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STATE AND OUTPUT FEEDBACK STABILIZATION OF A
CLASS OF DISCRETE-TIME NONLINEAR SYSTEMS

K. E. Bouazza, M. Boutayeb and M.Darouach

~ Abstract—For multi-input multi-output (MIMO) discrete- For discrete-time nonlinear systems only few design
time nonlinear systems whose free dynamics can be unstable, methods have been established [6], [17] and [18]. Relevant

we sho_w how the problem of global stabilizati(_)n_ via state f’;\nd ones have been developed by Byrmes and Lin [6] and
dynamic output feedback can be solved. Sufficient conditions Lin (181, | ticular th K in 118 h lobal
for stability are deduced, from the Lyapunov approach, and in [ ]'_ n par 'Cu_ ar e_ work in [18], where a globa
expressed in terms of matrix inequality that depend on arbi- Stabilization is achieved via state and output feedback, the

trary matrices fixed by the designer. An example is presented proposed technique is judicious, but only systems with
to illustrate the high performances of the proposed approach. Lyapunov stable unforced dynamics are considered, like in
Keywords: : nonlinear discrete-time systems, bilinear systems, the majority of the works in the literature, this may be seen
stabilization, state feedback, dynamic output feedback, unsta- as a conservative condition.
ble free dynamics.
The aim of this work is to relax this condition, by the
.. INTRODUCTION use of a bounded state feedback control schemes, associated

Over the past four decades, stabilization of nonlinea#ith "Luenberger-type” nonlinear observer, to ensure the

dynamical systems has received a great deal of attention glpbal stability of a class of discrete-time nonlinear systems.

the literature as can be shown through basic works in thjg@nks to simple Lypunov function, sufficient conditions

field [1], [2], [3] and [4]. Several design methodologies havdor stability are d_educed and seem to work, Wlthout coordi-
been developed for local and global stabilization problem@2ate transformation, for a large class of nonlinear systems,
of continuous and discrete-time nonlinear systems, see f8YeN those with unstable unforced dynamics. This method
instance [5], [6], [7], [8], [9], [10] and the references inside €N Pe also extended to stochastic systems.

When the control laws are designed, the state variables

are assumed to be available. But in general, this is not true in This paper is organized as follow : in sectianwe

practice and the current state must be estimated by anotlﬁ'é'imdu‘_:e the p“’b'e”_‘ formulation gnd the_ two main results.
dynamical system, that is a state observer. in Section3 a numerical example is provided to show the

Thus, observer based stabilization of nonlinear systentnfégh performances of the proposed method and easiness of

has been studied in the past few years. The main contrib e implementation.

tions, however, concern continuous time systems; this prob-

lem has been investigated by several authors, among them

[11], [12], [13], [14], [15] and [16]. In [11], using converse Il.. PROBLEM FORMULATION AND MAIN RESULTS
Lyapunov stability theory, both local and global asymptotic |, this paper we consider a class of affine discrete-time
(resp. exponential) stabilization is obtained, via estimategyniinear systems of the form :

state feedback. The result presented in [11] was the first

separation principle for nonlinear systems in the literature. { w1 = Ay + 3000 gi(wy)uj, 1)
The applications of this separation principle are restricted yr = Cuy,
in the sense that verifications of the conditions given in thﬁ/herexk e R", yr € R? anduy, = [ul,u,...,ul"]” €

main theory (see [11], Theorem 3.1 and 4.1) heavily depengm denote the state, output and input vectors respectively
on the choice of Lyapunov functions. Using the linearizatioyt time instant k. A and C are constant matrices with
approach, authors in [12] established a nonlinear separatigBpropriate dimensions, ang : R* — R"™, 1 < i < m,

property for the local exponential stabilization problemgre smooth functions. Without loss of generality, we assume

