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Abstract–A new continuous-time particle swarm
optimization (PSO) algorithm is introduced as op-
posed to the well-known discrete-time PSO. A com-
pact notation for the classical PSO is first introduced,
then the new PSO is presented. The proposed PSO
has two forms, one can be proved to be Lyapunov
stable and the other can be proved to be globally
asymptotically stable. Effect of the parameters of the
new PSO is studied. Pertinent simulation results are
provided to illustrate its major characteristics.

Index Terms–Particle Swarm, Optimization, Sta-
bility

I. Introduction

Deterministic techniques were dominating the opti-
mization field for several decades. Their inability to
find global minima, and their complexity were the mo-
tivation for stochastic and heuristic algorithm. Most of
the heuristic algorithm are based on modeling natural
optimization processes such as simulated annealing,
crystal growth and genetic evolution These algorithms
are based on populations of individuals with a specific
behavior depending on the natural process modeled.
Among the first heuristic algorithms, random search

(RS) is a simple technique based on random test moves
of one of the individuals in the search space [1]. The
individual is actually moved to the new position, if the
cost function in the new position is better. Genetics and
Memetics algorithms are other more recent examples.
As their name imply genetic algorithm (GA) models the
natural genetic evolution. GA is based on exchanging
parts of a string of coded information (gene) between
two individuals (parents). Memetics algorithm models
the exchange of ideas among a group of persons [2].
Recently, the concept of particle swarm optimization

(PSO) is proposed in [3]. It is motivated by the zoologist
models of the movement of individuals among a group
(school of fishes, flock of birds or swarm of insects). It
has been noticed that group members share information
about the best positions found during their search for
food. Hence, the PSOmodel incorporate both individual
and social experience in the search. PSO has been
successfully applied, among other fields, in electrical
power system applications [4] and in electromagnetic
field calculations [5]. The basic PSO can be modified
to include bad memories to be avoided [6]. Parameters
effect on the PSO has been investigated in [7]. From sys-
tems point of view, standard PSO algorithm is discrete
in nature: particle motions are updated every time step.

In this paper a new continuous time model for PSO is
developed. The continuous PSO (CPSO) model is moti-
vated by the fact that natural PSO have continuous mo-
tions (they do not jump). Moreover, from the systems
point of view, discretization has a de-stabilizing effect.
A review of the original PSO algorithm is presented in
section 2 with a new compact notation. The developed
CPSO model is presented in section 3. In section 4,
CPSO is shown to be Lyapunov stable. To ensure
asymptotic stability, a modified CPSO is presented in
section 5, and its global asymptotic stability is proven in
section 6. Section 7 compares the parameters of the PSO
with those of the CPSO. Simulation results presented in
section 8 shows that the developed model has a better
performance than classical discrete PSO.

II. Discrete Swarm Algorithm

As inspired form the natural swarms, the PSO tech-
nique conducts the search for an optimum using a group
(population) of particles which are traveling in the fea-
sible region. The position of each particle (bird) at any
given time represents a candidate solution. Every period
of time, each bird evaluates the cost function at its
current position and compares it with the self-best that
it ’remembers’. Of course, the self-best is the position
at which the cost function had the best value during
the bird’s search. The birds exchange information about
their individual self-bests to determine the best position
they have ever discovered, the global best. The birds
direction of motion includes both social-only and cogni-
tion only components. The social-only component pulls
up the birds towards the global best, while the cognition
only component pulls each bird towards its self-best.
Hence the speed of each bird has three components,
namely, a momentum component trying to keep the
same search direction, a component towards the birds
self-best and a component toward the global swarm
best. The PSO update equations for the ith bird are
hence given by the vectorial equation [7]:

vi(k+1) = αdvi(k) + βd(xlbi − xi(k)) + γd(xgb − xi(k))
(1)

xi(k + 1) = xi(k) + vi(k + 1) (2)

