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Common Stabilizers for Linear Control Systems in the Presence
of Actuators Outage

Yew-Wen Liang and Der-Cherng Liaw

Abstract— This paper presents common stabilizers for linear may be found in [8]. Our approach is to seek a common
control systems when actuators happen to fail. The possible gquadratic-type Lyapunov function whose time derivative
outage of actuators examined in this study are not confined to a is negative for all the directions in which the controls

pre-specified set. By finding common quadratic-type Lyapunov - - o
functions, we obtain sufficient conditions for the existence of have_ .no chtrlbgtlon. A sufficient Condl'_tlon for commqn
common stabilizers. For cases where all the possible failed Stabilizers is derived and the method of its implementation

actuators belonged to a pre-specified set, the results presented is demonstrated.
in this paper agree with those obtained by Veillette in 1995.  The goal of this paper is then to propose and implement a
The control gain of common stabilizer for non-nested case is checking condition for the existence of common stabilizers
expllc[tly denvc_eq to guarantee system stability. A sm_pllfled_ f trol ¢ ; ing th ¢ f actuat
checking condition for the existence of common stabilizers is or a_ contro §ys em experlenCIng € outage of ac ualc')rs.
also obtained for the extreme case when only single actuator The idea behind the study is to present a common stabilizer
can normally operate. that can tolerate the outage of certain actuators without
switching the control law, since switching the control law
|. INTRODUCTION could require more control elements to sense the outage of

Recently, the study of reliable controls that can tolerat@ctuators. Otherwise, the reliability of additional sensor el-
the failure of actuators or sensors in control systems h&nents would have to be considered. Potential applications
attracted much attention (see e.g., [1],[3]-[4],[6]-[7],[9]-Of such a stabilizer include space missions or any highly
[11]). However, most existing results for reliable controldangerous area where actuators of equipment fail. This issue
design are limited to systems with failure of actuatords important because retrieving satellites is expensive and
within a pre-specified subset. Among these studies, VeillettBstability of equipment in highly dangerous areas might
[7] also inspected, in his example, whether the designg@sult in disaster.
controllers could tolerate the outage of actuators outside the There are two main differences between the paper and
pre-specified subset. In [3], although Medanic investigateliose of [7]. First, the paper proposes a unified approach to
the possible outage of actuators outside a pre-specifil§termine the existence of common stabilizers regardless
subset, it was restricted to single actuator outage. Zh&$ Whether the outage of actuators are confined within a
and Jiang [11] synthesized a reliable controller for dynamiBre-specified set, while those of [7] didnot. Moreover, it
systems with redundant actuators. Though their approaéh also shown that the obtained results for the existence
doesnot involve the construction of Lyapunov functionOf common stabilizers agree with those of [7] when the

the controlled systeni: = Az + Bu is required to have outage of actuators are confined within a pre-specified set.
actuator redundancy WlthA, b1) is a controllable pair for Second, once the common stabilizer is determined to exist

eachi, with B = (by,---,b,) € R" P. Moreover, a by the checking condition proposed in this paper, the control

pre-compensator proposed to transform the non_uniforﬂfﬁlin of the common stabilizers can be determined from the
redundancy property into uniform property m|ght increasgouth'HUrWitZ criteria to fulfill the taSk, while the choice
system order and reconfigure system structure. In this pap€f,control gain in [7] was fixed to one. An example is also
the authors will extend the reliable stabilization of [7] todiven to demonstrate the importance of the selection of such
systems where the outage of actuators might be outsi@econtrol gain.

a pre-specified subset and the number of failed actuatorsThis paper is organized as follows. Section 2 introduces
is not restricted to one. Moreover, the control system i#1€ problem. An example in which all the faulty systems
not assumed to possess the Contro”abi”ty property requir&!e Completely controllable does not guarantee the existence
in [11]. To tackle the reliable design problem, one mighef common stabilizers is also given. It is followed by the
consider the existence of either common or noncommd.#ﬁrivation of the existence of common stabilizers. The pro-
Lyapunov functions with regard to faulty systems. In thisedure for implementing such conditions and determining
paper, the authors will consider the existence of commadifie control gain that guarantees the stability of the faulty
Lyapunov functions, while an examp|e of seeking noncorrﬁystems is also prOpOSGd. Section 4 presents an illustrative

mon Lyapunov functions for stabilizing switched system&xample to demonstrate the application of the results. The
existence of common stabilizer for the admissible faulty