In [14] and [16] a global output feedback stabilization isat zero is the equilibrium point of the system (1).
achieved using the high gain observer and the hypothesis

that there exists a bounded state feedback which stabilizes The purpose of this work is to design a dynamic com-

the nonlinear system was studied. pensator
i1 = Ak Yk
K. E. Bouazza and M.Darouach are with CRAN-CNRS, {Uk-:ﬂ(fk)’ (2)
IUT de Longwy, Univers& Henri Poinca&-Nancy |. 186,

fkubeoua‘;‘;a @Liﬁir?g}]egwyi4ﬁ§?1an§§sf?'es et Romain.  FRANCEgq that(z, £) = (0,0) is an exponentially stable equilibrium
M. Boutayeb is with LSIIT-CNRS, UnivergitLouis Pasteur de Stras- of the closed-loop system (1),(2), even if the free dynamics
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In what follows, we construct a bounded state feedback
which leads to a global separation principle for discrete-

time nonlinear systems of the form (1). AV = Vi = Vi = =0V (10)
Set After matrix manipulation, H1) becomes
g9(xr) = [91(zr), 92(2k), - - -, G ()] ©)) 1
o . P;/QAE(ATPK‘(I+ g(ze) R g(zp)"Pr) A+ Q)
First, inspired by the well known results on optimal 1/2
control and the transfer of the Jurdjevic-Quinn control in X AP <ol =6)I,. (11)

discrete-time developed in [19], we propose in the following \ye notice that
theorem an explicit state feedback law to achieve stabiliza-
tion of (1), (I + g(ze) R g(z)"P) " =1 — g(a)
X (I'i‘R_]g(xk)TPkg(xk))71R_19(xk)TPk (12)
Theorem 1 . .
U 11) and (12), bt
Consider a MIMO nonlinear system (1) which satisfies sing (11) and (12), we obtain
PYPAL [AT Py [I — g(ar)(I + R g(x1,) T Prg(y)) ™
_ -1 k k k 9\ Tk g\ Tk kg Tk
o H1) P;/QAE(AT(P?+9($k)R_19($k)T> 14+Q) <R g(a)T Py A—f—Q]_lA pl2 < o(1— )1, (13)
x Ay PY? < a(1-6)I, G\Tk)" Tk RS n
or
Then, the equilibrium of the system (1),= 0 is globally
exponentially stabilized by the bounded feedback control P/*AT [AT Py [T — g(wy)(R + g(ax)” Prg(x)) ™"
—1
Uk = u(xk) = —Fkxk = —% kaL‘k (4) Xg(xk)TPk] A + Q] Akpkl/Q S O‘(l - 5)-[71 (14)
L+ [[ Lzl , ,
which, can be rewritten as

where
Fp=F(zy)= H”Zw Ly G P°AL [ATP A - ATPkg(lwk)(R + g(xr)" Peg(ai)
LkZL(IEk)Z (R n g(xk)TPkg(xk))_lg(xk)TPk;A (6) Xg(xk)TPkA + Q] AkPkl/2 < a(l — 5)In (15)
Pey1=a((A—g(zy) L) "Py(A—g(zx) L) + LERL+Q)(7)  then
Ak:A—g(xk.)Fk, 0<di<1 (8)

-1
PYPAT [ATP A — AT Prg(xy) Ly, + Q)
where~y is an arbitrarily positive real numbeR and R are 1/2 B
positive definite matrices with appropriate dimensions to be X APy < a(l=0) 1y (16)
chosen as design parameters.

= AT [ATPA — AT Peg(a) L+ Q)

Remark x A < a(l-6)P;" (17)

« The main contribution of the proposed approach with

respect to the existing result is that we introduce the After adding and subtracting the same term, we obtain

weighting factora to control boundness oP, and
by the way to relax the Lyapunov stability condition A} [A" P,A — AT Pog(2x) Ly, — L g(zx)" PLA

of the free dynamics. Design of this parameter will be T T Ty B -1
specified later in the proof. +Lig(@n) PeA+ Q] A <a(l =8P (18)

A multiplication by I,,, give
Proof
. _ Aj; (AT PLA — AT Prg(aw) L — Ly g(xx) " PeA

_F_lrst, )\m_,w(.) and A\in () d_enote the maximum and +L{(R+g(xk)TPkg(xk))(R+g(mk)TPkg(xk))’1
minimum eigenvalues, respectively. . 1 .

Consider the Lyapunov function x g(xr)" PhA+ Q) Ap < (1 -96)P " (19)

which is
Vi = xTP_ll‘k 9
. SRR AT (ATPA — ATPyg(ax)Li — Lig(zx)"PeA + LERLy

A strictly decreasing sequencg/; lx=1... means that T - _1 .

there exists a positive scal@r< § < 1 such that +Lpg(wr) Peg(@r) L + Q) Ax<a(l —§)P" (20)
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then

£ (A= g(ze)Li)" Pu(A — g(wr) Ly)

+LFRLL+Q) ™ Ay < a(1 — §)P; ' (20)
which is nothing else than,
AL PN < (1-6)P ! (22)

So, the equation (10) is proved.

