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Abstract— This paper presents common stabilizers for linear
control systems when actuators happen to fail. The possible
outage of actuators examined in this study are not confined to a
pre-specified set. By finding common quadratic-type Lyapunov
functions, we obtain sufficient conditions for the existence of
common stabilizers. For cases where all the possible failed
actuators belonged to a pre-specified set, the results presented
in this paper agree with those obtained by Veillette in 1995.
The control gain of common stabilizer for non-nested case is
explicitly derived to guarantee system stability. A simplified
checking condition for the existence of common stabilizers is
also obtained for the extreme case when only single actuator
can normally operate.

I. INTRODUCTION

Recently, the study of reliable controls that can tolerate
the failure of actuators or sensors in control systems has
attracted much attention (see e.g., [1],[3]-[4],[6]-[7],[9]-
[11]). However, most existing results for reliable control
design are limited to systems with failure of actuators
within a pre-specified subset. Among these studies, Veillette
[7] also inspected, in his example, whether the designed
controllers could tolerate the outage of actuators outside the
pre-specified subset. In [3], although Medanic investigated
the possible outage of actuators outside a pre-specified
subset, it was restricted to single actuator outage. Zhao
and Jiang [11] synthesized a reliable controller for dynamic
systems with redundant actuators. Though their approach
doesnot involve the construction of Lyapunov function,
the controlled systeṁx = Ax + Bu is required to have
actuator redundancy with(A, bi) is a controllable pair for
each i, with B = (b1, · · · , bp) ∈ IRn×p. Moreover, a
pre-compensator proposed to transform the non-uniform
redundancy property into uniform property might increase
system order and reconfigure system structure. In this paper,
the authors will extend the reliable stabilization of [7] to
systems where the outage of actuators might be outside
a pre-specified subset and the number of failed actuators
is not restricted to one. Moreover, the control system is
not assumed to possess the controllability property required
in [11]. To tackle the reliable design problem, one might
consider the existence of either common or noncommon
Lyapunov functions with regard to faulty systems. In this
paper, the authors will consider the existence of common
Lyapunov functions, while an example of seeking noncom-
mon Lyapunov functions for stabilizing switched systems
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may be found in [8]. Our approach is to seek a common
quadratic-type Lyapunov function whose time derivative
is negative for all the directions in which the controls
have no contribution. A sufficient condition for common
stabilizers is derived and the method of its implementation
is demonstrated.

The goal of this paper is then to propose and implement a
checking condition for the existence of common stabilizers
for a control system experiencing the outage of actuators.
The idea behind the study is to present a common stabilizer
that can tolerate the outage of certain actuators without
switching the control law, since switching the control law
could require more control elements to sense the outage of
actuators. Otherwise, the reliability of additional sensor el-
ements would have to be considered. Potential applications
of such a stabilizer include space missions or any highly
dangerous area where actuators of equipment fail. This issue
is important because retrieving satellites is expensive and
instability of equipment in highly dangerous areas might
result in disaster.

There are two main differences between the paper and
those of [7]. First, the paper proposes a unified approach to
determine the existence of common stabilizers regardless
of whether the outage of actuators are confined within a
pre-specified set, while those of [7] didnot. Moreover, it
is also shown that the obtained results for the existence
of common stabilizers agree with those of [7] when the
outage of actuators are confined within a pre-specified set.
Second, once the common stabilizer is determined to exist
by the checking condition proposed in this paper, the control
gain of the common stabilizers can be determined from the
Routh-Hurwitz criteria to fulfill the task, while the choice
of control gain in [7] was fixed to one. An example is also
given to demonstrate the importance of the selection of such
a control gain.

This paper is organized as follows. Section 2 introduces
the problem. An example in which all the faulty systems
are completely controllable does not guarantee the existence
of common stabilizers is also given. It is followed by the
derivation of the existence of common stabilizers. The pro-
cedure for implementing such conditions and determining
the control gain that guarantees the stability of the faulty
systems is also proposed. Section 4 presents an illustrative
example to demonstrate the application of the results. The
existence of common stabilizer for the admissible faulty
systems of the given example is shown not to be obtained
by Veillette’s design [7]. Finally, Section 5 gives concluding
remarks.



