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Abstract—In this paper, we present a control algorithm unknown optimum while ensuring transient performance
that incorporates _real time optimization and reced_lng hori-  and process regulation about the unknown optimum. Using
zon control technique to solve an extremum seeking control the knowledge of a suitable input-to-state stable control

problem for a class of nonlinear systems with parametric L functi the adapti dina hori trol
uncertainties. A Lyapunov-based technique is employed to yapunov tunction, the adaptive receding horizon contro

develop a receding horizon controller that drives the system techniques can be shown to stabilize a nonlinear system
states to the desired unknown extremum points when it can be with parametric uncertainties about an unknown optimum.
shown that a persistency of excitation condition is satisfied. A This paper is structured as follows. The problem de-
simulation example is provided to illustrate the effectiveness scription is given in section Il and the design procedure
of the proposed method. . . .
is presented in section Ill. The proposed control and our
main result is presented in section IV. Numerical simulation
|. INTRODUCTION results are shown in section V and finally, conclusions are
Optimization has become a key area in control theory dugiven in section VI.
to the increasing need to optimize plant operation in order
to reduce operating cost and meet product specifications. .
As better controllers are developed to adequately control a 1he System under study [1] is given by
plant, the focus can be shifted to the solution of controller Xo = f(X)+Fp(X)8p+ Fy(X) 0+ G(X)u (1)
designs that guarantee optimal plant performance. If, for %3 = oK) )
example, one can generate a reliable estimate of plant
profitability, the purpose is shifted to the regulation of thevherex= [Xp x§]T €R"anduc R™are the systems states
process about conditions that provide maximum profitabi@nd the control inputs respectively € RP and 6, € R are
ity. Such a task is usually tackled using a supervisoryector of unknown constant parametefgx) : R" — R™
control technique. One such technique that has receivéy @ smooth vector functionFp(x) : R" — R™P, Fy(x) :
considerable attention in the process industry is real-tim@" — R™® and G(x) : R" — R™" are smooth matrix-
optimization (RTO). One of the main challenges involvedralued functions. The objectiyrofit) function is a smooth
with the implementation of this technique is the difficultyfunction ofx, and the unknown parameteés. It is given
associated with the integration of RTO with advanced prdJy
cess control (APC) applications. Despite the fact that these y = p(Xp, Bp) (3)
technologies are firmly established, their full integration D -
remains troublesome in application. where 8, € RP is a parameter vector that satisfi@sc Qg
In this paper, we propose a formal design techniqu\ﬁlhere 5
that achieves the integrated task of RTO/APC supervisory ¢ — {Bp cRP 0°p(Xp, Bp)
systems. The control task is posed as an adaptive extremum- IXpdXp
seeking control problem. Extremum seeking control hashis condition ensures that the performance function
been proposed by a number of authors to handle optimizptx,, 8,) is strictly convex. According to the theorem of
tion problems in nonlinear control systems ([3], [2], [1]). AGlobal Solutions of Convex Programs [6], there exists a
number of applications of this method have been reporteghique constant vectot, such thatd p(xp, 8p) /9xp |xp=x§,=
in the literature ([10], [9], [7]). 0. This means that the objective functignachieves its
In this paper, we consider the approach proposed Whaximum atx:.
[1] to solve a class of extremum-seeking problems which The objective function is assumed to depend on the
achieves the integrated task of an RTO/APC system wheseatex, and the parametei, only. The remaining states
the APC consists of a nonlinear model predictive controllek, € R™ ™ represents the states that are not involved in the
Assuming that one can provide a suitable functional exsbjective function. It is assumed that thg dynamic state
pression for the plant profit, an adaptive receding horizobelongs to a compact subset.
controller design technique is developed that is able to Assumption 1.G(x) is invertiblevx € R"
steer the process states of the closed-loop system to amAssumption 2:The setQg is a convex subset dkP
0-7803-8335-4/04/$17.00 ©2004 AACC 2937

Il. PROBLEM DESCRIPTION

<ol <0, xpeRm} (4)



lll. DESIGNPROCEDURE constant estimate, which implies thgg = 0.

