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Abstract: The Fisher information matrix summarizes the 
amount of information in the data relative to the quantities of 
interest. There are many applications of the information 
matrix in modeling, systems analysis, and estimation, 
including confidence region calculation, input design, 
prediction bounds, and “noninformative” priors for Bayesian 
analysis. This paper reviews some basic principles associated 
with the information matrix, presents a resampling-based 
method for computing the information matrix together with 
some new theory related to efficient implementation, and 
presents some numerical results. The resampling-based 
method relies on an efficient technique for estimating the 
Hessian matrix, introduced as part of the adaptive (“second-
order”) form of the simultaneous perturbation stochastic 
approximation (SPSA) optimization algorithm. 

Key words: Monte Carlo simulation; Cramér-Rao bound; 
simultaneous perturbation; antithetic random numbers. 

1. INTRODUCTION 
he Fisher information matrix plays a central role in the 
practice and theory of identification and estimation. 

This matrix provides a summary of the amount of 
information in the data relative to the quantities of interest. 
Some of the specific applications of the information matrix 
include confidence region calculation for parameter 
estimates, the determination of inputs in experimental 
design, providing a bound on the best possible performance 
in an adaptive system based on unbiased parameter 
estimates (such as a control system), producing uncertainty 
bounds on predictions (such as with a neural network), and 
determining noninformative prior distributions (Jeffreys’ 
prior) for Bayesian analysis. Unfortunately, the analytical 
calculation of the information matrix is often difficult or 
impossible. This is especially the case with nonlinear 
models such as neural networks. This paper describes a 
Monte Carlo resampling-based method for computing the 
information matrix. This method applies in problems of 
arbitrary difficulty and is relatively easy to implement. 

2. FISHER INFORMATION MATRIX: DEFINITION AND NOTATION 
 Consider a collection of n random vectors Z(n) ≡ [z1, z2, 
…, zn]T. Let us assume that the general form for the joint 
probability density or probability mass (or hybrid 

density/mass) function for the random data matrix Z(n) is 
known, but that this function depends on an unknown vector θ. 
Let the probability density/mass function for Z(n) be pZ(ζ|θ) 
where ζ (“zeta”) is a dummy matrix representing the possible 
outcomes for the elements in Z(n) (in pZ(ζ|θ), the index n on 
Z(n) is being suppressed for notational convenience). The 
corresponding likelihood function, say l(θ|ζ), satisfies 
 l(θ|ζ) = pZ(ζ|θ). (2.1) 
With the definition of the likelihood function in (2.1), we are 
now in a position to present the Fisher information matrix. 
The expectations below are with respect to the data set Z(n). 
 Let us assume that the Hessian matrix 
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exists. Further, assume that the likelihood function is 
“regular” in the sense that standard conditions such as in 
Wilks (1962, pp. 408−411; pp. 418−419) or Bickel and 
Doksum (1977, pp. 126−127) hold. One of these conditions 
is that the set {ζ: l(θ|ζ) > 0} does not depend on θ. A 
fundamental implication of the regularity for the likelihood 
is that the necessary interchanges of differentiation and 
integration are valid. Then, the information matrix Fn(θ) is 
related to the Hessian matrix of log l through: 

 ( )( ) |( ) θ = − θ θ 
n

n EF H Z  (2.2) 

 Note that in some applications, the observed information 
matrix at a particular data set Z(n) (i.e., −H(θ|Z(n))) may be 
easier to compute and/or preferred from an inference point of 
view relative to the actual information matrix Fn(θ) in (2.2) 
(e.g., Efron and Hinckley, 1978). Although the method in 
this paper is described for the determination of Fn(θ), the 
efficient Hessian estimation described in Section 3 may also 
be used directly for the determination of H(θ|Z(n)) when it is 
not easy to calculate the Hessian directly.  

