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Abstract�A uni�ed framework for studying parametric and
initial condition uncertainty in dynamical systems is developed.
The notion of input measure of an observable is de�ned and
its propagation to output measure of the observable is studied
by means of transfer operators. Uncertainty of these measures
is de�ned in terms of their cumulative probability distributions.
The developed formalism is illustrated through an analysis of the
effect of pitchfork bifurcation on uncertainty. General results on
uncertainty for dynamical systems on an in�nite time horizon
are derived.

I. INTRODUCTION
Uncertainty analysis is a topic of research that has received

much attention in recent years. Indeed, the increased use of
physics based models in the study of the dynamical behavior
of systems in a wide range of applications calls for the analysis
and quanti�cation of model predictions in terms of uncertain-
ties in model descriptions and model operating environments
[7]. In this paper we consider systems that can be modeled
by discrete maps and adopt the view that uncertainty in the
model description can be represented as a random uncertainty
in model parameters and initial conditions. We introduce a
new framework for uncertainty analysis that is rooted on
ideas from Random Dynamical Systems (RDS) [1]. Random
Dynamical Systems is an area of research in the intersection
of dynamical systems and probability theory and provides the
ideal framework for treating uncertainty in dynamical systems
that can exhibit complex dynamical behavior.
The analysis of uncertainty sources and classi�cation of

uncertainty types in mathematical models has received much
attention [12]. Frequently uncertainty is classi�ed into two
types: reducible, or epistemic, and irreducible, or aleatory. An
example of epistemic uncertainty is uncertainty initial condi-
tions that can possibly be reduced by improved measurements.
Aleatory uncertainty is an uncertainty in the system parameters
that are the result of the intrinsic stochasticity of the system.
We make a further distinction that both of these can be a-
priori and a-posteriori. In particular, a-priori uncertainty is any
uncertainty (epistemic or aleatory) that can be captured in an
input description of the system and a-posteriori uncertainty is
an uncertainty that is inherent to the process dynamics and
observations.
The most common approach for propagating uncertainty in

mathematical and computational models is to use Monte Carlo
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type methods [5] [6][7]. Due to the fact that Monte Carlo
methods are basically �wrapper� methods they have the ad-
vantage that they apply to a large class of problems but suffer
from slow convergence rate and in many problems the compu-
tational burden may be prohibitive. An alternative approach for
uncertainty propagation are Polynomial Chaos methods (also
called Stochastic Finite Elements) [3][4]. Polynomial Chaos is
an analytical approach based on expansions of the uncertain
quantities of terms of prescribed random basis functions. It
has been demonstrated that for certain classes of problems
Polynomial Chaos can be considerably (up to several orders
of magnitude) faster than Monte Carlo methods. Furthermore,
the analytical representation in Polynomial Chaos can be of
great bene�t in analysis. However, the computational speed
of Polynomial Chaos depends very much on the character of
the probability distribution of the input parameters as well as
characteristics of the system equations and the computational
advantage in certain problems may be minimal [15].
Monte Carlo and Polynomial Chaos are methods for uncer-

tainty propagation and have to be combined with other analysis
methods for analyzing the effect of input uncertainty on
critical system outputs or measureables. Sensitivity Analysis
is probably the best known approach for evaluating the effect
of variations in system inputs and parameters on system
outputs. Sensitivity Analysis of dynamical systems involves
evaluating partial derivatives of system outputs with respect
to the uncertain quantities and works well for problems that
are nearly linear [13].
In this paper we are interested in de�ning and calculating

the effect of probabilistic uncertainty in input parameters and
initial conditions on the output of a dynamical system that
may exhibit complex dynamic behavior. In particular, we are
interested in uncertainty analysis of systems that are far from
linearity, may have multiple steady states and exhibit purely
nonlinear behavior such as bifurcations that depend on the
uncertain parameters of the system. We develop an approach
that involves de�ning uncertainty propagation in the system
through the invariant measures of the system (in the sense
of Random Dynamical Systems) and de�ning uncertainty as
a worst case distance from a certain system in the space
of output measures. Related, but nevertheless quite different
concepts have been considered in the reliability literature [2],
where uncertainty is de�ned in terms of a distance between
cumulative distribution functions, and in the atmospheric sci-
ences [8], where uncertainty (called there predictability) is
de�ned in terms of the relative entropy between uncertain and
certain measures.