Let B, and 8, denote the estimates of the true param]herefore,

eters 6, and 6; respectively. The predicted states, are [ 52
P

generated by , _ 0p A A
v s £(X) + Fp(X)Bp + Fo(x) B +

p= F(X) +Fp(X)Bp+ Fy(x)8g+ G(x)u+Ke  (5)

2
whereK = KT >0 ande= x, — X is the state prediction G(x)u+d(t)) +§7£) 0)?75% (Fp(x)ep
error. It follows from (1) and (5) that the dynamics of the PLYPT P
prediction errore is ~ )1
. . +Fq(X)6q
&= Fp(x)Bp + Fy(x) 8y — Ke (6)

where 8, = 6, — 8, and 8, = 6; — 8, are the parameters Considering the control law
estimation errors.

u = —GX) | f(X) +Fp(X)8p+ Fq(X)8 9
A. ISS Control Lyapunov Function ) 00+ Fo(6p+Fa()8% ®)
The concept of an ISS-CLF for input to state stabiliz- +d(t) + kaz" FoFy +koz' FyFy (10)
ability was introduced in [4] for nonlinear systems of the ) -1
form I°p op (11)
OXp0Xh oxt | |

x= f(x)+P(x)d+g(x)u, xeR" ueR™ (7)

where f(x), P(x), and g(x) are smooth, andf(0) =0. wherez= 22 (7052%) andki, ko are positive constants.
The existence of an ISS-CLF guarantees that the nonIinearWe obtainp P

system (7) is input to state stable with respect to the

disturbance inpudl. ) - - - - "
Definition 1: [4] V. =z |Fp(X)8p+ Fy(X) 0 — kaFpFy z— koFgFgz
A smooth positive definite radially unbounded function
V :R" — R, is called an ISS-control Lyapunov function 9%p - ap
(ISS-CLF) for (7) if there exist classz” functions a1, a2 “\ ox.oxt ErF
and a class’s function p such thata; <V < a» and the PeTp P
following holds for allx# 0 and alld € R": Using the fact that
X| > p(lld ~
1] U(l 1y TEy 0By k7 FFT 2
1\ |2 1,
e OV =k (JF(m-e) + |62
bl p P p
inf {51109 +PO)d +g0)ul} <0 1 > aa
=2
<—1|6
B. ISS CLF for the Extremum seeking problem 4ky H pH
Define and similarly,

y = p(Xp-+d(t),6p) = p(Xp, 6p)

whered(t) € C! is a bounded dither signal vector that will
be assigned later. Consider a Lyapunov function candidat_le

PN 2
0 p<xpa ep)
9%

- 1 % .2

2 1 (118", [16a]l°
+4<k1 ke

_ Ip(%p, 8p) d [ Op(%, Bp) This implies thatd p/d%, is bounded wheneve, and 6,

V= o, dt Xt are bounded. Since the Hessian matrix is assumed to be
P P positive definite for all@, it follows that the pointx, at

The purpose of the I1SS-controller design is to provide ahich the gradient ofp vanishes constitutes a minimum

benchmark controller for the RHC controller design. Sincef y, as required. Thus the perturbed state variables entire a

the controller is meant to represent the anticipated action akighbourhood of the optimum @f(x,, 6,). Hence, eq.(12)

an ISS-controller at timé over the intervalt, T], it must demonstrates that eq.(8) is an ISS-Lyapunov function candi-

be assumed that the parameter estimates are known atate for the extremum seeking problem under consideration.

constant. In the ISS-controller design, we Bf= 6, = A suitable ISS-controller is given by eq.(11).

! ®) | ’

V =
2

9p
0%y

vV < =

Taking the time derivative o¥/, we have
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IV. EXTREMUM SEEKING RHC FORMULATION By the formulation of the RHC controller, it follows from

The goal of the ESRHC scheme is to minimize a give/®d-(16) that
cost while ensuring that the performance functjachieves ,
its maximum value. The formulation is such that a finite W(x(t)) <
horizon optimal control problem is solved subject to the
system dynamics and terminal state inequality constrainf€
at any timet with the measured plant statgg) as initial
condition.