II. SET OF THE PROBLEM

Consider a linear control system

ẋ = Ax + Bu, (1)

where x ∈ IRn, u ∈ IRm, A ∈ IRn×n and B ∈ IRn×m.
Define the set of control matrices

B = {Bi ∈ IRn×m | Bi is obtained fromB by replacing

some columns or no column ofB with zero co-

lumn vector and(A,Bi) is stabilizable}. (2)

That is, for eachBi ∈ B, Bi denotes the control matrix
resulting fromB experiencing the outage of some actuators.
Note that the setB contains a finite number of matrices.

Recall that the goal of this paper is to determine the
existence conditions of common stabilizers for all system
pairs(A,Bi) with Bi ∈ B. Note that the outage of actuators
considered here is not confined to be within a pre-specified
set.

From linear system theory, it is known that a linear
system pair(A, B) is stabilizable if the unstable subspace
of A is contained in the controllability space of(A,B) (see
e.g., [4]). Using this observation, one might predict that the
class of systems(A, Bi) with Bi ∈ B andB as defined in
(2) possess a common stabilizer if the intersection of the
controllability space of all the system pairs(A,Bi) contains
the unstable subspace ofA. Unfortunately, such a prediction
is generally not true. An example is given in Example 1
below.

Example 1:Consider system (1) with

A =
(

1 0
0 2

)

andB =
(

1 1
−1 1

)

. (3)

Let

B1 =
(

1 0
−1 0

)

andB2 =
(

0 1
0 1

)

. (4)

It is easy to check that all the system pairs(A, B) and
(A,Bi) for i = 1, 2 are completely controllable. Thus, ac-
cording to the definition in (2), we haveB = {B,B1, B2}.

Suppose that these three system pairs possess a common
stabilizeru = Kx, where

K =
(

k11 k12

k21 k22

)

. (5)

That is, all the matricesA + BK and A + BiK for i =
1, 2 are Hurwitz. Then, from the Routh-Hurwitz stability
criteria, to provide for the stability of system pair(A,B1)
one needs to have tr(A + B1K) = k11 − k12 + 3 < 0 and
det(A+B1K) = 2k11−k12 +2 > 0, where tr(·) and det(·)
denote the trace and determinant of a matrix. This results
in k11 > 1 andk12 > 4. Similarly, for system pair(A,B2)
one needs to have tr(A + B2K) = k21 + k22 + 3 < 0 and
det(A + B2K) = 2k21 + k22 + 2 > 0. This means that

k21 > 1 and k22 < −4. By direct calculation, for system
pair (A,B) one finds:

det(A + BK) = 2k11(k22 + 1) + 2k21(1− k12)− k12

+(k22 + 2). (6)

According to the stability conditions for system pairs
(A, B1) and (A,B2) discussed above, all the terms in the
right hand side of (6) are negative. It then follows that
det(A+BK) < 0. This contradictsu = Kx as a stabilizer
for (A,B). Thus, the three given pairs of control systems
do not possess a common stabilizer.

III. MAIN RESULTS

In this section, we will employ the Lyapunov approach to
derive a condition for the existence of common stabilizers
as given by Theorem 1 below. Then, we will demonstrate
the implementation of the existence condition. Details are
given as below:

A. Existence Condition for Common Stabilizers

Suppose the class of systems(A,Bi), Bi ∈ B, pos-
sesses a common stabilizerK ∈ IRm×n and A + BiK
shares a common Lyapunov functionV (x) = xT Px. Then
xT P (A + BiK)x < 0 for all nonzerox and for all i. This
leads to the following result.

Theorem 1:Consider the class of linear control systems
(A,Bi), whereBi ∈ B andB is defined as in (2). If there
exists a symmetric positive definite matrixP > 0 such that

xT PAx < 0 for all x ∈ ∪Bi∈BN(BT
i P )\ {0}, (7)

then the class of systems(A,Bi), Bi ∈ B, possess a
common stabilizer. Here,N(·) denotes the null space of
a matrix. Moreover, a common stabilizer can be chosen in
the formu = −α · BT Px with α satisfying Condition (9)
below.

