x if
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it has the form

f(x1, . . . , xn) =

t
∑

k=1

ckxα1k

1 xα2k

2 · · ·xαnk
n

where cj ≥ 0 and αij ∈ R. When t = 1, we call f
a monomial function. A geometric program (GP) is an
optimization problem of the form

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . ,m,

gi(x) = 1, i = 1, . . . , p,
xi > 0, i = 1, . . . , n,

(1)

where fi are posynomial functions and gi, are monomial
functions. A GP can be reformulated as a convex optimiza-
tion problem, by changing variables and considering the
logs of the functions involved [3].

Although there are several options for solving geometric
programs, probably one of the most efficient GP special
purpose solvers is the one proposed by Kortanek et al.
where they have shown how the most sophisticated primal-
dual interior-point methods used in linear programming
can be extended to GP, resulting in an algorithm with
efficiency approaching that of current interior-point linear
programming solvers [4].

III. POSYNOMIAL MODELS

Our goal is to pose circuit design problems as geometric
programs. To do this we describe posynomial circuit models
hierarchically and modularly (see [5]). Even though the
formulation is hierarchical, the resulting geometric program
is solved in a flat manner, i.e., design equations at all
levels are solved simultaneously. This can only be done
because of the great efficiency with which we can solve
geometric programs. If we were using a general-purpose
optimization method, a flat solve would probably not be
feasible because of the large size of the problem at question
(tens of thousands of variables and hundreds of thousands
of constraints for a robust design).

A. Process dependent models

There are several process-dependent devices: transistors,
capacitors, resistors, etc. Here we describe how to model a
CMOS transistor but the methodology is generic and can be
extended to other devices and other process technologies.
A CMOS transistor is implemented with a parameterizable
layout cell. The dimensions of this cell constitute the
problem design variables (width W , length L and number



of copies M ). The transistor model contains both physical
and electrical properties as a function of the design variables
and process dependent parameters (e.g., minimum poly-poly
spacing).

1) Physical model: We can model several physical pa-
rameters, for example: cell height and width, source/drain
area and perimeters, length of intra-cell routing, etc. The
important thing is that they can all be modeled in a form
compatible with GP.

2) Electrical model: Here we show the a type of tran-
sistor model called GP1 model [6].

• The overdrive voltage, Vgs − VTH, is a monomial
function of transistor length L, transistor width W and
transistor drain current I ,

Vgov = βv,1W
αv,1

T Lαv,2Iαv,3 , (2)

where WT = M · W , and βv,1, αv,1, αv,2, αv,3,
are process dependent constants that can be found by
simple data fitting techniques [3].

• The transconductance, gm, is a monomial function in
L, WT , and I ,

gm = βgm,1W
αgm,1

T Lαgm,2Iαgm,3 , (3)

where βgm,1, αgm,1, αgm,2, αgm,3, are process depen-
dent constants.

• The output conductance, go, is given by γgo,m where
go,m is monomial in L, WT , and I , and γ is a
constant that can take two different values depending
on whether the transistor in question typically operates
with large or small Vds.

• Capacitances between the terminals and bulk are
posynomial in L, W , M , and I .

Obtaining the coefficients for the GP1 model is a straight-
forward task. The first step consists on generating the
data for the parameters we wish to model. This data can
come directly from laboratory measurements or can be
computer generated by simulating existing device models
(e.g., BSIM [7]) with a circuit simulator like SPICE. The
second step consists on solving an optimization problem to
find the GP1 model coefficients. This optimization problem
minimizes some norm of the modeling error [3]. One can
use a general non-linear optimization package to solve
this problem or special purpose algorithms like the one
described in [8]. We have been able to obtain GP1 models
that have good agreement with SPICE higher order models
(BSIM models), over large ranges of length, width, and
bias currents [6] (see Fig. 1). To model deep sub-micron
devices, one can develop more sophisticated and accurate
models that are still compatible with GP based design.

B. Circuit block models

Although it is difficult to prove mathematically that all
analog circuits can be modeled using posynomial equations,

PSfrag replacements

0
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.2 0.4 0.6 0.8

1

1 1.2 1.4 1.6 1.8

I d
in

µ
A

I-V curve

Vds in V
Fig. 1. GP-SPICE modeling of I-V curve comparison for an NMOS
device in a 0.18µm CMOS process. “∗” and “◦” represent the SPICE
model and posynomial model respectively.
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Fig. 2. Two stage op-amp.

it is not hard to understand why this could be possible.
In this section we just show how we model some of the
electrical performance metrics of a simple two-stage op-
amp (see [6] for a detailed description).