where xi represents the i
th bird position, vi its speed,

xlbi its local best, xgb the swarm global best, αd, βd
and γd are positive non zero reals. As the previous
equation suggest, the basic PSO algorithm is discrete-
time in nature, where each bird has a simple set of
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motion equations. These equations can be rearranged
to describe the whole swarm in a compact manner.
We consider, without loss of generality, the problem

of minimizing a cost function and define the symbols
throughout the remaining of this work: d denotes the
problem dimension, Ω ⊆ Rd represents the feasible
region, n denotes the number of birds, f : Ω → R is
the function to be minimized. In addition, for the sake
of compactness, the following vectors and matrices are
defined as follows:

• X ,
£
x1 ... xn

¤ ∈ (Ω×Rn) the position
matrix

• V ,
£
v1 ... vn

¤ ∈ ¡Rd ×Rn¢ the velocity
matrix

• Xlb ,
£
xlb1 ... xlbn

¤ ∈ (Ω×Rn) the local
best position matrix

• Xgb ∈ Rd the global best position matrix
• F ,

£
f (x1) ... f (xn)

¤
: (Ω×Rn) → Rn

is the stacked objective function raw vector
• T ∈ Rd a row vector composed of ones
• Qi ∈ Rn is a column vector having all elements
equal to zero except the ith element that equals
one.

• In ∈ (Rn ×Rn) is the identity matrix of size n.
Hence the proposed new elegant representation for

the classic discrete time PSO algorithm is:

V (k + 1) = αdV (k) + βd(Xlb(k)−X(k))
+γd(Xgb(k)T −X(k)) (3)

X(k + 1) = X(k) + V (k + 1) (4)

Xlb (k + 1) =
1

2
[X(k + 1) +Xlb (k)]

+
1

2
[X(k + 1)−Xlb (k)] ζ (5)

where: ζ = diag [sgn (F (Xlb (k))− F (X(k + 1)))] (6)
diag[y] is a diagonal matrix with the diagonal elements
given by the elements of the vector y and sgn( ) denotes
the signum function, defined as:

sgn(y) =

½
1 y ≥ 0
−1 y < 0

(7)

III. Continuous Swarm Algorithm

Although discrete time swarm model was successfully
applied into several applications, natural swarm are
continuous in nature, i.e., they are not jumping at fixed
time intervals, their motion is actually smooth. This fact
proposes that the development of the continuous time
swarm model may boost the PSO performance. Another
important motivation is the fact that the discretizing
phenomena has a de-stabilizing effect which may affect
the learning procedure.
To develop a complete continuous model, equations

(3) and (4) must be replaced by their continuous equiv-
alent. Using the same notations as in discrete model, we
can describe the motion equations as:

·
V= −αV + β(Xlb −X) + γ(XgbT −X) (8)

·
X= V (9)

where the dimensions of X, V , Xlb, Xgb, and T are
as defined above; and the time notation is dropped for
brevity; α, β and γ are positive non zero reals.

However, it should be noted that X and V are not
the only system states, Xlb is also a state since it has a
’memory’. For example, the ith column in Xlb, which
represents the best position the ith bird encountered
during its previous path, remains unchanged as long
as the bird does not find a better position, but once a
better position is encountered, its location replaces the
previous value of the ith column in Xlb. From the state
model point of view, the matrixXlb should be dealt with
as additional states. The time derivative of these states
will be zero as long as the local best position does not
change and impulsive once a new best position is found
to change the ’state’ value in no time.

Although the implementation of such zero/impulsive
derivative state is possible using standard software
package, their stability analysis is not straight forward.
Hence, assuming a to be a positive constant, it is
proposed to approximate the evolution of xlbi for a
minimization:

·
xlbi= a (xi − xlbi) + a (xi − xlbi) [sgn (f (xlbi)− f (xi))]

(10)
This equation can be represented in matrix form as:

·
X lb= a (X −Xlb) [In + diag [sgn (F (Xlb)− F (X))]]

(11)

Remark 1: To better understand equation (11), let us
consider equation (10) for the following cases:

• If f (xlbi)−f (xi) ≥ 0, then sign(f (xlbi)− f (xi)) =
1 and

·
xlbi= 2a (xi − xlbi), which means that if the

value of the objective function evaluated at the
current point is less than its value at the local best,
then the local best is attracted to the current point.