The authors are with the Department of Electrical and Controgystems of the given example is shown not to be obtained
Engineering, National Chiao Tung University, Hsinchu 300, Taiwan

Republic of China ywliang@cc.nctu.edu.tw and dali- by Veillette’s design [7]. Finally, Section 5 gives concluding
aw@cc.nctu.edu.tw remarks.
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II. SET OF THE PROBLEM ko1 > 1 and koy < —4. By direct calculation, for system

Consider a linear control system pair (4, B) one finds:

. det(A + BK) = 2]4511(]{}22 + 1) + 2k21(1 - le) - k12
i = Az + Bu, (ks +2). ©6)
wherez € R”, u € R™, A € R and B € R*™™.  According to the stability conditions for system pairs
Define the set of control matrices (A, By) and (A, B,) discussed above, all the terms in the
_ . axm r . . right hand side of (6) are negative. It then follows that
B = {BieR | B; is obtained fromB. by replacing det(A+ BK) < 0. This contradicta: = K« as a stabilizer
some columns or no column d@ with zero co-  for (A4, B). Thus, the three given pairs of control systems
lumn vector and 4, B;) is stabilizablé. (2) do not possess a common stabilizer.
That is, for eachB; € B, B; denotes the control matrix 1. MAIN RESULTS

resulting fromB experiencing the outage of some actuators. In this section, we will employ the Lyapunov approach to
Note that the seBB contains a finite number of matrices. derive a condition for the existence of common stabilizers
Recall that the goal of this paper is to determine thas given by Theorem 1 below. Then, we will demonstrate
existence conditions of common stabilizers for all systerthe implementation of the existence condition. Details are
pairs(A, B;) with B; € B. Note that the outage of actuatorsgiven as below:
ggPsidered here is not confined to be within a pre—specifie’g‘ Existence Condition for Common Stabilizers
From linear system theory, it is known that a linear SUPPOSe the class of 'syster(\Afi)n, B; € B, pos-
system pair(4, B) is stabilizable if the unstable subspace>€SSes @ common stabilizéf € IR andTA + BiK
of A is contained in the controllability space of, B) (see sr;ares a common Lyapunov functidf(z) = z* Pz. Then
e.g., [4]). Using this observation, one might predict that thé £ (4 + BiK)x < 0 for all nonzeroz and for alli. This
class of systemgA, B;) with B; € B and B as defined in '€ads to the following result. _
(2) possess a common stabilizer if the intersection of the Theorem 1:Consider the class of linear control systems
controllability space of all the system paitd, B;) contains (‘& Bi), whereB; € B and 5 is defined as in (2). If there
the unstable subspace 4f Unfortunately, such a prediction €XIStS @ symmetric positive definite matdx> 0 such that

is, Igenerally not true. An example is given in Example 1  ,TpA, <0 forall z € Ug,esN (BT P)\ {0}, (7)
elow.
Example 1:Consider system (1) with then the clasls. of system@&A, B;), B; € B, possess a
common stabilizer. HereN(-) denotes the null space of
= ( 10 ) and B — ( 1 1 ) 3) a matrix. Moreover, a common stabilizer can be chosen in
0 2 -1 1/ the formu = —a - BT Pz with « satisfying Condition (9)
below.
Let Proof: By the application of optimal control design, we
1 0 0 1 choose a common stabilizer candidate in the form:ef
By = ( -1 0 ) and B, = ( 0 1 ) : (4)  _4.BTPx to meet Condition (7). It is observed that, from

the special structure aB;, B;B” = B; B} for all B; € B.
It is easy to check that all the system paitd, B) and  The time derivative ol (z) = 27 Px along the trajectories
(A, B;) for i = 1,2 are completely controllable. Thus, ac-of the systemi = Az + B;u with u = —a - BT Pz has the
cording to the definition in (2), we hau8 = {B, B1, B2}.  form
Suppose that these three system pairs possess a common

stabilizeru = Kz, where V=2 (a" PAz — a- 2" PB;B] Px). (8)
ki kio In the following, we will show the existence of such that
K= < kgt Fon ) : () VvV <oforallz# 0 and for all B; € B. This will then

imply the existence of common stabilizers.