The paper is organized as follows: In Section 2 we formulate
our framework for uncertainty analysis in terms of Random
Dynamical Systems. In Section 3 the effect of uncertainty
in initial conditions is analyzed and used to motivate the
de�nition of an uncertainty in a dynamical system. Uncertainty
of an observable is rigorously de�ned and characterized in
Section 4. In Section 5 the uncertainty of a dynamical system
on an in�nite time horizon is analyzed in detail. Finally
conclusions are formulated in Section 6. All proofs are omitted
due to space restrictions and can be obtained from the authors
upon request.

II. DYNAMICAL EVOLUTION OF UNCERTAINTY
We consider a dynamical system whose evolution is deter-

mined by the Discrete Random Dynamical System (DRDS)

xi+1 = T (xi; �); (1)
yi = f(xi)

where xi 2M is the system state, � 2 N a random parameter,
yi is a scalar valued observable and i 2 Z. We assume that
M and N are compact Riemannian manifolds, N is endowed
with a probability measure p that is absolutely continuous
with respect to the Lebesgue measure on N . We assume that
T (x; �) is Cr; r � 1 in x for every � 2 N and consider
observables f : M ! R that satisfy f 2 L1(M). Denote
T i�(x) = T� � :::�T� where T�(x) = T (x; �). With some abuse
of notation, we will call the above DRDS T . The product space
P =M �N is endowed with the product �-algebra P in the
usual way.
De�nition 1: A probabilistic measure � on P is called an

input measure.
Example 2: Assume M is a Riemannian manifold, N =

[a; b] � R; � = � � �(��); where �� = c is a constant. In this
case there is no �parametric uncertainty� in parameter c. If �
is not a Dirac delta measure, it represents uncertainty in initial
conditions of the process.
Example 3: Consider the evolution given by

xi+1 = xi + �xi � x3i ; (2)

where the input measure � is given by the product measure ��
�; �(E) = l(E \ [�a; a])=2a; l the Lebesgue measure on the
real line, a > 0: This measure is given by the density function
f�(x) = 1=2a for x 2 [�a; a]: The function f�(x) is the
density for the uncertainty in initial conditions. The measure
� is a measure on R de�ned by �(E) = l(E\[�b; b])=2b: This
measure is given by the density function f�(�) = 1=2b for � 2
[�b; b]: The function f�(�) is the density for the �parameter
input measure�. In �gure 1 the input measure is superposed
on the bifurcation diagram of the equation (2) (b < 1).
We are interested in the question of how does the uncertainty

in the �output� of the process depend on the input measure.
For an observable f : M ! R; the �initial� uncertainty is
described by a probabilistic measure $i on R (endowed with
the Borel �-algebra B) de�ned by

$i(E) = �((f)�1(E));

Fig. 1. The bifurcation diagram and uncertainty measure density for equation
(2).

where E 2 B: This measure evolves in time, becoming

$n(E) = �((f � Tn� )�1(E)) = �((Tn� )
�1f�1(E))

= Pn� �(f
�1(E))

where P� is the Perron-Frobenius operator. We call $n an
output measure. It describes the uncertainty of observable f
at the n�th step of the process given the input measure �: The
cumulative distribution function P$ : R! R of $ is de�ned
in the obvious way by

Fn$(z) = $n((�1; z]):

Let us relate these notions with uncertainty semantics in the
literature (see e.g. [12]). Frequently uncertainty is classi�ed
into two basic types: reducible, or epistemic, and irreducible,
or aleatory. An example of epistemic uncertainty is uncertainty
initial conditions that can possibly be reduced by improved
measurements. An example of aleatory uncertainty is pressure
difference on an airplane wing at �xed speed in clear air
turbulence. This is known only as a measure and comes
from intrinsic stochasticity of the �ow turbulence. We make
a further distinction that both of these can be a-priori and
a-posteriori. In the example of airplane wing, the aleatory
pressure difference uncertainty might be a parameter for a
calculation and thus is a-priori. The same is true for initial
conditions uncertainty. In this paper we do not make dis-
tinction between aleatory and epistemic a-priori uncertainties:
they are both described by the input measure �. A-posteriori
aleatory uncertainty is the one that is inherent to the process.
This uncertainty comes from a possibly chaotic nature of the
dynamics of T . In geophysical literature this would be called
�climatological uncertainty� (see [8]). A posteriori epistemic
uncertainty is induced by, for example, measurement and
simulation error.