The proposed ESRHC scheme is given by:

(V(X*(t+Tp)) V(X))

=l

W(x(t)) < %/tHT\'/‘SS(r)dr

5 whereV'ss indicates that the rate of change \6fis taken

. e ap along the predicted closed-loop trajectories starting(#t
min /t <’ 0Xp R+IU(T)HQ> T2 subject to the ISS-controller and parameter estiméte,
subject to From eq.(9),
% = 0(X) (13) o /m B
: — — W(x(t)) < = Z(1)'F(X®(1))d1O(t
Xp = f(X) + Fp(X)8p+ Fy(X) 85 + G(X)u (14) () = T h (D) FOHT)dT6()
9 _ 0 0 — Q0 t+T . .
% =%(), % =5( (19) 2 [ )R R0 o (RS(1) )
V(t+Tp) <VS(t+Tp) (16) T/
where R and Q are positive definite weighting matrices, +kaz(T)Fq(X%(T) ) Fo(X°%(1)) T (1)
Tp is the length of the prediction horizon, the functign ap 2
is the value of the CLF resulting from the application of + T dr (18)
the ESRHC and/*s is the value of the CLF that results P

from the application of the iss controller. Constraint (16)\ext an estimation algorithm is proposed. The estimation
guarantees that the states under the ESRHC are broughisine consists of a state prediction and a parameter update

within the level set of the iss-controller at the end of thgs,, The predicted stategy, using®, are generated by the
prediction horizon, thereby ensuring that the states under t'd?namical system

ESRHC remain bounded. By (15), the unknown parameters
Bp and 8y in (12) and (14) are replaced with the estimated £=f(x) +F(x)0 4+ G(x)u+K(x—Xp), (19)
parameters values. The optimizer computes the required

control moves over the control horizdht + Tg]. The input Denoting the prediction error by=x—X, and the parameter
u(t) on the plant timet and an estimate of the unknown estimation error byg = 6 — 6, the prediction error dynamic
parameted(t) is obtained via a parameter update law. Thére described by

prediction and the control horizons are shifted forward and . ~

a new optimization problem is solved at next time stef e=F(x)0-Ke (20)
with the new8 = 0(t +¢€). The controlu(t + ¢) is applied

at timet+ ¢ and the process is repeated. In general, it is
assumed that the time step lengthcan be chosen to be
arbitrarily small.

Consider a Lyapunov function
1 ~ ~
V1:W(x)+§eTe+ 6'r-1o (21)

N ) ) Taking its derivative along the solutions of (20), we have
A. Stability Analysis for the Extremum seeking RHC

Scheme Vi(X(t) < (W—8TTHo(t)

The stability and performance of the proposed scheme is 1 T Te o oes T s
demonstrated in the following. -7/ kiz(T)" Fp(X>(T))F, (X°3(1))Z(1)

Let V(x) be a global CLF for the system. Consider the ' _ _
function +koz(T)TFp(XS(T))Fy (X3%(T))Z(T)

_ 1 /t+Tp 2
W) = ?/t V(X(1))dt (17) . ;Tg ]d.[_eTKe 22)
P

where X(.) is the state trajectory resulting from the ex-
tremum seeking RHC control ané®S(.) is the trajectory re- where
sulting from the implementation of the iss-controller eq.(11) 1 T
starting at state(t). This function is positive definite and Y= rF(x)Te+r (/ z(r)TF(i'SS(r))dr)
it is radially unbounded iV is radially unbounded and Th

positive definite. DifferentiatingV with respect tot, we
get

T

andl =TT > 0. In order to produce bounded parameter
estimates, and also to account for the fact that parameters

W()?(t)) _ E(V()?(t+T ) —V(X(1))) often have a physical meaning, it would be desirable to
P ensure that the parameter estimates remain in some given
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set. For this reason, a parameter projection law [5] is used.Lemma 1:Consider the nonlinear system, eq.(1), with

It is given by receding horizon controller egs.(12)-(16), the adaptive laws
5 o (23) and state estimation dynamics eq.(19). If the dither
6 =Proj{6,¥} (23)  signal d(t) is chosen such that the PE condition (29) is

if ||8]] < wm satisfied, then the parameter estimation ef@otonverges

] A « to zero asymptotically
- »or { |8 = wm and D2 ()W < 0) Proof: Let z= d— From eq.(24), it follows from
@2 the Lasalle’s invariance principle thét, e) — 0 ast — oo.