Fig. 2 shows the schematic for a simple two-stage op-
amp. There are twenty seven design variables: length, width
and number of copies of each transistor, capacitor value, re-
sistor value and reference bias current. There are more than
a dozen of specifications: gain, bandwidth, power, phase
margin, maximum area, slew rate, etc. Even though the
performance specifications are highly nonlinear functions of
the design variables, we show the amazing result that they
are in fact, posynomial functions of the design variables.

1) Electrical model:

• Quiescent power: It is given by the product of the
supply and the total consumed current,

P = (Vdd − Vss) (Ibias + I5 + I7) , (4)



where I5 and I7 are just mirrored copies of the
reference bias current given by monomial expressions.

I5 =
W5L8

L5W8
Ibias, I7 =

W7L8

L7W8
Ibias. (5)

Thus, power is posynomial in the design variables and
we can upper bound it, or minimize it.

• Open-loop DC gain: It is given by the product of
gains of each stage. The inverse-gain is given by the
posynomial,

1

Av

=

(

go2 + go4

gm2

) (

go6 + go7

gm6

)

, (6)

Thus we can minimize the inverse-gain (or maximize
the gain) or impose a minimum required gain.

• Input-referred noise power: The equivalent input-
referred noise power spectral density Sin(f)2 (in
V2/Hz), can be expressed as

S2
in = S2

1 + S2
2 + (gm3/gm1)

2(S2
3 + S2

4), (7)

where S2
k is the input-referred noise power spectral

density of transistor Mk, given by the sum of the
thermal noise and the 1/f noise,

Sk(f)2 =

(

2

3

)

4kT

gm,k
+

Kf

CoxWkLkf
. (8)

Thus, Sin(f)2 is a posynomial function of the design
parameters at each frequency and we can impose a
maximum input-referred noise at a certain frequency
(or at several frequencies). By integrating over f
(which results in another posynomial) we can limit the
total RMS noise in an arbitrary frequency band.

• Unity-gain bandwidth: It is given by

ωc = gm1/Cc, (9)

which is monomial. Therefore we can impose lower
bounds on, or maximize, the unity-gain bandwidth.
Note that in order to make the op-amp have this
dominant pole, some stability constraints such as phase
margin must be added to the model.

2) Physical model: Typically we are also interested in
physical objectives and specifications like area, aspect ratio,
length and width. We can include floorplanning information
in posynomial form. To do this we specify the relative
positioning of the circuit components by using a slicing
tree representation [9]. The positioning constraints turn out
to be posynomial constraints and thus, can be handled in
geometric programming.

As an example consider the two-stage op-amp of Fig. 2.
A possible floorplan is given in Fig. 3 whose slicing tree
representation is given in Fig. 4. According to the slicing
tree, starting from the main cell, we first perform a vertical
split. (The v and h represent vertical or horizontal slicings
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for the subcells respectively.) The cell on the right becomes
Cc and the cell on the left is sliced again, but this time
horizontally. Now, the top subcell of this split, is split
vertically, etc.

Suppose that (xi, yi) are the widths and heights of the ith
cell corresponding to the ith node of the slicing tree. Given
the slicing tree, one can write the inequality constraints
relating the (xi, yi)s. At a node with vertical split, the sum
of the widths of the sibling nodes are less than or equal
to the width of the parent node, and the heights of the
sibling nodes are each less than or equal to the height of
the parent node. At a node with a horizontal split, the sum
of the heights of the sibling nodes are less than or equal to
the height of the parent node, and the widths of the sibling
nodes are each less than or equal to the width of the parent
node. For example, at node 0:

x1 + xcap(Cc) ≤ x0,
y1 ≤ y0,
ycap(Cc) ≤ y0,

(10)

where xcap(Cc) and ycap(Cc) are the width and height
of the capacitor Cc respectively. As can be seen, constraints
such as (10) are posynomial in the cell sizes or variables
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(xi, yi). They are also posynomial in the circuit variables
(e.g., M , W , L of transistors, value of Cc, etc.) because
the functions xcap(Cc), ycap(Cc) are all posynomial in the
design variables.