Proof: By the application of optimal control design, we
choose a common stabilizer candidate in the form ofu =
−α ·BT Px to meet Condition (7). It is observed that, from
the special structure ofBi, BiBT = BiBT

i for all Bi ∈ B.
The time derivative ofV (x) = xT Px along the trajectories
of the systemẋ = Ax + Biu with u = −α ·BT Px has the
form

V̇ = 2 · (xT PAx− α · xT PBiBT
i Px). (8)

In the following, we will show the existence ofα such that
V̇ < 0 for all x 6= 0 and for all Bi ∈ B. This will then
imply the existence of common stabilizers.

If xT PAx < 0 for all x 6= 0, then A must be a
Hurwitz matrix [4] and V̇ < 0 for all x 6= 0 and
for all Bi ∈ B no matter whatα > 0 is chosen.
On the other hand, ifxT PAx ≥ 0 for some x 6= 0,
then the setS := {x|xT PAx ≥ 0, ||x|| = 1} is a
nonempty compact set. Thus, Condition (7) implies that
xT PBi 6= 0 for all x ∈ S. As such, for allBi ∈ B,
γi := min||x||=1,xT PAx≥0 ||xT PBi|| > 0. SinceB only
contains a finite number of matrices, it follows thatγ :=



mini γi > 0. From the definition ofγ, all the nonzero
points x satisfying xT PAx ≥ 0 have the property that
||xT PBi|| = || xT

||x||PBi|| · ||x|| ≥ γ · ||x|| for all Bi ∈ B.
Choose the control gainα satisfying

α >
||AT P ||

γ2 > 0. (9)

It then follows from (8) that, ifx is a nonzero point with
xT PAx ≥ 0, then

V̇ < 2 · (xT PAx− ||AT P ||
γ2 ||xT PBi||2)

≤ 2 · (xT PAx− ||AT P ||
γ2 · γ2||x||2) ≤ 0

for all Bi ∈ B. The conclusion of the theorem is hence
provided.

Remark 1:Though the control gainα of the common
stabilizers can be determined from Eq. (9), it is not easy
to compute directly from there. However, the control gain
α may be determined by employing Routh-Hurwitz criteria
(see e.g., [4].

B. Existence of a MatrixP Satisfying Condition (7)

According to Theorem 1, if one can find a symmetric
positive definite matrixP which satisfies Condition (7), a
common stabilizer for the class of systems(A,Bi), Bi ∈ B,
can then be determined. In this subsection, we will derive
conditions for the existence of such a matrixP . For this
purpose, we define the terminology of nested subset ofB.

A subset B1 = {B1, · · · , Bk} of B as defined
in (2) is said to be nested if it has the property:
Range(B1) ⊆Range(B2) ⊆ · · · ⊆Range(Bk). Under this
condition, we say thatB1 corresponds to the worst case
(i.e., minimum number of actuators under operation) for all
system pairs(A,Bi) with Bi ∈ B1.

First, consider the case in which the outage of actuators is
confined within a pre-specified set as considered by [8,9].
That is, setB is nested. The existence of aP satisfying
Condition (7) can be guaranteed by solving the algebraic
Riccati equation (ARE) associated with the worst case of
B, sayB∗

1 , as given below:

AT P + PA− PB∗
1B∗T

1 P + H = 0 (10)

for any given H > 0. Indeed, under this case,
∪Bi∈BN(BT

i P ) = N(B∗T

1 P ) and, from (10),2xT PAx =
−xT Hx < 0 for all x ∈ N(B∗T

1 P )\ {0}. This verifies
the existence ofP that satisfies Condition (7) and thus the
existence of common stabilizers is guaranteed by Theorem
1. Note that the derived result agrees with that obtained by
Veillette et. al. [8,9].