• If f (xlbi)−f (xi) < 0, then sign(f (xlbi)− f (xi)) =
−1 and ·

xlbi= 0, which means that if the value of
the objective function evaluated at the local best
is less than its value at the current point, then the
local best remains unchanged.

Remark 2: Based on the equation above, it is worth
pointing out that the Xlb is not necessarily the local
best, but rather an approximation because no impulsive
derivative is used in this continuous-time algorithm

Finally, it remains to characterize the global best Xgb,
which can be defined as:

Xgb = XlbQj with j = arg

½
inf

0<i≤n
(f (xlbi))

¾
(12)

From the system point of view, Xgb can be considered a
setpoint since its only effect is to change the equilibrium
point of the dynamical system defined by the swarm.

Definition 3: Using the previously defined notations,
the continuous swarm is described by the following
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dynamical system Σ:

·
X= V
·
V= −αV + β(Xlb −X) + γ(XgbT −X)
·
Xlb= a (X −Xlb) [In + diag [sgn (F (Xlb)− F (X))]]
Xgb = XlbQj where j = arg

½
inf

0<i≤n
(f (xlbi))

¾
(13)

Remark 4: Notice that the notation used above is
not the standard state space notation since the state
variable X, V and Xlb are not vectors but rather
matrices of the adequate dimension previously defined.
This choice is obviously motivated by the simplicity and
compactness it provides without loss of clarity.

IV. Stability Analysis of the Continuous
Swarm

The continuous swarm Σ can be considered as a
dynamical system whose stability can be investigated
using standard Lyapunov stability tools. The determi-
nation of the equilibria of the system needs further anal-
ysis. The equilibria must verify the following equations:

V = 0 (14)

β(Xlb −X) + γ(XgbT −X) = 0 (15)

a (X −Xlb) [In + diag [sign (F (Xlb)− F (X))]] = 0
(16)

A close look at equation (16) shows that it can be
verified for the following two cases:

1) X = Xlb, which implies by equation (15) thatX =
Xlb = XgbT

2) ∃ a subset Γ ⊆ {1, 2, ..., n} such that ∀i ∈
Γ, xi 6= xlbi and f (xlbi) − f (xi) < 0; and ∀j ∈
[{1, 2, ..., n}− Γ] we have xj = xlbj . In this case,
we necessarily have ∀i ∈ Γ the following equation
satisfied:

β(xlbi − xi) = −γ(Xgb − xi) (17)

which can be interpreted as follows: the pulls of
the local and global bests are vectorially opposite
in sign for some of the birds while their speed was
zero.

This phenomenon is particular to the continuous
swarm and does not have a counterpart in the discrete-
time swarm. Of course, the interesting equilibrium point
is the first equilibrium where all the birds are located
at the global best. Let us consider the stability of this
equilibrium point. We will see in the next section, how
the continuous swarm algorithm can be modified in
order to make the equilibrium point unique.
We define the following error vectors:

X̃ = X −XgbT (18)

X̃lb = Xlb −XgbT (19)

Assuming that the global best remains constant or
changes very slowly, the continuous-time swarm equa-
tions can be expressed as:
.

X̃= V
·
V= −αV + β(X̃lb − X̃)− γX̃
·
X̃ lb= a

³
X̃ − X̃lb

´
[In + diag [sgn (F (Xlb)− F (X))]]

(20)
Consider the following candidate Lyapunov function:

W =
1

2
tr

∙
γX̃T X̃ + V TV + β

³
X̃ − X̃lb

´T ³
X̃ − X̃lb

´¸
(21)

where tr(·) is the trace of (·). The derivative of W along
the solution of the continuous swarm is given by:

Ẇ = tr

∙
γX̃T

.