That is, all the matricesd + BK and A + B;K for i = If zTPAx < 0 for all x # 0, then A must be a
1,2 are Hurwitz. Then, from the Routh-Hurwitz stability Hurwitz matrix [4] and V < 0 for all z # 0 and
criteria, to provide for the stability of system pdid, B;) for all B, € B no matter whata > 0 is chosen.
one needs to have(td + B1K) = k11 — k1o +3 <0 and On the other hand, it PAx > 0 for somez # 0,
detfA+ B1K) = 2ky; — k12 +2 > 0, where tf-) and det:) then the setS := {z|zTPAz > 0,|z|| = 1} is a
denote the trace and determinant of a matrix. This resultonempty compact set. Thus, Condition (7) implies that
in ki3 > 1 andky, > 4. Similarly, for system paiA, B,) zTPB; # 0 for all x € S. As such, for allB; € B,
one needs to have(td + BoK) = koy + koo +3 <0 and  ; := minj, =1 .7 pag>o |27 PBi|| > 0. Since B only
def{ A + BoK) = 2koy + koo + 2 > 0. This means that contains a finite number of matrices, it follows that=
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min; y; > 0. From the definition ofy, all the nonzero of B; for 1 < j < s. We can check that Condition (7) of
points = satisfying 27 PAz > 0 have the property that Theorem 1 is equivalent to the following condition:

TppI|l = ||= 1 - >~ )
o PBl| = ||y PBil| -llall = 7 -llall forall B € B rp 4 g for all e Us_, N(B;TP) {0}, (10)

Choose the control gaia satisfying
In addition, it is not difficult to check that Condition (11)

T
a > HLQP” > 0. (9) above is equivalent to Condition (12) below by letting=
v Wy andW = P~
It then follows from (8) that, ifx is a nonzero point with yTAWy < 0 for all y € U;j:lN(B;T)\ {0}. (12)

2T PAz > 0, then
AT P| Thus, the checking operation for the existence ofPa

V o< 2-(aTPAz — —L|zTPB||?) satisfying Condition (7) can be simplified to proceed for

72 those worst cases associated with each nested set only.
T 3 |ATP|| 5., | To obtain a matrixP which meets Condition (11), we
< 2 (v PAx ol [z][*) <0 can choose a matrix among all the worst caBgs. - -, B*,

say Bj, having minimum rank. Let the rank aBf bel.
for all B, € B. The conclusion of the theorem is henceThét is vVing minimu 1

provided.

Remark 1: Though the control gaimv of the common rank( By ) = 11<nh<1 rank(B;) = L. (13)
stabilizers can be determined from Eq. (9), it is not easy =I=e
to compute directly from there. However, the control gairPefore proceeding the derivation of checking condition to
o may be determined by employing Routh-Hurwitz criterigProvide relation (11) or (12), we present the next lemma.

(see e.g., [4]. Lemma 1:SupposeL € R"*" is a symmetric matrix,
M € R™™ and rankM) = [. Theny?'Ly < 0 for all
B. Existence of a Matrix’ Satisfying Condition (7) y € N(M™)\ {0} if and only if (M*+)" LM~ is a negative

Accordi Th 1 if find _ definite matrix, whereM* is an x (n — [) matrix whose
p_cor(;nfg to Theorem h,' Ih one ?an Cm d"’_‘ SYMMeNiCs1umns form an orthonormal basis for(MT).
positive definite matrix” which satisfies Condition (7), a 5 of Note that,(M-)T LM is a negative definite ma-

common stabilizer for the class of systefus B;), B; € B, trix if and only if vZ (M-)T LM~ < 0 for every nonzero

candt_h_en b? dert]ermlr_led. In th'fs sutr)]sectlonhgf(viwnlhqlenvg € R™~'. Moreover, the latter condition is equivalent to
conditions for the existence of such a mat or this t T Lu < 0 for everyu — Mtv € N(MT)\ {0}. The

purpose, we define the terminology of nested subséi. of conclusion of the lemma is hence implied. =

. A supset .Bl ~ {Bl""’B’?} _Of B as defined Now, let L = AW + WAT with W = P!, The next
in (2) is said to be nested if it has the propgrty:resun follows readily from Eq. (10) and Lemma 1.