III. UNCERTAINTY IN INITIAL CONDITIONS
Assume now that there is no uncertainty in the parameter

values in (1), i.e. the distribution for � is concentrated at some
point c 2 N: The uncertainty in initial conditions is assumed
to be described by a measure � on M which is absolutely



continuous with respect to the Lebegue measure % on M:
Systems that evolve from any initial condition (except perhaps
for measure zero sets, cf [14]) to a �xed point x̂ have no a-
posteriori aleatory uncertainty. Thus, if there is no a-posteriori
epistemic uncertainty, as n ! 1; Fn$ will approach the step
function

F$(z) = 0 for z � f(x̂);

F$(z) = 1 for z > f(x̂):

This perfectly (in the probabilistic sense, as measure zero
sets are discarded) certain cumulative distribution function
motivates developments in the next subsection. In the above
described situation, the system is said to have a physical
measure [16] that is a Dirac delta measure supported at the
�xed point x̂: Such systems have the property of shrinking
uncertainty in initial conditions when the initial measure � is
absolutely continuous with respect to %:
In some sense the opposite situation occurs for an expanding

map T on a manifold M [10]. A map is called expanding if
there is n > 1 such that

kDT jnx&k � k&k ;

for all &; x; where & 2 T jxM , the tangent space of M at
x 2 M; and DTx is the derivative of T at x. Such maps
posses a unique invariant measure �e, absolutely continuous
with respect to %. The a-posteriori aleatory uncertainty of an
observable f is uncertainty with respect to measure %: A
measure-preserving expanding map T on a closed manifold
M evolves any initial condition uncertainty of f to uncertainty
with respect to Lebesgue measure since, if � is an invariant
measure for T; � = % by uniqueness of absolutely continuous
invariant measures for such maps. An example is the map
x0 = 2x(mod 1); x 2 S1:
The discussion above naturally leads us to try to precisely

de�ne a-posteriori aleatory uncertainty within the context of
dynamical systems models, paying attention to the fact that we
are interested in evolution of a single observable. We consider
(1) and assume that for a �xed � the system has a physical
measure �; i.e. that for any g :M ! R; g 2 L1(%); for almost
every x 2 M with respect to %; the time average of g along
trajectory starting at x;

g�(x) = lim
n!1

1

n

n�1X
i=0

g(T i�(x)) =

Z
M

gd�:

We now de�ne the aleatory uncertainty measure on R by

$A(E) = (�E � f)� =
Z
M

�E � fd�;

where �E is the characteristic function of the measurable set
E � R. The intuition about $A is that it represents the
proportion of time that the observable f spends in the set E
during the evolution of the system, i.e. $A is the occupation
measure of the observable. Note that $A can also represented
as $A(E) = �

�
f�1 (E)

�
, i.e. the physical measure � plays

the same role in the de�nition of the a-posteriori aleatory

uncertainty measure as the initial measure � does in the
de�nition of the a-priori output measure. The measure $A

corresponds to the so-called �climatological uncertainty� in
geophysics [8]. It is natural to consider uncertain only the
part of the evolution of f that does not have any cyclic motion
associated with it i.e. that the motion on the attractor that is
support for � does not have periodic factors (see the discussion
in [11]). A test for this is provided by the requirement that

g�!(x) = lim
n!1

1

n

n�1X
i=0

exp(2�ji!)g(T i�(x)) = 0; (3)

for every ! 6= 0: In this case $A is absolutely continuous (has
a density) with respect to the Lebesgue measure.
Even though we illustrated above the concept of an certain

system in terms of system that has no parametric uncertainty
this is not necessary, i.e. a system may have an a-priori
uncertainty in parameters and still converge to an certain
system. This is best illustrated by an simple example.
Example 4: Consider the linear system