3. RESAMPLING-BASED CALCULATION OF THE 
INFORMATION MATRIX 

 The calculation of Fn(θ) is often difficult or impossible in 
practical problems. Obtaining the required first or second 

T



derivatives of the log-likelihood function may be a formidable 
task in some applications, and computing the required 
expectation of the generally nonlinear multivariate function is 
often impossible in problems of practical interest. For 
example, in the context of dynamic models, Šimandl et al. 
(2001) illustrate the difficulty in nonlinear state estimation 
problems and Levy (1995) shows how the information matrix 
may be very complex in even relatively benign parameter 
estimation problems (i.e., for the estimation of parameters in a 
linear state-space model, the information matrix contains 35 
distinct sub-blocks and fills up a full page). 
 To address this difficulty, the subsection outlines a 
computer resampling approach to estimating Fn(θ). This 
approach is useful when analytical methods for computing 
Fn(θ) are infeasible. The approach makes use of an 
efficient method for Hessian estimation.  
  The essence of the method is to produce a large number of 
efficient “almost unbiased” estimates of the Hessian matrix of 
log l(⋅) and then average the negative of these estimates to 
obtain an approximation to Fn(θ). This approach is directly 
motivated by the definition of Fn(θ) as the mean value of the 
negative Hessian matrix (eqn. (2.2)). To produce these 
estimates, we generate pseudodata vectors in a Monte Carlo 
manner analogous to the bootstrap method mentioned above. 
The pseudodata are generated according to a bootstrap 
resampling scheme treating the chosen θ as “truth.” The 
pseudodata are generated according to the probability model 
(2.1). So, for example, if it is assumed that the real data Zn = 

1 2, ,...,[ ]T T T T
nz z z  are jointly normally distributed, 

N(µ(θ), Σ(θ)), then the pseudodata are generated by Monte 
Carlo according to a normal distribution based on a mean µ 
and covariance matrix Σ evaluated at the chosen θ. Let the ith 
pseudodata vector be Zpseudo(i); the use of Zpseudo without the 
argument is a generic reference to a pseudodata vector. This 
data vector represents a sample of size n (analogous to the real 
data Zn) from the assumed distribution for the set of data based 
on the unknown parameters taking on the chosen value of θ.  
 Given the aim to avoid the complex calculations usually 
needed to obtain second derivative information, the critical 
part of this conceptually simple scheme is the efficient Hessian 
estimation. Spall (2000) introduced an efficient scheme for 
estimating Hessian matrices in the context of optimization. 
While there is no optimization here per se, we use the same 
formula for Hessian estimation. This formula is based on the 
simultaneous perturbation principle (Spall, 1992).  
 The approach below can work with either 
log l (θ | Zpseudo) values (alone) or with the gradient 
g(θ | Zpseudo) ≡ pseudolog ( )|∂ ∂Zl θ θ if that is available. 

The former usually corresponds to cases where the 
likelihood function and associated nonlinear process are so 
complex that no gradients are available. To highlight the 
fundamental commonality of approach, let G(θ|Zpseudo) 
represent either a gradient approximation (based on 

log l (θ | Zpseudo) values) or the exact gradient 
g(θ | Zpseudo). Because of its efficiency, the simultaneous 
perturbation gradient approximation is recommended in the 
case where only log l (θ | Zpseudo) values are available (see 
Spall, 2000).  
 We now present the Hessian estimate. Let ˆ

kH  denote 
the kth estimate of the Hessian ( )H ⋅  in the Monte Carlo 
scheme. The formula for estimating the Hessian is: 

 

1 1 1
1 2

1 1 1
1 2

ˆ 1 , , ,2 2

, , ,
2

− − −

− − −

δ  = ∆ ∆ ∆  


δ   + ∆ ∆ ∆     

…

…

k
k k k kp

T
k

k k kp

G
H

G
 (3.1) 

where δ kG  ≡ pseudo( | )+ kG Zθ ∆  − pseudo( | )− kG Zθ ∆  

and the perturbation vector ∆k ≡ [∆k1, ∆k2,…, ∆kp]T is a 
mean-zero random vector such that the {∆kj} are “small” 
symmetrically distributed random variables that are 
uniformly bounded and satisfy ( )1| |∆kjE  < ∞ uniformly 
in k, j. This latter condition excludes such commonly used 
Monte Carlo distributions as uniform and Gaussian. 
Assume that |∆kj| ≤ c for some small c > 0. In most 
implementations, the {∆kj} are i.i.d. across k and j. In 
implementations involving antithetic random numbers (see 
Section 5), ∆k and ∆k+1 may be dependent random vectors 
for some k, but at each k the {∆kj} are i.i.d. (across j). Note 
that the user has full control over the choice of the ∆kj 
distribution. A valid (and simple) choice is the Bernoulli 
± c distribution (it is not known at this time if this is the 
“best” distribution to choose for this application).  
 The prime rationale for (3.1) is that ˆ