Next, consider the case in which the outage of actuators
are not confined within a pre-specified set. Motivated by
the previous case, we divideB, as given by (2), into several
nested subsets, sayB1, · · · ,Bs. DenoteB∗

j the worst case

of Bj for 1 ≤ j ≤ s. We can check that Condition (7) of
Theorem 1 is equivalent to the following condition:

xT PAx < 0 for all x ∈ ∪s
j=1N(B∗T

j P )\ {0}. (11)

In addition, it is not difficult to check that Condition (11)
above is equivalent to Condition (12) below by lettingx =
Wy andW = P−1:

yT AWy < 0 for all y ∈ ∪s
j=1N(B∗T

j )\ {0}. (12)

Thus, the checking operation for the existence of aP
satisfying Condition (7) can be simplified to proceed for
those worst cases associated with each nested set only.

To obtain a matrixP which meets Condition (11), we
can choose a matrix among all the worst casesB∗

1 , · · · , B∗
s ,

say B∗
1 , having minimum rank. Let the rank ofB∗

1 be l.
That is,

rank(B∗
1) = min

1≤j≤s
rank(B∗

j ) = l. (13)

Before proceeding the derivation of checking condition to
provide relation (11) or (12), we present the next lemma.

Lemma 1:SupposeL ∈ IRn×n is a symmetric matrix,
M ∈ IRn×m and rank(M) = l. Then yT Ly < 0 for all
y ∈ N(MT )\ {0} if and only if (M⊥)T LM⊥ is a negative
definite matrix, whereM⊥ is a n × (n − l) matrix whose
columns form an orthonormal basis forN(MT ).

Proof: Note that,(M⊥)T LM⊥ is a negative definite ma-
trix if and only if vT (M⊥)T LM⊥v < 0 for every nonzero
v ∈ IRn−l. Moreover, the latter condition is equivalent to
that uT Lu < 0 for every u = M⊥v ∈ N(MT )\ {0}. The
conclusion of the lemma is hence implied.

Now, let L = AW + WAT with W = P−1. The next
result follows readily from Eq. (10) and Lemma 1.

Theorem 2:Consider the class of systems(A,Bi), Bi ∈
B. SupposeB∗

1 satisfies the relation (13) andP = W−1 > 0
is the solution of Eq. (10). ThenP is a matrix satisfying
Condition (11) or (12) if and only if for eachj = 1, · · · , s,
(B∗

j
⊥)T (AW + WAT )B∗

j
⊥ is a negative definite matrix.

Here, B∗
j
⊥ denotes a matrix whose columns form an

orthonormal basis forN(B∗
j

T ).
For the case of which rank(B∗

1) = 1 and rank(B∗
j ) = 1

for somej 6= 1, the checking condition (12) corresponding
to B∗

j as given in (14) below

yT AWy < 0 for all y ∈ N(B∗
j

T ) (14)

can be simplified by verifying the positivity of a scalar
instead of checking negative definiteness of the(n − 1) ×
(n − 1) matrix (B∗

j
⊥)T (AW + WAT )B∗

j
⊥ as given in

Theorem 2 above. Details are discussed as follows.
SupposeA is not a Hurwitz matrix. From Eq. (10) and

W = P−1 that AW + WAT has exactly one unstable
eigenvalue. The unstable eigenvalue may be zero or a
positive real number. If the unstable eigenvalue is zero, then
yT AWy < 0 for all y 6∈ E0 = {z|(AW + WAT )z = 0}.
Here,E0 denotes the eigenspace ofAW +WAT associated
with the zero eigenvalue. Thus, Condition (14) hold if and



only if E0 6⊂ N(B∗T
j ) = R(B∗

j )⊥. On the other hand, if the
unstable eigenvalue is a positive real number, an equivalent
condition can be constructed. Details are summarized in the
next corollary.

Corollary 1: Suppose rank(B∗
1) = 1, rank(B∗

j ) = 1 for
somej 6= 1 andP = W−1 > 0 denotes the solution of Eq.
(10). Letb be a nonzero column ofB∗

j . Then the following
two statements hold:

(i) If AW + WAT possesses a zero eigenvalue, then
Condition (14) holds if and only ifE0 6⊂ R(B∗

j )⊥. That
is, bT v 6= 0 for v ∈ E0\ {0}.

(ii) If AW + WAT has a positive eigenvalue, then
Condition (14) holds if and only if

bT (AW + WAT )−1b > 0. (15)
Proof: Statement (i) has been discussed in the preceding

paragraph of Corollary 1. The proof of (ii) is given in
Appendix.