Now, we will prove that the matri¥’;, is bounded from
above and below for alt, i. e. there exists\ and \ so that

It is easy to verify, from (7), that sincee Q@ (Q is
fixed by the designer) is positive definite we havg, <

Py. The second inequality’, < AI,, may be deduced
from a good choice of the parameter Indeed, the proof
is straightforward if we consider the following auxiliary

Riccati equation

Py =a(ATPLA+Q) (24)
which always, under the following value of
1 for P, < A\,
@ = { T otherwise (25)
satisfies
Py < M, forall k (26)

Therefore the convergence of the statg to zero is
ensuredil

We can now establish a global separation principle for
a MIMO discrete-time nonlinear system of the form (1) by
using the bounded state feedback control strategy proposed
in Theorem 1.

Theorem 2

Consider a discrete-time MIMO nonlinear system (1)
which satisfies Hypothesis H1). Suppose the gairC)
is detectable and the functiof(z) is globally Lipschitz
on R"™. Then for a sufficiently smaly > 0, a Luenberger-
observer-like based output feedback control law

{ fl?iZ(?f)k + 9(&k) . + K(yr — C&) (30)

= —F(&k)&k
renders the equilibrium{z,£) = (0,0) of the closed-
loop system (1),(30) globally exponentially stable. K is a

constant matrix such thdtd — KC) is stable.

Proof

definee;, the state estimation error vector, so that
er =T — &k
The closed-loop system (1),(30) can be expressed as

{ er+1 = (A= KCO)eg + (9(z) — 9(&k)) ik (31)
Ekr1 =

On the other hand, when the arbitrary initial matrices are

chosen to be
Py <Py (<A, (27)
by the use of (6) and (8)

Pyt = o (AT (Py — Peg(az)(R+ g(xx)" Prg(ar)) ™
Xg(wk)TPk> A + Q)
(ATPA+ Q)

<a
< Pyp1=a(ATPLA+Q) <,

(28)

so the boundness d?, is proved.

Since V;, is a strictly decreasing sequence afy is
bounded, it follows that

0
= k|
= ||zl

ollzll < Vi < (1 -8V,
(1= 8) e

M,a* for k=0,1,...

T
o Poxo

IA A CIA

(29)
where
My =@ Anae(Po)||zo|*> >0, 0<a<1

and
0<el, <Pt

A&y + g(§k )l + KCey,
Since the pair(A4,C) is detectable, so there exists a
positive definite matrixS such that
(A-KC)'S(A—-KC) -

Let us define

S =—

X (ep) = ei Sey, (32)
Then
AXy = X(epy1) — X(eg)
= —ef Iney + 2¢f (A = KO)TS (g(wr) — (&)
T+ (glan) — 9(&) " S(g(@) — 9(&n) i
< —llexl®+ 2ef (A = KC)TS (g(x) — g(&r)) i
+af (g(wk) — 9(&))" S (9(ak) — 9(&)) u (33)

From ||ax|| < + and the Lipschitz condition o§(.), we
deduce that

AX < —lex]” (1 = 298[(A = KC)S|| = +*32||S]) (34)
Where$ is the Lipschitz constant associated with).
Obviously, it is possible to choose > 0 so that for
somee, 0 <e <1
AXy = 6Z:+1S(3k+1 - egSek < —56%5% <0 (35)
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This implies As an immediate consequence, we have the following
global separation principle for MIMO Bilinear systems

/\mm(s)||€kH2 < €£Sek <(1- 5)65_15616—1 < ...
<(1- E)kegSeo <(1- E)k)\mam(s)”60”2 (36) Corollary

Consider the following MIMO discrete-time bilinear

therefore
system
2< D& fork=0,1,.... 37 m i
”ekH >z or ( ) { Tpy1 = Axy + Zi:l Bixkuk, (42)
with Y = C
Amas () ) Suppose assumption H1) holds with(zx) = Bjxy.
D= Foin(S) [eof| >0 and 0 <z < 1. Suppose the pair (A,C) is detectable. Then a dynamic

~_compensator of the form (30), with) (z1,) = B;xs, renders
On the other hand, recall that by theorem 1, we satisfigfle system (42) globally exponentially stable.
the following relationship

A Apll? < My oFt?
1ASk + g(&ewiin||” < Mo ™ (38) ll.. ILLUSTRATIVE EXAMPLE

where
. ) In this section, the proposed control method is applied
My =" Anaa(Po)]I">0 and0<a<1, k=0,1,... (39) {0 an example with very interesting properties, in order to

Without loss of generality, we can deduce from (31) anHIustrate the high performances of the proposed approach.