kH  is a nearly 
unbiased estimator of the unknown H. Spall (2000) gives 
conditions such that the Hessian estimate has an O(c2) bias 
(the main such condition is smoothness of log l (θ | Zpseudo(i)), 
as reflected in the assumption that g(θ | Zpseudo(i)) is thrice 
continuously differentiable in θ).  
 The symmetrizing operation in (3.1) (the multiple 1/2 and 
the indicated sum) is convenient to maintain a symmetric 
Hessian estimate. To illustrate how the individual Hessian 
estimates may be quite poor, note that ˆ

kH  in (3.1) has (at 
most) rank two (and may not even be positive semi-definite). 
This low quality, however, does not prevent the information 
matrix estimate of interest from being accurate since it is not 
the Hessian per se that is of interest. The averaging process 
eliminates the inadequacies of the individual Hessian estimates.  
 The main source of efficiency for (3.1) is the fact that the 
estimate requires only a small (fixed) number of gradient or 
log-likelihood values for any dimension p. When gradient 
estimates are available, only two evaluations are needed. 
When only log-likelihood values are available, each of the 
gradient approximations pseudo( | )+ kG Zθ ∆  and 



pseudo( | )− kG Zθ ∆  require two evaluations of 

log l (· | Zpseudo). Hence, one approximation ˆ
kH  uses four 

log-likelihood values. The gradient approximation at the 
two design levels is:  

pseudo
1
1
1
2

pseudo pseudo

1

.log log
, (3.2).2

.

( | )

( | ) ( | )

−

−

−

± =
 ∆
 
 ∆
 

± + − ± −  
 
 
 
 
∆  

�

�

� �A A

�

k

k

k

k k k k

kp

                             G Z

Z Z

θ ∆

θ ∆ ∆ θ ∆ ∆

 

with [ ]1 2, ,....,= ∆ ∆ ∆� � � � T
k k k kp∆  generated in the same 

statistical manner as ∆k , but independently of ∆k (in 
particular, choosing ∆� ki  as independent Bernoulli ± c 
random variables is a valid—but not necessary—choice). 
 Given the form for the Hessian estimate in (3.1), it is now 
relatively straightforward to estimate Fn(θ). Averaging Hessian 
estimates across many Zpseudo(i) yields an estimate of  

pseudo ( )( | )[ ]E iH Zθ  = −Fn(θ) 

to within an O(c2) bias (the expectation in the left-hand side 
above is with respect to the pseudodata). The resulting 
estimate can be made as accurate as desired through reducing 
c and increasing the number of ˆ

kH  values being averaged. 

The averaging of the ˆ
kH  values may be done recursively to 

avoid having to store many matrices. Of course, the interest 
is not in the Hessian per se; rather the interest is in the 
(negative) mean of the Hessian, according to (2.2) (so the 
averaging must reflect many different values of Zpseudo(i)). 
 Let us now present a step-by-step summary of the above 
Monte Carlo resampling approach for estimating Fn(θ). 
Monte Carlo Resampling Method for Estimating Fn(θ) 
Step 0.  (Initialization)  Determine θ, the sample size n, 

and the number of pseudodata vectors that will be 
generated (N). Determine whether log-likelihood log l(⋅) 
or gradient information g(⋅) will be used to form the ˆ

kH  
estimates. Pick the small number c in the Bernoulli ± c 
distribution used to generate the perturbations ∆ki ; c = 
0.0001 has been effective in the author’s experience 
(non-Bernoulli distributions may also be used subject to 
the conditions mentioned below (3.1)). Set i = 1. 

Step 1.  (Generating pseudodata)  Based on θ given in 
step 0, generate by Monte Carlo the ith pseudodata vector 
of n pseudo-measurements Zpseudo(i).  

Step 2.  (Hessian estimation)  With the ith pseudodata 
vector in step 1, compute M ≥ 1 Hessian estimates 
according to the formula (3.1). Let the sample mean of 
these M estimates be ( )iH  = ( )

pseudo ( )( | )i iH Zθ . (As 
discussed in Section 4, M = 1 has certain optimality 

properties, but M > 1 is preferred if the pseudodata 
vectors are expensive to generate relative to the Hessian 
estimates forming the sample mean ( )iH .) 