To summarize the extended reliable design discussed
above, a procedure for the construction of common stabi-
lizers for system (1) can be listed as follows.

Procedure for finding common stabilizers:
Step 1: Divide all the stabilizable system pairs into

different nested subsetsB1, · · · ,Bs, and pick up one of
the worst cases, sayB∗

1 ∈ B1, among those subsets.
Step 2: Attempt a reliable control design using the

method of cited reference [9]. That is, givenH > 0,
solve forP in Eq. (10) and check whether all the matrices
A−B∗

i B∗
i

T P , B∗
i ∈ Bi for all i 6= 1, are Hurwitz. If it fails

to provide the desired reliable properties with respective
to outages outside the pre-specified set of actuators, then
continue to Step 3.

Step 3:Check the sufficient condition (11) or (12) by
employing Theorem 2 or Corollary 1, withP being the
solution of the Riccati equation used in Step 2. If the
condition holds, then a scaling of the feedback gain matrix
from Step 2 is guaranteed to work and continue to Step 4.
Otherwise, go back to Step 2 with the choice of another
worst case.

Step 4:Use the Routh-Hurwitz stability criteria to de-
termine an appropriate scalingα of the control gain from
A− αB∗

i B∗
i

T P being Hurwitz for alli = 1, · · · , s.
Note that, if the above procedure fails to construct a

common stabilizer, one might attempt to find a new matrix
P by the use of different weighting matrices in the Riccati
equation.

IV. ILLUSTRATIVE EXAMPLES

This section presents an example to determine the appli-
cation of the main results as summarize in the procedure
above of the paper. In this example, the existence of
common stabilizers for all admissible faulty systems can
not be provided by using Veillett’s design [7] when both
weighting matricesQ andR are identity matrices.

Example 2:Consider system (1) with

A =





1 3 −2
0 0 0
0 1 −1



 andB =





1 0.1
10 0.01
10 0.01



 . (16)

Let B1 andB2 be derived fromB which correspond to the
failure of the second and first actuators, respectively. That
is,

B1 =





1 0
10 0
10 0



 andB2 =





0 0.1
0 0.01
0 0.01



 . (17)

It is easy to check that both(A,B1) and(A,B2) are stabi-
lizable. This leads toB = {B, B1, B2}, which is not nested.
Clearly,B contains two nested subsetsB1 = {B1, B} and
B2 = {B2, B}. The two worst cases associated withB1 and
B2 areB∗

1 = B1 andB∗
2 = B2, respectively.

According to Veillette’s method [9], the first thing to do
is to solve the ARE

AT Mi + MiA−MiBiR−1BT
i Mi + Q = 0, Q > 0 (18)

for i = 1. Then, verify if the matrixA−B2R−1BT M1 is
stable. If it is not, redo this process fori = 2 and check
if the matrix A − B1R−1BT M2 is stable. Unfortunately,
the method proposed by Veillette does not work in this
example for bothR and Q being the identity matrix.
Indeed, fori = 1, the eigenvalues ofA − B2R−1BT M1

are {0.954, 0.005,−1}; and for i = 2, the eigenvalues
of A − B1R−1BT M2 are {−1, 0.438,−3.080 × 104}.
Although Veillette’s method might work for the construction
of common stabilizers for this example by a suitable choice
of weighting matricesQ and R, however, no guideline of
choosing matricesQ and R has been proposed in [9] for
reliable design.

To employ the proposed methodology, we first solve the
ARE (10) for H being the identity matrix. The unique
solution is calculated to be:

P =





4.194 4.565 −4.678
4.565 5.866 −5.915
−4.678 −5.915 6.109



 . (19)

Then, by direct calculation, the index as given in (15) is
bT (AW + WAT )−1b = 2.464 × 10−4 > 0, where b is
the nonzero column ofB∗

2 and W = P−1. According to
Corollary 1, matrixP = W−1 as in (19) satisfies Condition
(11). The common stabilizer can hence be obtained from
Theorem 1 in the form of

u = −α ·BT Px for someα > 0. (20)

By applying Routh-Hurwitz criteria onA − α · B2BT P ,
this matrix is verified to be Hurwitz ifα > 22.869. By
direct calculation, the eigenvalues ofA− α ·BBT P , A−
α ·B1BT P andA−α ·B2BT P with α = 25 are found to
be{−407.668, −1.954, −1}, {−407.516, −1.063, −1}
and{−0.022±0.326j, −1}, respectively. These verify the
reliable stabilization of the system.