(38) that Consider a nonlinear system described by
[€k+1ll < [|A&G + g(&k) ikl + [ K Cexl 5 xl(z + 1) - 1-5$1(k>; h(wx)u(k) 23
< M, " + DF|KC| < ... ;?/i) l‘x) @)ﬁ(%)u( ) (43)
S 1. 12 where

From (37) and (40), we conclude that all trajectories ofA:{ 1(')5 8 ] and g(m@z(?Exkg) and C=[1 0]
the closed-loop system (31) are bounded. 2\Tk

We have one eigenvalue of A out of the open unit circle.
Thus the free dynamics are unstable. We can see also that
the pair (A,C) is detectable.

To show that(e,&) = (0,0) is a global exponentially
stable equilibrium of (31), we lefey, &) be a trajectory of
system (31) with the initial valugeg, &). Let m® denote

its w-limit set (i.e. Computing the condition H1), with
0 . k
m° = lim ¢"(x), R— _{q O]andp_|:p1k: pzk}
koo @ 0 ¢ ¥ D2k D3k

whereg® (z) is a series extract from the solution of the sysye get the following matrix

tem (31)). Clearlym,® is nonempty, compact, and invariant

becauséey, &) is boundedvk. In addition, it follows from A7 (AT (P “+g(zx) R 'g(2x)7) "Ax+Q) ™" A

(37) thatlimy, ., e, = 0. Therefore, any point imn® must . H., 0

be a pair of the form(0, ¢;). —o(l =8P = [ 0 J ] (44)
Let (0,€) € m° and (0,¢,) be the corresponding

trajectory. Obviously, this trajectory is characterized by th&’ here ad
following equation Jp=——
Pik
and
Skir = Ale + 9(&ult) “1) Hy=(r + le(zk) DPik + f22(l’k) D3k)

which has been proved to be globally exponentially stable (1 5_15 ST (@k)ypik )2
at¢ = 0. % ) r+f(@e)piet 3 (@n)pse+1.5[z1 (B)] f1(zr)pie

In, other words, the global exponential behavior of the 2.25p1k742.25 f3 (k) P1epartartafs (ze)pswta f7 (zr)pik
closed loop system (31) &t, &) = (0,0) is completely de- 1995 Y2 f2 (20) f3 (x)P3
termined by the flow on the invariant manifold governed by (r+£2(x)pre+£3 (k) psx+1.5lw1 (k)| f1 (z)p1x ) *a
system (41) [20]. Since the latter is globally exponentially ad
stable, so is the closed-loop system (HIL). e (45)



It's clear that choosing: = 1 and a largeg, allow us to
verify Hypothesis H1).

Therefore, we conclude from theorem 2, that the system

3} is globally exponentially stabilized (GAS) by the dynamic

output feedback (30), as presented in the following figures.

Wheref (zy) = 21(k), fa2(2y) = 21(k), ¢ = 10°, Py =
100 x I, o = [15 13]7 and&y = —[15 20]7 .
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Fig. 1. V(zy) with respect to sampling time k.
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Fig. 2. X(xj) with respect to sampling time k.
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Fig. 3.

z1 (k) with respect to sampling time k.
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Fig. 4. x2(k) with respect to sampling time k.
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Fig. 5. 4, with respect to sampling time k.

IV.. CONCLUSION

In this paper, we have presented bounded state feedback
control schemes which globally exponentially stabilizes
a class of discrete-time affine nonlinear systems, whose
free dynamics can be unstable. The nonlinear system, if
it is to be stabilized, must satisfy a stability condition,
which is established in terms of matrix inequality. The
Luenberger-observer-like output feedback control law based
on a Riccati-like equation stabilizes a class of MIMO non-
linear discrete-time systems. The crucial point to establish
this separation principle was the use of a bounded feedback.
The simulation results show the high performances of our
approach.
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