X̃ +V T V̇ + β
³
X̃ − X̃lb

´T µ .

X̃ −
.

X̃ lb

¶¸
= tr

h
γX̃TV − αV TV + βV T (X̃lb − X̃)− γV T X̃

+β
³
X̃ − X̃lb

´T
V

−aβ
³
X̃ − X̃lb

´T ³
X̃ − X̃lb

´
ϕ

¸
= tr

∙
−αV TV − aβ

³
X̃ − X̃lb

´T ³
X̃ − X̃lb

´
ϕ

¸
(22)

where ϕ = In+ diag[sgn (F (Xlb)− F (X))] . It can be
seen immediately that all elements of the n×n matrix ϕ
can take only two values 0 or 2, which directly implies
that the derivative Ẇ is negative semi-definite, which
implies that the considered equilibrium point is stable
in the sense of Lyapunov.
This result even though ensures that the swarm

does not ’blow up’, does not guarantee that the birds
converge to the global best or even to their individual
local bests. Even a trial to apply invariance theorem
will never prove asymptotic stability of the equilibrium
point due to similar arguments investigated in the deter-
mination of the equilibria of the swarm. A modification
should be made to the proposed continuous-time swarm
algorithm to guarantee:

• Uniqueness of the global best equilibrium point
• Global asymptotic stability of this equilibrium.

V. Modified Continuous-Time Swarm
Algorithm

Up till this section, the continuous swarm algorithm
is quite inspired by the classical discrete-time swarm
algorithm, however, as we have seen in the previous
section, no asymptotic stability of the global best equi-
librium point can be guaranteed. This basically due to
the possibility of the occurrence that for one or more
of the birds, the pulls of the local and global bests
are equal and opposite in direction while the birds do
not have any momentum. Even though this case will
rarely occur practically, there is always a mathematical
possibility of its occurrence. We propose in this section
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the addition of small damping terms which will cancel
out this possibility. The modified continuous swarm
algorithm Σm is thus defined as:

·
X= V + δ (XgbT −X)
·
V= −αV + β(Xlb −X) + γ(XgbT −X)
·
Xlb= a (X −Xlb) [In + diag [sgn (F (Xlb)− F (X))]]

+ε (XgbT −Xlb)
Xgb = XlbQj where j = arg

½
inf

0<i≤n
(f (xlbi))

¾
(23)

where δ and ε are small positive real constants. The
addition of these damping terms will have the effect of
attracting both the bird position and their individual
bests to the global best. It is worth pointing out that
this limits the mobility of the birds, i.e. their ability
to eventually discover new local bests and thus up-
dating the global best. However, this negative effect is
minimized by choosing δ and ε are chosen very small.
Simulations results provided in the subsequent sections
show how their effects are negligeable.

VI. Modified CPSO Stability Analysis

As we have proceeded in the continuous-time swarm,
let us first verify that the modification introduced makes
the global best the unique equilibrium point. The equi-
libria must verify the following equations:

V + δ (XgbT −X) = 0 (24)

−αV + β(Xlb −X) + γ(XgbT −X) = 0 (25)

a (X −Xlb)ϕ+ ε (XgbT −Xlb) = 0 (26)

Obviously V = 0, X = Xlb = XgbT is an equilibrium
point, but is it the unique equilibrium point? A close
investigation is necessary to verify this fact. From equa-
tions (24) and (25), we obtain that:

(αδ + γ) (XgbT −X)− β(X −Xlb) = 0 (27)

Equation (26) can be rearranged after adding and sub-
stracting εX as follows:

ε (XgbT −X) + (a+ ε) (X −Xlb)ϕ = 0 (28)

For each column of the matrices used in equations (27)
and (28), two cases can happen according to the value
of ϕ. The matrix defining the linear system of equation
is given by :

A =

∙
αδ + γ −β
ε λ (a+ ε)

¸
(29)

where λ = 0 or 2. Its determinant is given by:

|A| = λ (αδ + γ) (a+ ε) + βε (30)

which is always positive non-zero for all possible values
of λ. This implies that the only solution to the linear
equations defined by (27) and (28) is X = Xlb = XgbT.
Thus, the unique equilibrium point of the modified
continuous-time swarm is the global best.