V. CONCLUSIONS

This paper has employed the Lyapunov approach to study
the existence conditions of common stabilizers for linear
control systems. The control systems considered in this
paper result from an actual system where some actuators
failed. The unique aspect of this study, compared with
earlier studies, is that the possible outage of the actuators is
not confined within a pre-specified set. We have obtained a
sufficient condition for the existence of common stabilizers
and provided a procedure to implement such a condition.
When the possible outage of actuators are confined within
a pre-specified set, the obtained results agree with previous
findings.
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VII. APPENDIX

Here we give the Proof for (ii) of Corollary 1). Sup-
pose AW + WAT is in diagonal form. Let AW +
WAT =diag(λ2

1,−λ2
2, · · · ,−λ2

n). We now show that
Condition (15) implies Condition (14). Denoteb =
(b1, · · · , bn)T and y = (y1, · · · , yn)T ∈ N(B∗

j
T )\ {0}.

Condition (15) then becomes

n
∑

i=2

b2
i /λ2

i < b2
1/λ2

1. (A1)

This implies thatb1 6= 0. From the structure ofAW+WAT ,
if y1 = 0, we then haveyT (AW+WAT )y < 0. Fory1 6= 0,
bT y = b1y1 +

∑n
i=2 biyi = 0, which implies that

−1 =
n

∑

i=2

biyi

b1y1
=

n
∑

i=2

(

bi

b1

λ1

λi

λi

λ1

yi

y1

)

. (A2)

By employing Cauchy-Schwartz inequality from (A2) and
the inequality from (A1), we have

1 ≤

(

n
∑

i=2

b2
i λ

2
1

b2
1λ

2
i

)(

n
∑

i=2

λ2
i y

2
i

λ2
1y

2
1

)

<
n

∑

i=2

λ2
i y

2
i

λ2
1y

2
1
, (A3)

which leads to
∑n

i=2 λ2
i y

2
i > λ2

1y
2
1 and yT (AW +

WAT )y = λ2
1y

2
1 −

∑n
i=2 λ2

i y
2
i < 0.

Next, we show that Condition (14) implies (15) by contra-
diction. Suppose there exists a nonzero vectory ∈ N(B∗

j
T )

such that Condition (15) does not hold. Thus, we have
b2
1/λ2

1 −
∑n

i=2 b2
i /λ2

i ≤ 0. This implies that(b2, · · · , bn)T

is a nonzero vector sinceb is a nonzero vector. Choose
y = (

∑n
i=2 b2

i /λ2
i ,−b1b2/λ2

2, · · · ,−b1bn/λ2
n)T . It is clear

that y is a nonzero vector andy ∈ N(B∗T
j ). That is,

bT y = 0. By direct calculation, we have

yT (AW + WAT )y =

(

λ2
1

n
∑

i=2

b2
i

λ2
i

)(

n
∑

i=2

b2
i

λ2
i
− b2

1

λ2
1

)

≥ 0.

For the case of whichAW + WAT is not a di-
agonal matrix, a similarity transformation can be pre-
applied to fulfill the proof. SinceAW + WAT is a
symmetric matrix, there exists an orthogonal matrixU
such thatUT (AW + WAT )U =diag(λ2

1,−λ2
2, · · · ,−λ2

n),
where λi > 0 for all i = 1, · · · , n. Let z = Uy and
D =diag(λ2

1,−λ2
2, · · · ,−λ2

n). It is clear thatzT Dz < 0
for all z ∈ N((UB∗

j )T ) and Condition (15) becomes
(Ub)T D−1(Ub) > 0. The rest of the proof is similar to
the one given above and is hence omitted. The conclusion
of Corollary 1 is hence implied.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThM04.4
	Page0: 2735
	Page1: 2736
	Page2: 2737
	Page3: 2738
	Page4: 2739