A constraint on the total area of the circuit to be less
than Aspec is simply given by the monomial:

x0y0 ≤ Aspec. (11)

A constraint on the aspect ratio of the circuit to be less than
κspec is given by:

x0/y0 ≤ κspec, y0/x0 ≤ κspec. (12)

The smallest aspect ratio can be found by minimizing
max(x0/y0, y0/x0), which can then be converted into a
GP (by introducing a slack variable). Hence, by mixing
the layout constraints, such as (10)-(12) with the electrical
circuit design constraints, it is possible to optimally the
circuit and place it in a single step.

C. System models

The extension from circuit block level models to higher
levels of hierarchy models is relatively straight forward. One
just needs to write posynomial design equations at each
hierarchy level in terms of the input and output variables
and the design variables of sub-blocks. Here we show a
simple example, how to model in GP the signal-to-noise-
ratio (SNR) specification for a standard pipeline ADC.
Details about the complete ADC GP formulation can be
found in [5].

In Fig. 5 we show a top level schematic of the converter.
It consists of a set of stages connected in series that
perform the conversion in decreasing level of resolution in a
pipelined manner. Fig. 6 shows a single-ended implemen-
tation of a one bit per stage resolution stage. Each stage
consists of two capacitors, a digital-to-analog converter, an
operational amplifier and six switches. We define four levels
of hierarchy:

1) Top level. The SNR is given by (see [10]),

SNR = 10 log

(

2N−1∆
)2

/2

np

, (13)

+

−
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where ∆ is the quantization step size and np , the
noise power at the input of the converter, is

np = nQ +

M
∑

i=1

nstagei

G2(i−1)
, (14)

where nstagei
is the input referred noise of the ith

stage, G is the gain of a stage, and nQ is the
quantization noise given by

nQ =
∆2

12
=

(Vref/2
N )2

12
. (15)

Therefore if we want to impose a condition on a
maximum allowed dynamic range, we would impose
the following posynomial constraint,

nQ +

M
∑

i=1

nstagei

G2(i−1)
<

(

2N−1∆
)2

/2

10
DRmax

10

. (16)

Note that the right hand side of (16) is a constant
determined by the user specifications. On the left hand
side, nQ is a constant for a given number of bits
of resolution, G is fixed for a given number of bits
per stage and nstagei

is an output variable of this
hierarchy level.

2) Stage level. The noise for the ith stage is given by
the sum of the thermal noise in the switches and the
amplifier noise (see [10]),

e2
i = e2

switches,i + e2
amp,i, (17)

where e2
amp,i is the input-referred op-amp noise and

e2
switches,i is the noise contributed by the switches.

Note that (17) is posynomial in the op-amp and the
switches noise which are output variables of this level
of hierarchy.

3) Block level. This level contains the information re-
garding the switches and the op-amp. The noise of
the switches is given by the posynomial

e2
switches,i = 2kT

(

2

C1
+

2

C2

)

, (18)



Performance measure Spec GP SPICE Lab
Power (mW) ≤ 8 8 8.7 8
DC gain (dB) ≥ 70 70 74 71
Unity-gain BW (MHz) Max. 47 46 44
Phase margin (◦) ≥ 63 63 68 58
Slew rate (V/µs) ≥ 30 83 66 64

TABLE I
TWO-STAGE OP-AMP DESIGN EXAMPLE.

where k is Boltzman’s constant, T is the absolute
temperature and C1 and C2 are output variables of
this level of hierarchy and represent the capacitance
values of the sampling capacitors. The input-referred
op-amp noise, e2

amp,i, is given by

e2
amp,i =

So

4τ
, (19)

where So is the op-amp input-referred white noise
density (given by a posynomial, as shown in (7))
and τ is the closed loop time constant given by
a monomial for a fixed number of bits per stage
(see [5]). Since So is a posynomial and τ a monomial,
(17) is a posynomial.

4) Process dependent level. At the lowest level of hier-
archy, the device noise (see (8)), device transconduc-
tance (see (3)) and capacitance values are posed as
posynomials or monomials of the device dimensions.