To study the stability of this unique equilibrium
point, we express its dynamical equations in the alter-
nate coordinate frame used by (20):
.

X̃= V − δX̃
·
V= −αV + β(X̃lb − X̃)− γX̃
·
X̃ lb= a

³
X̃ − X̃lb

´
[In + diag [sgn (F (Xlb)− F (X))]]

−εX̃lb
(31)

and consider the same candidate Lyapunov function
proposed in equation (21), whose derivative along the
solution of Σm is given by:

Ẇ = tr

∙
−αV TV − aβ

³
X̃ − X̃lb

´T ³
X̃ − X̃lb

´
ϕ

−δX̃T X̃ − εX̃T
lbX̃lb

i
(32)

Because W is globally positive definite and radially
unbounded and Ẇ is globally negative definite, global
asymptotic stability of the global best is implied.

VII. PSO and CPSO Parameters

In order to be able to compare the behavior of the
discrete time and continuous time , a method to relate
the parameters in each case has to be presented. The
analysis of the behavior of the discrete-time swarm has
been investigated in [7]. However, it is possible to get
the same results of [7] from the systems point of view, in
a much simpler way. We first begin by identifying the
conditions that the parameters of the discrete swarm
have to fulfill in order to guarantee stability and then
provide a method to map the discrete time parameters
to those of the continuous time swarm.

A. Discrete Time Swarm Parameters

As it can be seen from equation (3), (4) and (5),
the adjustable parameters for the discrete swarm are
αd, βd and γd. αd is the momentum term,while βd
and γd are the magnitude of the attractions to the
local and global bests, respectively. For the sake of
clarity of the argumentation, let us limit ourselves to
a swarm consisting of only one bird traveling in a single
dimensional space. Very similar arguments can be used
in the general case. Notice that, in this case, the global
best is irrelevant (it always coincides with the local
best). Assuming for the purpose of this analysis that
xlb is constant, the equations of motion of the bird are
given in a state-space form by:

v(k + 1) = αdv(k)− βd (x(k)− xlb) (33)

(x(k + 1)− xlb) = αdv(k) + (1− βd) (x(k + 1)− xlb)
(34)

The stability of this system depends on the roots of the
characteristic equation:

λ2 − (αd − βd + 1)λ+ αd = 0 (35)
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For the system to be stable, the solutions of (35) must
be inside the unit circle. These roots are:

λ1d,2d =
(αd−βd+1)±

√
∆

2 (36)

where
∆ = (αd − βd + 1)

2 − 4αd (37)

However, to increase the bird’s mobility in order for it
to cover as much of the space as possible before con-
verging to the local best, the roots should be imaginary
and the closest possible to the unit circle. Hence, the
determinant ∆ of (35) should be negative, i.e.: ∆ < 0
and αd < 1. An easy way to achieve this requirement is
to choose αd and βd satisfying

βd = αd + 1 (38)

In this case the eigenvalues λ1d and λ2d of the discrete-
time swarm are ±j√αd. Hence, it remains to choose αd
such that

√
αd is nearly unity.