xi+1 = A (�)xi

yi = C (�)xi

where A (�) is an n�n matrix and C (�) is 1�n. Note that
since C (�) depends on � this system is more general than the
one in (1). Assume the initial condition x0 is uncertain with
distribution � and the parameter � is uncertain with distribution
�: The solution of the above equation is

yi = C (�)A (�)
i
x0

If sup�2support(�) kA (�)k < 1 and kC (�)k < 1 then yi ! 0
as i ! 1 for any �nite value of x0. Therefore, in this case
the distribution converges to a certain distribution at 0. In
particular, since the solution converges to a �xed point that is
independent of � for all x0 there is no a-posteriori uncertainty.

IV. UNCERTAINTY OF AN OBSERVABLE

In the previous section we argued that if a system possesses
a globally attracting �xed point, initial uncertainty described
by an absolutely continuous measure on initial conditions will
shrink to a perfectly certain Dirac delta measure concentrated
at the �xed point. In this section we wish to provide and
analyze quantitative measures of uncertainty. It is clear that
a measure of uncertainty of a measure $ on R needs to be
invariant with respect to shifts of the measure: the uncertainty
of measure de�ned by  (A) = $(A + c); c 2 R; A 2 B;
should be the same as uncertainty of $: These considerations
motivate the following de�nition:
De�nition 5: Let j�j denote a metric (or a pseudo-metric) on

the spaceM of probabilistic measures on R: For any measure
$ 2M the uncertainty of $ induced by j � j is de�ned by

u($) = min
z2R

j$ � �zj;

where �z is the Dirac delta distribution at z:



A possible pseudo-metric is de�ned through use of cumu-
lative distribution functions, de�ning

j$1 �$2j = kF$1
� F$2

k1 ;

where k�k1 is the L1 norm. This is well de�ned for measures
with compactly supported P$ and also for those that satisfy

jF$(z)� 1j �
c

z2
; z > c > 0;

jF$(z)j �
c

z2
; z < �c < 0:

The uncertainty using this norm is denoted by u1($): Equiv-
alently, Lp norms can be used in which case the resulting
uncertainty is denoted by up($): In general we have the
following result for the characterization of up($):
Proposition 6: Assume that kF$ � F�zkp <1 for at least

one z = ~z 2 R . Then up($) = minz2R kF$ � F�zkp is
attained at the median value z� for which

lim
z#z�

F$ (z
�) = F$ (z

�) � 1=2;

lim
z"z�

F$ (z
�) � 1=2: (4)

Furthermore,

up($) =

 Z z�

�1
jF$(x)jp dx+

Z 1

z�
j1� F$(x)jp dx

! 1
p

:

(5)
Note that if z�is unique then either F$ (z�) = 1=2 (in that

case z� is a point of continuity of F$) or there is no z such
that F$ (z) = 1=2 (in that case z� is a point of discontinuity
of F$).
The above proposition allows us to characterize maximal

uncertainty for output measures with bounded support:
Corollary 7: Consider the setMb

a of probability measures
on R with bounded support;Mb

a = f $ 2 MjF$(z) = 0 if
z < a; F$(z) = 1 if z � b; a < b 2 Rg: Then

max
$2Mb

a

up($) =
1

2
(b� a)

1
p ;

The maximum is realized for F$(z) = 1=2; for a � z < b

(i.e. $ = �
b;1=2
a;1=2 is the Dirac delta measure concentrated at a

and b with strengths 1=2).
Thus, the most uncertain - in the sense of up - output

measure with bounded support is the Dirac delta measure
concentrated at the support boundaries. It is useful to compare
u1(�

b;1=2
a;1=2) with u1($u); where$u is the uniform distribution

on [a; b): We have u1($u) = (b � a)=4 = 1
2u1(�

b;1=2
a;1=2): In

terms of already introduced examples of dynamical systems,
we have the following example of a map that leads to
maximum uncertainty from speci�c initial measure �.
Example 8: Consider a map T on a closed manifold M

endowed with a Lebesgue measure %: Assume that there is
no uncertainty in parameter values. The uncertainty in initial
conditions is assumed to be described by a measure � on M
which is absolutely continuous with respect to %: Let f be a
continuous function onM and assume that f(x�1) = maxM f;