One can solve (16)-(19), and the process dependent
equations simultaneously using GP since they are all posyn-
omial. Although we have not talked about other electrical
specifications like power, area or sampling frequency or
about any physical specifications, those can all be repre-
sented in a form compatible with GP [5].

IV. DESIGN EXAMPLES

A. Op-amp example

We provide some sample designs for the two-stage op-
amp described in the last section. We use a 0.35µm CMOS
process. The load capacitance is 5pF and the supply volt-
ages are Vdd = 3.3V and Vss = 0V.

Table I describes the sample design problem. The ob-
jective was to maximize the unity gain bandwidth subject
to the other given constraints. The first column in Table I
identifies the performance measure (and its units); the
second gives the specification (showing whether it is an
upper or lower bound). The third column, labeled GP, shows
the performance of the design obtained. The fourth column,
labeled SPICE, shows the value of the specification as
simulated by BSIM3v1 models. The fifth column shows the
value of the specifications as measured in the laboratory.

We make several observations. First, we can see that there
is very close agreement between the predicted results from
GP and the SPICE simulations and the measured results.
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Fig. 7. Optimal trade-off curve for two-stage op-amp.

This shows that even though we are restricted to using
posynomial equations, these are adequate to model real
circuit behavior accurately. Second, we can see that many
of the constraints are tight (power, gain and phase margin).
This is in contrast with general-purpose methods that gener-
ally stop searching as soon as one of the constraints is tight.
Finally, we notice that the time required to obtain the design
was less than a minute in a 400MHz, 0.5GB workstation
(and this was without providing any sort of initial starting
point).

We can use all this design efficiency in several ways
by generating globally optimal trade-off curves between
competing objectives (with the others fixed). To do this, we
repeatedly solving the design problem while varying one
of the specifications. In Fig. 7 we plot a trade-off curve
for the two-stage op-amp, obtained by maximizing unity-
gain bandwidth, while varying the maximum allowed power
dissipation for different values of phase margin, and leaving
the rest of the specifications to the values given in Table I.
The curve is obtained in only a few minutes. Any analog
designer could have predicted that more power means more
bandwidth. However, it would have been difficult for him to
predict exactly what the optimal trade-off curve looks like
and how it changes for different values of phase margin.

B. ADC example

Fig. 8 shows the trade-off curve power versus sampling
frequency for a 12 bit ADC and a 10 bit ADC. We impose
an SNR of 70dB for the 12 bit ADC and of 58dB for the
10 bit ADC . Again, it is no surprise that the higher the
required sampling frequency the more power is needed. The
usefulness of this curve resides in the quantification of this
trade-off. It is also interesting to observe what the optimum
power scaling per stage is (see Fig. 9). From the fifth stage
on, all stages consume the same power and scaling only
takes place in the initial stages. The reason is that after
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the fifth stage, the op-amp behavior is determined by its
own parasitics rather than by the switching capacitances.
Note that this optimum scaling depends on all the ADC
specifications and cannot be assumed constant.

Additional examples of mixed-signal systems designed
with GP can be found in [11], where detailed silicon results
are given for a clock generation and synthesis phase-locked
loop.

V. CONCLUSIONS

We have described a method for analog circuit design
based on geometric programming. The method consists
on formulating the circuit design problem as a convex
optimization problem. This, of course, requires expertise
and effort. However, once this convex formulation is com-
pleted the the circuit is truly synthesizable. This has many
advantages: we can easily change specifications and create

a custom instance of the circuit in a very short time; we
can easily port a design to a new process (by only updating
the transistor data); we can perform what-if analysis that
allow us to understand the engineering design trade-offs;
we can hand-craft each tool for a specific architecture,
mapping each design in a form that maximizes accuracy,
etc. An important advantage of the formulation is that it
encapsulates the experienced designer’s knowledge. Once a
model is complete, a novice designer can use it to create
custom circuit instances. The designer only needs to input
the circuit specifications. He or she does not need to provide
a starting point, a set of simulation tests or a search plan.
The circuit block is customized rapidly and independently
of the experience of the designer customizing it.

Before deciding if one is going to spend the effort in
formulating the problem in convex form, one needs to
perform a simple return-on-investment calculation. If the
circuit to be modeled is going to be used in more than one
process or if several instances of it are needed (e.g., same
circuit with different specifications), then the time invested
in making it synthesizable is worth it.
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