B. Continuous Time Swarm Parameters

Before trying to map the parameters of the discrete
and continuous time swarms, we, similarly to the pre-
vious subsection, consider the evolution of a single bird
of the continuous time swarm in a single dimensional
space. Its equations of motion, under the assumption
that xlb is constant, are given by:

·
v= −αv − β(x− xlb)
d

dt
(x− xlb) = v

(39)

The dynamics of the system are governed by the roots
of the characteristic equation:

λ2 + αλ+ β = 0 (40)

which immediately implies that the eigenvalues λ1c and
λ2c of the continuous-time swarm are:

λ1c,2c =
−α±
√
α2−4β
2 (41)

Using the root mapping technique from the Z-plane
to the S-plane (Z = esT ), where T is the sampling time,
the roots of (35) can be mapped by:

λc =
1
T (ln kλdk+ j]λd) (42)

where kyk and ]y are the norm and angle of y, respec-
tively. Noticing that the product λ1dλ2d is the constant
term in (35), or in other words kλ1dk = kλ2dk = √αd
and hence:

λ1c + λ2c = −α = 2
T ln kλdk = 2

T ln
√
αd =

1
T lnαd

(43)
Hence, to obtain the same dynamic response α and αd
have to be related by:

α = − 1
T lnαd (44)

On the other hand, β can be calculated as follows:

β = λ1cλ2c =
¡
1
T ln kλdk

¢2
+
¡
1
T ]λd

¢2
= α2 +

³
1
T tan

−1
³ √−∆
αd−βd+1

´´2
(45)

If the choice proposed at the end of the last section is
made, the selection of β becomes much easier and is
given by:

β = α2 +
¡
π
2T

¢2
(46)

Remark 5: It remains to determine the value of T , the
sampling time. However, even though T does not have
any physical meaning in the problem, it affects how close
the discrete time and continuous time dynamics relate.
Simulations results given in the next section show that,
as it can be easily expected, the smaller T , the more
damping there is in the continuous time dynamics with
respect to the discrete and vice-versa.

VIII. Simulation Results

In this section, a relatively simple quadratic optimiza-
tion problem is selected to emphasize the properties
of the continuous swarm model as well as to compare
its performance with discrete PSO. The selected cost
function is given by:

f(y1, y2, y3) = (Y − σ)
T
(Y − σ) (47)

where σ=[π 2 5]T . For this problem, the dimension of
the problem is d = 3. The global minimum is clearly σ.

A. Comparison Between Continuous and Discrete PSO

To compare the response of continuous and discrete
PSO, one bird swarm is selected in both cases, i.e. n = 1.
The bird is initialized as follows: X[0] = [ 2 4 6 ]T ,
V [0] = [ −1 1 −1 ]T . The discrete swarm parame-
ters are set to αd = 0.9, and βd = 1.9 from (38). The
corresponding parameters for the continuous swarm are
set according to (44) and (46), to α = 0.1054, β = 2.47
at T = 1, for comparison purposes simulations are also
carried out for α = 0.0527, β = 0.618 at T = 2. The
parameter a is set to 3.0 so that the dynamics of Xlb
is fast compared to X .Since there is only one bird, the
global and local bests are identical and there is no point
in adding the global best term, i.e. both γd and γ are set
to zero. Figure (1) shows the evolution of the first spatial
component in the discrete, continuous with T = 1, and
continuous with T = 2 cases. Figure (2) depicts the
evolution of the value of the objective function at the
best obtained local best for the cases defined above. A
close look at the figures shows that:

• The transient performance of the position for the
PSO and the CPSO are similar except for dis-
cretization effects. Moreover, the value of T affects
the similarity between the PSOs, as expected.

• The CPSO finds the best faster than the PSO. This
can be explained by the fact that the CPSO moves
along all the points in the trajectory, as opposed to
the PSO which computes the objective function at
discrete points along the trajectory.