Fig. 2. Graphical representaion of the map T (x) in Example 9

f(x�2) = minM f; where x�1; x�2 are attracting �xed points of
T: Additionally, let �(U1) = �(U2) = 1=2 where U1 and U2
are the domains of attraction of x�1; x�2, respectively and M =
U1 [U2:Then the asymptotic distribution of uncertainty for f
is maximal. Note however that the uncertainty in question is
epistemic (reducible) since it is in initial conditions. Changing
� such that �(U1) = 1 leads to completely certain outcome.
Example 9: Consider the transformation by which x 2

[0; 1] is mapped into T (x) 2 [0; 1] as shown in �gure 2 where
all the lines drawn are straight. We take f(x) = x for the
observable.The transformation is expanding with n = 1: The
ergodic invariant measure is uniform on intervals [0; ") and
(1�"; 1], with magnitude 1=2" on each of these intervals. Any
absolutely continuous initial condition measure � converges
to the ergodic invariant measure as time goes to in�nity. In
fact, the system is mixing and f passes the test (3). Thus,
uncertainty starting from any absolutely continuous initial
condition measure can be made arbitrarily close to maximum
uncertainty possible, by choosing " suf�ciently small.
It is also useful to compare another possible mea-

sure of uncertainty, entropy [9], de�ned as H($) =

�
R b
a
f$(x) log f$(x)dx; where f$ is the probability density

function, f$ = dF$=dx; where it has been assumed all the
quantities involved exist. We have H($u) = log(b � a):
Entropy increases as a log of the size of the support interval,
while uncertainty up increases as a power law. Entropy,
however, has one property that makes it less appealing for the
measure of uncertainty in our context: consider for example
the Dirac delta measure �b;1=2a;1=2 that maximizes up on Mb

a:

Since this is a �discrete� measure, its entropy equals log(2)
and does not depend on the interval bounds a and b!
In the literature, uncertainty of the output is often calculated

in terms of the variance of its probability distribution,

V ($) =

Z 1

�1
(z �m($))2dF$(z);

where m($) is the mean given by

m($) =

Z 1

�1
zdF$(z)

However, if one accepts the intuitive notion of the certain
distribution as the one having a single value with probability



one, the following result shows that measuring uncertainty
with variance might be misleading.
Proposition 10: Let v; u > 0 be arbitrary constants. Then

there is an $ such that V ($) > v; u1($) < u:
We can construct $ that has the stated properties as follows.

Let the probability density of $ be constant and equal to � on
the interval [�l; 0); l > 0; and a Dirac delta with magnitude
m; where 0 � m � 1 at r 2 R; r � 0: Then using the fact
that the probability density integrates to 1 gives � = 1�m

l : We
require that the mean of the distribution, m($) be at 0: This
leads to r = �l2

2m = (1�m)l
2m : The variance of $ is given by

V ($) = mr2 + �
l3

3
=
(1�m)2l2

4m
+
(1�m)l2

3
; (6)

whilst its uncertainty, u1($) for the case m � 1=2 can be
calculated using z� = r in formula (5), to obtain

u1($) =
(1�m)l

2
(1 +

1�m
m

):

Note that by choosing m; l we determine the measure $: Now
consider a sequence fmig ; flig ; i 2 Z+;mi ! 1 as i ! 1;
determining measures $i and let (1 �mi)li = k < u: Note
that li ! 1 as i ! 1: Thus, (1 �mi)l

2
i = kli ! 1; and

since the �rst term in (6) is positive, by choosing i big enough,
we get V ($i) > v; u1($i) < u:
Re�ecting upon the nature of construction of the desired

distribution in the proof of the above proposition, it becomes
clear that variance measures distance from a certain distribu-
tion at 0. However, the closest certain distribution to $i tends
to Dirac delta at r = k=2: This failure of variance to measure
uncertainty is related to the fact that it pre-sets the �closest
certain value� to be at the mean, which is not necessarily
true. In fact, as is clear from Proposition 6, if we use up as
the measure of uncertainty, the �closest certain value� is at the
median of the distribution.