RangéB;) CRangeéB;) C --- CRangéDby). Under this  rhegrem 2:Consider the class of systerts, B;), B;
condition, we say thaf3; corresponds to the worst case, SupposeB; satisfies the relation (13) add= W' > 0

(i.e., minimum numbe_r of actuators under operation) for agg the solution of Eq. (10). Thet® is a matrix satisfying

system pairg 4, B;) with B; € Bi. Condition (11) or (12) if and only if for each =1, - - -, s,
First, consider the case in which the outage of actuators BT (AW + WAT)B:* is a negative definite matrix.

confined within a pre-specified set as considered by [8,9 ejre B*L denotes a Jmatrix whose columns form an

That is, setB is nested. The existence of /& satisfying ortho'norjmal basis foiv(B:7)

Condition (7) can be guaranteed by solving the algebraiC J

. . . ; . For the case of which rafiB;) = 1 and rankB?) = 1
Riccati equation (ARE) associated with the worst case %r some;j # 1, the checkingr;ﬁ cé?wdition (12) coKrre]s)ponding
B, say Bf, as given below: '

to B} as given in (14) below
T * # T —
AP+ PA-PBIB P+H=0 (10) yT AWy < 0 for all y € N(B;7) (14)

for any given # > 0. Indeed, under this case,can be simplified by verifying the positivity of a scalar
Up,esN(B]'P) = N(Bj P) and, from (10),2:" PAz = instead of checking negative definiteness of the- 1) x
—aTHz < 0 for all = € N(Bf P)\{0}. This verifies (n — 1) matrix (B:*)T(AW + WAT)B:* as given in
the existence of that satisfies Condition (7) and thus theTheorem 2 above. Details are discussed as follows.
existence of common stabilizers is guaranteed by TheoremSupposeA is not a Hurwitz matrix. From Eq. (10) and
1. Note that the derived result agrees with that obtained By = P~! that AW + W AT has exactly one unstable
Veillette et. al. [8,9]. eigenvalue. The unstable eigenvalue may be zero or a
Next, consider the case in which the outage of actuatopositive real number. If the unstable eigenvalue is zero, then
are not confined within a pre-specified set. Motivated by AWy < 0 for all y & Ey = {z|(AW + WAT)z = 0}.
the previous case, we dividg as given by (2), into several Here, E, denotes the eigenspace 4t/ + W AT associated
nested subsets, sd,---,Bs. Denote B; the worst case with the zero eigenvalue. Thus, Condition (14) hold if and
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only if Ey ¢ N(B;™) = R(B;)*. On the other hand, ifthe  Example 2: Consider system (1) with
unstable eigenvalue is a positive real number, an equivalent

L . . . 1 3 -2 1 0.1
condition can be constructed. Details are summarized in theA oo o andB=| 10 001 |. (16)
next corollary. 01 -1 10 0.01

Corollary 1: Suppose rankB3y) = 1, rank B;) = 1 for
somej # 1 andP = W~! > 0 denotes the solution of Eq. Let B1 and B be derived from3 which correspond to the

(10). Letb be a nonzero column dB;. Then the following failure of the second and first actuators, respectively. That

two statements hold: IS,

(i) If AW + WAT possesses a zero eigenvalue, then 1 0 0 0.1
Condition (14) holds if and only ifE, ¢ R(B;)*. That Bi=| 10 0 | andBy=1| 0 001 |. (17)
is, bTv # 0 for v € Ep\ {0}. 10 0 0 0.01

(i) If AW + WAT has a positive eigenvalue, then

Condition (14) holds if and only if It is easy to check that bott4, B;) and (A, Bs) are stabi-

lizable. This leads t#8 = { B, By, B}, which is not nested.
bT (AW + W AT)"1b > 0. (15) Clearly, B contains two nested subsefs = {B;, B} and

Proof: Statement (i) has been discussed in the precedi@ :re{g 2*’B %Tgi;vj\g)*wor;t Cf‘;sepse?:fiigsated withand

aragraph of Corollary 1. The proof of (ii) is given in ™2 1= =1 2 = 2% :

haragrab Y P (i) is given | According to Veillette’s method [9], the first thing to do

Appendix. .
To summarize the extended reliable design discussésdto solve the ARE

above, a procedure for the construction of common stabiA” M; + M; A — M;B;R"'B' M; + Q =0, Q >0 (18)
lizers for system (1) can be listed as follows.

Procedure for finding common stabilizers:

Step 1:Divide all the stabilizable system pairs into
different nested subsetds,,---,B,, and pick up one of
the worst cases, sa; € B;, among those subsets.

for i = 1. Then, verify if the matrixd — BoR~'BT M, is
stable. If it is not, redo this process for= 2 and check

if the matrix A — B;R~'BT M, is stable. Unfortunately,
the method proposed by Veillette does not work in this

) . . . example for bothR and ) being the identity matrix.
Step 2: Attempt a reliable control design using thelndeed, fori = 1, the eigenvalues off — By R~1BT M,

method of .C'ted reference [9]. That is, givefi > 0 are {0.954,0.005,—1}; and fori = 2, the eigenvalues

solve for P in Eq. (10) and check whether all the matrices 1 LT "