Step 3.   (Averaging Hessian estimates)  Repeat steps 1 and 
2 until N pseudodata vectors have been processed. Take 
the negative of the average of the N Hessian estimates 

( )iH  produced in step 2; this is the estimate of Fn(θ). (In 
both steps 2 and 3, it is usually convenient to form the 
required averages using the standard recursive 
representation of a sample mean in contrast to storing the 
matrices and averaging later.)  To avoid the possibility of 
having a non-positive semidefinite estimate, it may be 
desirable to take the symmetric square root of the square of 
the estimate (the sqrtm function in MATLAB is useful 
here). Let , ( )M NF θ  represent the estimate of Fn(θ) based 
on M Hessian estimates in step 2 and N pseudodata 
vectors.  

4. THEORETICAL BASIS FOR IMPLEMENTATION 
 There are several theoretical issues arising in the steps 
above. One is the question of whether to implement the 
Hessian estimate-based method from (3.1) rather than a 
straightforward averaging based on the outer produce of 
gradients. Another is the question of how much averaging 
to do in step 2 of the procedure in Section 3 (i.e., the choice 
of M). We discuss these two questions, respectively, in 
Subsections 4.1 and 4.2. To streamline the notation 
associated with individual components of the information 
matrix, we generally write F(θ) for Fn(θ).  

4.1  Lower Variability for Estimate Based on (3.1) 

 Let us consider the case where g(⋅) values are directly 
available. The argument below is only a sketch of the 
reason that the form in (3.1) is preferred over a 
straightforward averaging of outer product values g(⋅)g(⋅)T 
(across Zpseudo(i)), as it involves some “informal” (but very 
reasonable) approximations. The fundamental advantage of 
(3.1) arises because the variances of the elements in the 
information matrix estimate depend on second moments of 
the relevant quantities in the Monte Carlo average, while 
with averages of g(⋅)g(⋅)T the variances depend on fourth 
moments of the same quantities. This leads to greater 
variability for a given number (N) of pseudodata. To 
illustrate the advantage, consider the special case where the 
point of evaluation θ is close to a “true” value ∗θ . Further, 
let us suppose that both θ and ∗θ  are close to the maximum 
likelihood estimate for θ at each data set Zpseudo(i), say 

pseudo
ˆ ( )( )ML iZθ  (i.e., n is large enough so that 

pseudo
ˆ ( )( )ML iZθ  ≈ ∗θ ). Note that pseudo

ˆ ( )( )ML iZθ  

corresponds to a point where g(θ | Zpseudo(i)) = 0. Let us 
compare the variance of the diagonal elements of the 
estimate of the information matrix using the average of the 
Hessian estimates (3.1) and the average of outer products (it 
is not assumed that the analyst knows that the information 
matrix is diagonal; hence, the full matrix is estimated). 



 In determining the variance based on (3.1), suppose that 
M = 1. The estimate , ( )M NF θ  is then formed from an 
average of N Hessian estimates of the form (3.1) (we see in 
Subsection 4.2 that M = 1 is an optimal solution in a certain 
sense). Hence, the variance of the jjth component of the 
estimate , ( )M NF θ  = 1, ( )NF θ  is 

 { } ( )2
1, 1;

1 ˆvar ( ) var=  N jjjj
H

N
F θ  (4.1) 

Let O(⋅)(c
2)  denote a random “big-O” term, where the 

subscript denotes the relevant randomness; for example, 
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, 1 ( )O cZ ∆  denote a random “big-O” term dependent on 

Zpseudo(i) and ∆1 such that 2 2
, 1 ( )O c cZ ∆  is bounded 

almost surely (a.s.) as c → 0. Then, by Spall (2000), the jjth 
component of the estimate 1Ĥ  = 1 pseudo
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where the pseudodata argument (and index i) and point of 
evaluation θ have been suppressed. Let us now invoke one 
of the assumptions above in order to avoid a hopelessly 
messy variance expression. Namely, it is assumed that n is 
“large” and likewise that the points θ, ∗θ , and 

pseudo
ˆ ( )( )ML iZθ  are close to one another, implying that the 

Hessian matrix is nearly a constant independent of 
Zpseudo(i) (i.e., log l (θ | Zpseudo(i)) is close to a quadratic 
function in the vicinity of θ); this is tantamount to assuming 
that n is large enough so that H(θ | Zpseudo(i)) ≈ F(θ). 
Hence, ignoring the 2