• This single bird swarm did not locate the global
minimum of this three dimensional problem for
both PSO and CPSO (see remark below).
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Remark 6: Referring to figure (1), the bird converges
to x1 = 2.71 instead of π (the minimum). This result
can be explained as follows. The motion of the bird in
the discrete model from k = 0 to k = 1 is given by
it initial speed at k = 1 , either X(0) or X(1) will be
considered as local best depending on the cost function.
The speed equation is

v(2) = αdv(1) + 2 ∗ βd(xlb(1)− x(1)) (48)

The second term in the RHS is either zero or is equal
to −v(1), hence the two terms in the RHS are linearly
dependent, and the new speed vector is just a scaled
version of the previous speed. Using mathematical in-
duction, it is easy to prove that this statement is valid
for all k. Hence, the bird keeps moving rectilinearly and
its locus is:

x(k) = x(0) + ρv(0) (49)

where ρ is some proportionality constant. The same
discussion can be extended to continuous swarm model.
The best cost achievable along the bird trajectory line
can be found by substituting (49) into the cost function
given by (47), which gives:

f(.) = (X(0) + ρV (0)− σ)
T
(X(0) + ρV (0)− σ) (50)

differentiating w.r.t. ρ, and equating to zero we get:

ρ = V (0)T (X(0)−σ)
V (0)TV (0) = −0.7139 (51)

Substituting this value into eq(49), the best achievable
position is given by X = [ 2.71 3.29 6.71 ]T . This
matches the steady state value of the bird trajectory.

B. Continuous PSO Performance

To evaluate the performance of a multi bird swarm,
the cost function f(.) of eq(47) is used. A swarm of 20
birds is formed with random initial positions and speeds
uniformly distributed in

£
0 10

¤
and

£ −3 3
¤
. The

swarm parameters are α = 0.1054, β = 2.47 and
a = 3. Simulation results, given in figure(3), show
that the swarm settles to X = [ 3.141 2 5 ]T , which
shows that the CPSO finds the global minimum point.
The information exchange between birds enables them
to modify their trajectories not to be trapped to the
simple line trajectory as in the single bird case. Figure
(4) shows the Lyapunov function W of the swarm for
the first five seconds of simulations along with the
binary value that represents the occurrence of a change
in Xgb.The Lyapunov function is generally decreasing,
however it has some spikes, when Xgb is changed.
The Lyapunov analysis presented in this paper assumes
that there is no change in Xgb. If such change occurs,

the negative definiteness of
·
W does not hold at this

point. However, as soon as Xgb stop changing, it starts
attracting the birds in a stable manner. Notice also that
the Lyapunov function does not correspond to the best
cost function, an increase in the Lyapunov function is
always associated with a decrease in cost function.
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Figure (5) shows the first component of the positions
for a poorly tuned a parameter (a = 0.2 keeping α
and β as previously used) versus the properly tuned
at a = 3. The swarm converges to 4.6 instead of 5. Xlb
does not move fast enough to capture the true local
best before the birds move away from it: The swarm
may be attracted to a deviated point even if the swarm
trajectories passes through the global minimum.
Finally, the performance of the CPSO and the modi-

fied CPSO are compared. For figures clarity, the number
of birds is decreased to n = 5. Other parameters are
α = 0.1054, β = 2.47 and a = 3. In addition to the
CPSO where ε = δ = 0, figure (6) depicts the response
of the third dimension trajectories for ε = δ = 0.01 and
ε = δ = 1. The CPSO and the modified CPSO with
the first selection (ε and δ small) have similar responses.
However, the modified CPSO with the second set (ε and
δ relatively large) of parameters is attracted too soon to
an incorrect value, before the birds have the chance to
’discover’ the true global minimum.

IX. Conclusion

In this paper, a new continuous time PSO has been
developed with two slightly different forms. The first
form is quite close to the classical discrete time PSO.
Stabilty study of this model shows that only Lya-
punov stability can be guaranteed. The second form
incorporates extra stabilzing terms that ensures global
asymptotic stability of the CPSO but which can reduce
the birds mobility and thus their ability to find the
optimum. Detailed discussions of the parameter effects
on both forms are provided and are compared with the
classical PSO. Simulation results illustrate the perfor-
mance of the proposed CPSO. CPSO is expected to give
better solutions than classical PSO. Current research
aims at comparing the response of both PSO techniques
when applied to difficult optimization problems.
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