—W% otherwise If Lemma 1 is true, for every compact neighbourhood of

(z,e, 6) =0, there must exist a finite time from which the
where 2(8) = 676 —w, <0, 6 is the vector of parameter neighbourhood of the origin of the closed-loop system is
estimatesy is a positive definite symmetric matrix amg,  positively invariant. Since (24) ensurésis non-increasing,
is chosen such that6|| < wp. we know that level curves of; are rendered positively

The properties of the projection operator, as defined iimvariant. To prove the Lemma, it is therefore sufficient to
[5], ensures that the parameters are bounded and that prove that(z e, é) will enter every level curve of/;.
The proof will proceed by contradiction, with the contra-
Vi < 1T dr— LeTke (24) dictory assumption thafs, > 0 such thatvy > &y, ¥t > 0.
Tk ox} 2 Therefore)im_.., (% 12+ L [lelf® + eTr—la) > &y. How-

Since the last inequality is negative semi-definite witfVer from (24) we know that(z e) — 0, from which

respect toe, ‘;’j- and 8, we can conclude by the LaSalle-We can conclude thaBte = tze(év, k) < « S“Ch that
max(|z||, [le]]) < vKevy, Yt >t for any0<k< 3. It
Yoshizawa’s theorem [5] thae, 6 and are bounded. then follows from (21)
P

Furthermore, botH and e converge to the origin. Con- HéH > /(1= 2K Amn(T T & vt >t (30)
= - *ze

sequently, it is guaranteed from the adaptive law (23) that
From (28), we can conclude that for aay> 0 (indepen-

2
ap

fim Q(t) =0 (25)  dent ofey), Tt*; =t*5(¢) < such that
Since e converges to zero, we know thgf’ &(o)do = i/t”" 5T T 5 < St
e(0) — e(0) = —e(0) exists and is finite. Also, fr0r~n (20), To it 6(r) F(1) F(Do(r))dr <& izt
we know thaté is a function of bounded signals 6 and (31)

e which means tha€ is bounded. Hence, is uniformly ~ ~ X s~

- B . B _
continuous. By Barbalat's lemma [5], we conclude taat ~ SuPStituting6(1) = & + J 6(0)do, where g = 6(t) is
0 ast — oo, This implies that constant over the interval of integration,

lim F(x)6 =0 (26) ié[/”T‘)F(r)TF(r)dr &
or 2 . [t+To T
. . += F(T)TF(t ( Gda)dr
lim 8TFT (X)F(x)6 =0 27 Toet/t O /t
t—oo 1 t+To / (T2 T T T
whereF (x) = [Fp() F(x)] and6 = (6] 6]". = (/ 9"") FOR) (/ 9“) dr=e
If FT(x)F () is positive definite, then the parameter erfor Vt>tis (32)
=F

converges to zero asymptotically. However, this condition
is not always true becaude(x)"F(x) can be singular at From (23) and the properties of the Projection algorithm,
any given time. We consider the integral Bfx)"F(x) for ~we can deduce that

t — oo, It then follows that over any bounded interval of

length0 < Tp < o, we have / bdo H/ ProjfrF(1)"[4 e']" }dr

t+To . ~
lim 1/ ’ (B(0)TF(1)TF(1)8(1))dT=0  (28) Amao<{r &Td
. min
In order to prove the convergence 6fto zero, we will < ToM- /72ke V>t 33
require a condition on the richness of the dither sigi{a). =% v - (33)
Definition 2 (Persistence of Excitation)fhe closed- A )\max{ }
loop dynamics exhibitpersistency of excitatioPE) if Mg = Amin{ T} supHrF Tl<ew (34)
there exists constanf§ > 0, cpe > 0 and a sequencé; } )
with tj — o asi — o such that the following is true By t_he_ umf_orm boundedness o _and because of the
T continuity with respect top, the uniform boundedness of
i/' OF(T)TF(T)dT > cpel (29) Xp is guaranteed whilg, is bounded by assumption; hence
To Jy the supremum in (34) exists independentlysobr & .
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From the smoothness d¢¥(x) and the uniform bound- it follows that the performance function reaches its maxi-
edness of all closed loop dynamics, it follows that therenum atx; = Xj = 1/26;. Following the design procedure,
exists a constantpg < o such that the PE condition can the predicted state is generated by