, 1 ( )∆O cZ  error term,  
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where FjA denotes the jAth component of F(θ). 
 Let us now analyze the form based on averages of 
g(⋅)g(⋅)T. Analogous to (4.1), the variance of the jjth 
component of the estimate of the information matrix is 

 ( )21 var jg
N

, (4.3) 

where gj is the jth component of pseudo ( )( )ig Zθ . From the 
mean value theorem, 
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where the approximation in the first line results from the 
assumption that H(θ | Zpseudo(i)) ≈ F(θ). Hence, in 
analyzing the variance of the jjth component of g(⋅)g(⋅)T 
according to (4.3), we have  

( ) ( )
2
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where θA and ,θ̂ AML  are the Ath components of θ and 

pseudo
ˆ ( )( )ML iZθ . From asymptotic distribution theory 

(assuming that the moments of pseudo
ˆ ( )( )ML iZθ  correspond 

to the moments from the asymptotic distribution), we have, 
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ML MLE θ θ θ θ  ≈ 1( )−∗F θ ; further, ˆ− MLθ θ  is 

(at least approximately) asymptotically normal with mean zero 
since θ ≈ ∗θ . Because E[g(⋅)g(⋅)T] = F(θ), the above implies 
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where Ejm denotes the jmth component of F(θ)−1 and the 
last equality follows by a result in Mardia, et al. (1979, p. 
95) (which is a generalization of the relationship that X ∼ 
N(0,  σ2) implies E(X4) = 3σ4).  
 Unfortunately, the general expression in (4.4) is 
unwieldy. However, if we make the assumption that the 
off-diagonal elements in F(θ) are small in magnitude 
relative to the diagonal elements, then for substitution into 
(4.3), ( )2var jg  ≈ 22 jjF . The corresponding expression for 
the (3.1)-based approach with substitution into (4.1) is 

( )2
1;

ˆvar jjH  ≈ 0 (of course, the exact variance will be 
slightly non-negative due to the approximations involved in 
(4.2)). So the Hessian estimate-based method of (3.1) 
provides a more precise estimate for a given number (N) of 
pseudodata.  

4.2  Optimal Choice of M 
 It is mentioned in step 2 of the procedure in Section 3 that 
it may be desirable to average several Hessian estimates at 
each pseudodata vector Zpseudo. We now show that this 
averaging is only recommended if the cost of generating the 
pseudodata vectors is high. That is, if the computational 
“budget” allows for B Hessian estimates (irrespective of 
whether the estimates rely on new or reused pseudodata), the 
accuracy of the Fisher information matrix is maximized 
when each of the B estimates rely on a new pseudodata 
vector. On the other hand, if the cost of generating each 
pseudodata vector Zpseudo is relatively high, there may be 
advantages to averaging the Hessian estimates at each 
Zpseudo (see step 2). This must be considered on a case-by-
case basis.  
 Note that B = MN represents the total number of Hessian 
estimates being produced (using (3.1)) to form , ( )M NF θ . 

The two results below relate , ( )M NF θ  to the true matrix 
F(θ). These results apply in both of the cases where 



G(θ | Zpseudo) in (3.1) represents a gradient approximation 
(based on log l (θ | Zpseudo) values) and where 
G(θ | Zpseudo) represents the exact gradient g(θ | Zpseudo). 
Proofs of Propositions 1 and 2 are available in the more 
complete version of this paper.    
Proposition 1. Suppose that g(θ | Zpseudo) is three times 
continuously differentiable in θ for almost all Zpseudo. 
Then, based on the structure and assumptions of (3.1), 

, ( )  M NE F θ  = F(θ) + O(c2). 

Proposition 2.  Suppose that the elements of { (1) (1)
1 ,..., ;M∆ ∆  

(2) (2)
1 ,..., ;....;M∆ ∆  ( ) ( )

1 ,..., ;N N
M∆ ∆  }pseudo pseudo(1),..., ( )NZ Z  

are mutually independent. For a fixed B = MN, the variance 
of each element in , ( )M NF θ  is minimized when M = 1.  