B BTP B e B foralli £ 1 are Hurwitz. it fails 01 — Bifi 'BYMo are {~1,0.438,-3.080 x 10'}.
—B;B;" P, B; € B;foralli #1, are Hu ' ails . Although Veillette’'s method might work for the construction

fo provide the desired reliable properties with respectlvgf common stabilizers for this example by a suitable choice

to outages outside the pre-specified set of actuators, thgpweighting matrices) and R, however, no guideline of

continue to Step 3. . . choosing matrice$) and R has been proposed in [9] for
Step 3:Check the sufficient condition (11) or (12) by reliable design.
employing Theorem 2 or Corollary 1, witl? being the 3, o510y the proposed methodology, we first solve the

solution of the Riccati equation used in Step 2. If theype (10) for H being the identity matrix. The unique
condition holds, then a scaling of the feedback gain matrix \iion is calculated to be:

from Step 2 is guaranteed to work and continue to Step 4.

Otherwise, go back to Step 2 with the choice of another

worst case. P= 4565  5.866 —5.915 |. (29)
Step 4:Use the Routh-Hurwitz stability criteria to de- —4.678 —5.915  6.109

termine an appropriate scaling of the control gain from Then, by direct calculation, the index as given in (15) is

A — aB:B:T P being Hurwitz for alli = 1,- - -, . b (AW + WAT)"1b = 2464 x 10~* > 0, whereb is
Note that, if the above procedure fails to construct #he nonzero column of3; and W = P~!. According to

common stabilizer, one might attempt to find a new matrixCorollary 1, matrix? = W~! as in (19) satisfies Condition

P by the use of different weighting matrices in the Riccat{11). The common stabilizer can hence be obtained from

equation. Theorem 1 in the form of

4194  4.565 —4.678

u = —a - BT Pz for somea > 0. (20)
IV. ILLUSTRATIVE EXAMPLES

By applying Routh-Hurwitz criteria o — o - By BT P,
This section presents an example to determine the applhis matrix is verified to be Hurwitz ifx > 22.869. By
cation of the main results as summarize in the proceduggrect calculation, the eigenvalues df— o - BBTP, A —
above of the paper. In this example, the existence of. B, BTP and A — « - By BT P with a = 25 are found to
common stabilizers for all admissible faulty systems cape {—407.668, —1.954, —1}, {—407.516, —1.063, —1}
not be provided by using Veillett's design [7] when bothand{—0.022+0.326, — 1}, respectively. These verify the
weighting matrices) and i are identity matrices. reliable stabilization of the system.
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V. CONCLUSIONS This implies thab;, # 0. From the structure AW +W AT,
%fyl =0, we then havg” (AW +W AT)y < 0. Fory; # 0,

Thi h | he L h e
is paper has employed the Lyapunov approach to stu 4= biys + 37, by, — 0, which implies that

the existence conditions of common stabilizers for lineal

control systems. The control systems considered in this L by s (b ANy "
paper result from an actual system where some actuators -1 = Z byt Z EX’/\TZ/T . (A2)
failed. The unique aspect of this study, compared with =2 =2

earlier studies, is that the possible outage of the actuatorsBy employing Cauchy-Schwartz inequality from (A2) and
not confined within a pre-specified set. We have obtainedthe inequality from (A1), we have

sufficient condition for the existence of common stabilizers n 1232 2,2 2,2

and provided a procedure to implement such a condition. 1 < Z 72 ; Z ;yg < 391'27 (A3)
When the possible outage of actuators are confined within i—2 biA; i—2 ATYL =2 ATy

?iln%ri(ra]-gssp.eufled set, the obtained results agree with Previols. . |eads to S22 > A% and yT(AW +

WAy = My? — Y0, A2y < 0.
V]. ACKNOWLEDGMENTS _ N_ext, we show that Con_dition (14) implies (15) by cgntra-
diction. Suppose there exists a nonzero vegter N (B} " )
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that y is a nonzero vector ang € N(B;”). That is,
bTy = 0. By direct calculation, we have
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VII. APPENDIX

Here we give the Proof for (ii) of Corollary 1). Sup-
pose AW + WAT is in diagonal form. LetAW +
WAT  =diag\?,-)2,---,—-)2). We now show that
Condition (15) implies Condition (14). Denoté =
(br,--ba)T andy = (y1,--,yn)7 € N(BI\{0}.
Condition (15) then becomes

> _bE/AT <03/ (A1)
=2
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