be rewritten 5 A ~ "
%1 = B¢ 4 Oxo +u+K(xg — %1),

1 ti+To T
Crel < ?o/ti F (1) F(1)dT < Cpel (35)  and the adaptive laws are designed as
Furthermore, sincdj — « and i — «, we define the lef(xl—f(l), if 6,>¢ or
nonempty sei* = {i € {1,2,...}|ti > max(t},, £g)t- Sub- 5 _ 61 =€ andx?(% —x) <0
stituting into (32), noting the semi-positive definiteness of61 o
the third term on the LHS, yields o, otherwise
CPE Hé(ti)Hz— 2cpeToMj\/ 2Ky Hé(ti)Hz— e<0 Viei* Foxo(xe — %), if &>¢ or
36) éz _ 6 =¢ andxa(xg —%X1) <0
from which it follows .
L 0, otherwise
~ o
16(t)]| < = ToMy 2ksv+—\/2q%ET02M2ksv +ecpe  The formulation of the optimization is as follows
CrE CrE o o
vieir @37) minJ = / " (1— 28, (xa (1) + d(1)))? +u(1)2dT
. . t
The constantk > 0 and € > 0 may be chosen arbitrarily -
small, independent ofy. As (k, &) — 0, (37) approaches st )_(1 - 91x1+§2x22+u
|8(t)|| < 0, which is a violation of (30). ] X = Xt bx
Therefore, if the dither signal(t) is designed to satisfy 61 =061(t), B =06)

the PE condition eq.(29) then the parameter error CONVergeRt 4+ T,) < ViSS(t+Tp)
to zero asymptotically. This implies that N

i OPO(0).85) _ 9P(%(0).65)
t—oo 0)?’3 d)?p

where, in this case, the function

(38) V() =5 (1-2800() +d()))’

and, as a result,

mT_o = lim%p(t) =X,

and

VISS() = = (1-26,(5(.) +d(.))).

NI

. leadi he € obtained.
Hencex, converges tog, —d(t) ast — o, leading to the  rpo parameters used in the simulation were selected
following theorem. , _ask=50, I = I = 250, x1(0) = %1(0) = xx(0) = 2.0,
Theorem 4.1:Suppose the system dynamics (1) SatISfleél(O) — 05 and éz(O) — 0. The dither signal was chosen

Assumptions 1 and 2 and the dither signal satisfies thg be d(t) = 0.1sin3t) exp(—0.1t). The exponential term
persistence of excitation condition (29), then the ESRH( ' A

o 2§npearing in the dither signal ensures that the excitation
(12)-(16) and the parameter estimation scheme (19) and (29)na) d(t) disappears as increases. The prediction and
solves the extremum seeking problem.

control horizons length are chosen to g = 0.2 and
T = 0.12 respectively. A sampling time 00.02 is used

V. SIMULATION EXAMPLES for the simulation experiment.

A. Example 1 Figures 1 and 2 show the states, performance function,
Consider the plant parameter estimates and control input from the simulation.
: 2 From the above discussion, it is clear that the the optimum
X = Oxq+6o+u occurs when the statg; = 0.5 and Figure 1(a) showed
Xo = —Xo+ 60 that the statex; oscillates about this optimum value. Also,
y = p(x,01) =1+x — Gle it is seen that the performance function converges to the

maximum valuel.25 in aboutt = 2.

where 6, and ,62 are 'constant.ar'ld unknovyn parametgrs. The parameter estimates, shown in Figure 2(a) and 2(b),
The control objective is to maximize the objective funCt'Orl:onverge to the true parameter valuesGaf= 6, — 1.0

p(x1,61). The above system can be expressed in the for
(1) by defining f(x) =0, 6y = 61, Oq = 62, Fp(X) = %2,
Fgq(X) = x2 and G(x) = 1. The parametef; is assumed to
lie within the compact sefQg = {64|61 > O} in order to
ensure that the objective function is convex.

This suggests that the proposed control action Figure 2(c)
provides sufficient excitation for the system.

VI. CONCLUSION

Since A method is proposed to solve a class of extremum
2 seeking control problems for nonlinear systems with un-

M =1-26;x; and %12’91) =-26; known parameters. The method is based on a receding
251 0x3 horizon technique that employs a control Lyapunov function
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to ensure stability. An input-to-state stabilizing controller

is used to guarantee stability of the proposed scheme by
requiring the satisfaction of a terminal state constraint ~*
dependent on the Lyapunov function. A parameter update °°
law is implemented on the plant to provide estimates of o
the unknown parameters which are used, at each iteration
step, to update the unknown parameters in the optimization
scheme. It is shown that the proposed scheme is able .
to drive the system states to unknown desired states that -

15

optimize the value of an objective function. os
o
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