5.  IMPLEMENTATION WITH ANTITHETIC RANDOM 
NUMBERS 

 Antithetic random numbers (ARNs) may sometimes be 
used in simulation to reduce the variance of sums of 
random variables. ARNs represent Monte Carlo-generated 
random numbers such that various pairs of random 
numbers are negatively correlated. Recall the basic formula 
for the variance of the sum of two random variables: var(X 
+ Y) = var(X) + var(Y) + 2cov(X, Y). It is apparent that the 
variance of the sum can be reduced over that in the 
independent X, Y case if the correlation between the two 
variables can be made negative. In the case of interest here, 
the sums will represent averages of Hessian estimates. 
Because ARNs are based on pairs of random variables, it is 
sufficient to consider M = 2 (although it is possible to 
implement ARNs based on multiple pairs, i.e., M being some 
multiple of two). ARNs are complementary to common 
random numbers, a standard tool in simulation for reducing 
variances associated with differences of random variables 
(e.g., Spall, 2003, Sect. 14.4). 
 Unfortunately, ARNs cannot be implemented blindly in 
the hope of improving the estimate; it is often difficult to 
know a priori if ARNs will lead to improved estimates. The 
practical implementation of ARNs often involves as much 
art as science. As noted in Law and Kelton (2000, p. 599), it is 
generally useful to conduct a small-scale pilot study to 
determine the value (if any) in a specific application. When 
ARNs are effective, they provide a “free” method of 
improving the estimates (e.g. Frigessi, et al., 2000, use them 
effectively to reduce the variance of Markov chain Monte 
Carlo schemes).  
 As shown in Proposition 2 of Section 4, the variance of 
each element in , ( )M NF θ  is minimized when M = 1 given 
a fixed “budget” of B = MN Hessian estimates being 
produced (i.e., there is no averaging of Hessian estimates at 
each Zpseudo(i)). This result depends on the perturbation 
vectors ( )i

k∆  being i.i.d. Suppose now that for a given i, we 
consider M = 2 and allow dependence between the 
perturbation vectors at k = 1 and k = M = 2, but otherwise 
retain all statistical properties for the perturbations mentioned 

below (3.1) (e.g., mean zero, symmetrically distributed, finite 
inverse moments, etc.). The complete version of this paper 
provides a sketch of how ARNs may be used towards 
reducing the variance of the information matrix estimate 
when g(⋅) values are directly available.  

6.  NUMERICAL EXAMPLE 
 Suppose that the data zi are independently distributed 
N(µ, Σ + Pi) for all i, where µ and Σ are to be estimated and 
the Pi are known. This corresponds to a signal-plus-noise 
setting where the N(µ, Σ)-distributed signal is observed in 
the presence of independent N(0, Pi)-distributed noise. The 
varying covariance matrix for the noise may reflect 
different quality measurements of the signal. Among other 
areas, this setting arises in estimating the initial mean 
vector and covariance matrix in a state-space model from a 
cross-section of realizations (Shumway, et al., 1981), in 
estimating parameters for random-coefficient linear models 
(Sun, 1982), or in small area estimation in survey sampling 
(Ghosh and Rao, 1994).  
 Let us consider the following scenario: dim(zi) = 4, n = 30, 
and Pi = Ti U U , where U is generated according to a 4 × 4 
matrix of uniform (0, 1) random variables (so the Pi are 
identical except for the scale factor i ). Let θ represent the 
unique elements in µ and Σ; hence, p = 4 + 4(4 1) 2+   = 14. 
So, there are 14(14 1) 2+  = 105 unique terms in Fn(θ) that 
are to be estimated via the Monte Carlo scheme in Section 3. 
This is a problem where the analytical form of the 
information matrix is available (see Shumway, et al., 1981). 
Hence, the Monte Carlo resampling-based results can be 
compared with the analytical results. The value of θ used to 
generate the data is also used here as the value of interest in 
evaluating Fn(θ). This value corresponds to µ = 0 and Σ being 
a matrix with 1’s on the diagonal and 0.5’s on the off-
diagonals. 
 This study illustrates three aspects of the resampling 
method. Table 1 presents results related to the optimality of 
M = 1 when independent perturbations are used in the 
Hessian estimates (Subsection 4.2). This study is carried 
out using only log-likelihood values to construct the 
Hessian estimates (via using the simultaneous perturbation 
gradient estimate in (3.2)). The table also presents results 
related to the value of gradient information (when 
available) relative to using only log-likelihood values. 
Table 2 illustrates the value of ARNs (Section 5). All 
studies here are carried out in MATLAB (version 6) using 
the default random number generators (rand and randn). 
Note that there are many ways of comparing matrices; we 
use two convenient methods below. One is based on the 
maximum eigenvalue; the other is based on the norm of the 
difference. For the maximum eigenvalue, the two candidate 
estimates of the information matrix are compared based on 
the sample means of the quantity max max maxλ̂ − λ λ , where 

maxλ̂  and maxλ  denote the maximum eigenvalues of the 
estimated and true information matrices, respectively. For the 
norm, the two matrices are compared based on the sample 



means of the standardized spectral norm of the deviations 
from the true (known) information matrix 

, ( ) ( ) ( )−M N n nF F Fθ θ θ  (the spectral norm of a square 

matrix A is A  = 1/2largest eigenvalue of[ ]TA A ; this 
appears to be the most commonly used form of matrix norm 
because of its compatibility with the standard Euclidean 
vector norm).  
 Table 1 shows that there is statistical evidence consistent 
with Proposition 2. Namely in the comparisons of 1,40000F  

with 20,2000F  (column (a) versus (b)), the P-value 
(probability value) computed from a standard matched-pairs 
t-test, is 0.002 and 0.0009 for the maximum eigenvalue and 
norm comparison. These P-values are based on 50 
independent experiments. Hence, there is strong evidence to 
reject the null hypothesis that 1,40000F  and 20,2000F  are 
equally good in approximating Fn(θ); the evidence is in 
favor of 1,40000F  being a better approximation. At M = 1 and 
N = 40,000, columns (a) and (c) of Table 1 also illustrate the 
value of gradient information, with both P-values being very 
small, indicating strong rejection of the null hypothesis of 
equality in the accuracy of the approximations. It is seen 
from the values in the table that the sample mean estimation 
error ranges from 0.5 to 1.5 percent for the maximum 
eigenvalue and 1.8 to 5.3 percent for the norm. 
Table 1. Numerical assessment of Proposition 2 (column (a) vs. column 
(b)) and of value of gradient information (column (a) vs. column (c)). 
Comparisons via mean absolute deviations from maximum eigenvalues 
and mean spectral norm of difference as a fraction of true values (columns 
(a), (b), and (c)). Budget of SP Hessian estimates is constant (B = MN). P-
values based on two-sided t-test.  

 M = 1 
N = 40,000 
Likelihood 

values 
(a) 

M = 20 
N = 2000 

Likelihood 
values 

(b) 

M = 1 
N = 40,000 
Gradient 
values 

(c) 

P-value
(Prop. 2)

 
 

(a) vs. (b)

P-value
(gradient 

info.) 
 

(a) vs. (c)
Maximum 
eigenvalue 0.0103 0.0150 0.0051 0.002 0.0002 

Norm 0.0502 0.0532 0.0183 0.0009 < 1010−  

 Table 2 contains the results for the study of ARNs. In 
this study, ARNs are implemented for the first three (of 
four) elements for the µ vector; the remaining element of µ 
and all elements of Σ used the conventional independent 
sampling. The basis for this choice is prior information that 
the off-diagonal elements in the Hessian matrices for the 
first three elements are similar in magnitude. As in Table 1, 
we use the difference in maximum eigenvalues and the 
normed matrix deviation as the basis for comparison (both 
normalized by their true values). Because ARNs are 
implemented on only a subset of the µ parameters, this 
study is restricted to the eigenvalues and norms of only the 
µ portion of the information matrix (a 4×4 block of the 
14×14 information matrix). Direct gradient evaluations are 
used in forming the Hessian estimates (3.1). Based on 100 
independent experiments, we see relatively low P-values 
for both criteria, indicating that ARNs offer statistically 

significant improvement. However, this improvement is 
more restrictive than the overall improvement associated 
with Proposition 2 because it only applies to a subset of 
elements in θ. There is no statistical evidence of improved 
estimates for the Σ part of the information matrix. Of 
course, different implementations on this problem (i.e., to 
include some or all components of Σ in the modified 
generation of the perturbation vector) or implementations 
on other problems may yield broader improvement subject 
to conditions discussed in Section 5.  
Table 2. Numerical assessment of ARNs. Comparisons via mean absolute 
deviations from maximum eigenvalue of µ block of Fn(θ) (n = 30) as a 
fraction of true value and mean spectral norm on µ block as a fraction of 
true value. P-values based on two-sided t-test.  

 M = 1 
N = 40,000 
No ARNs 

M = 2 
N = 20000 

ARNs 
P-value 

Maximum 
eigenvalue 0.0037 0.0024 0.001 

Norm 0.0084 0.0071 0.018 
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