V. TIME-AVERAGED UNCERTAINTY

When studying the dynamic behavior of complex systems
we are frequently interested in asymptotic properties of so-
lutions. In this context uncertainty in the system can be
formulated in terms of uncertainty in invariant measures and,
adopting the point of view of [11], this question is transferred
to questions of uncertainty in time-averages of observables:

��f(x) = f�(x; �) = lim
n!1

1

n

n�1X
i=0

f(T (xi; �i)) (7)

= lim
n!1

1

n

n�1X
i=0

U i�f(x); (8)

where �� is the projection operator on the space of time-
averages and U i�f = f � T�i is the Koopman operator. Note
that the Koopman operator reduces to its usual version when
the parameter � does not change during the evolution, while
�� becomes the projection operator on the space of constant
functions. The time-averaged uncertainty is uncertainty of the

Fig. 3. Cumulative probability distribution for the output measure.

probabilistic measure $a (asymptotic output measure) on R
de�ned by

$a(E) = �((f�)�1(E)): (9)

Example 11: For the problem de�ned in Example 3, the
cumulative probability distribution of the asymptotic output
measure corresponding to the function f(x) = x is represented
in Figure 3. Applying Proposition 6 gives u1($a) =

p
b=3:

Thus the pitchfork bifurcation exhibits, for small b a substan-
tial (of order

p
b for initial uncertainty of order b) increase of

uncertainty.
The system in Example 3 is not ergodic for every value

of the parameter �: In fact, for the case of a single parameter
value �� (i.e. in the situation described in Example 2), ergodic
systems will have zero time-averaged uncertainty for any f 2
L1:

Proposition 12: Assume T (x; �) : M ! M is ergodic for
� = �� with an invariant ergodic measure � and the input
measure is given by � = � � �(��); where � is absolutely
continuous with respect to �: Let f : M ! R and let $a be
the output measure de�ned by (9). Then u1($a) = 0:

The above result leads us to consider more closely the
relationship between the concept of ergodic partition and un-
certainty in initial conditions and the de�nition of time-average
uncertainty in terms of asymptotic properties of systems. We
discuss next how ergodic partition [11] is related to uncertainty
in initial conditions. For this purpose, we consider the system

xi+1 = T (xi; c): (10)

where c now represents a (certain) parameter, and as before
x 2 M , a compact Riemannian manifold. The input measure
(on M ) is denoted by �.
De�nition 13: Let � be an a-priori measure on the Borel �-

algebra on M: System (10) is called B-regular (for Birkhoff)
with respect to � (or B�-regular) if it possesses a �nite set of
ergodic invariant measures �i; i = 1; :::; n such that for almost
every x 2 M with respect to � there is a j 2 f1; :::; ng such



that the time-average de�ned in (7) satis�es

f�(x) =

Z
M

fd�j

for every f 2 C(M) and in addition there is a family of
disjoint sets Di; i = 1; :::; n, such that

�(Di) > 0; �(M � [iDi) = 0;

where

Di = fx 2M j
Z
M

fd�i = f�(x); for every f 2 C(M)g:
Example 14: The system described in Example 3 is a B-

regular with respect to l for any value of �:
For B�-regular systems with uncertainty in initial conditions

and input measures that are absolutely continuous with respect
to � the distribution functions are simple.
Proposition 15: Let T be a B�-regular system and � an

input measure absolutely continuous with respect to the a-
priori measure �: Then, for any f 2 L1�(M); F$a

is a step
function with a �nite number of non-zero steps.
The uncertainty u1($a) is readily calculated for step dis-

tribution functions. Assume that F$a(z) has steps of sizes fi
at zi, i = 1; : : : ; n, i.e.

F$a
(z) =

nX
i=1

fiuzi (z) (11)

where uz is the unit step function at z:
Corollary 16: For the step distribution function F$a

in (11)
de�ne ej =

Pj
i=1 fi and let k = max

�
j : ej � 1

2

	
. Then

u1 ($a) =
kX
i=1

ei (zi+1 � zi) +
n�1X
i=k+1

(1� ei) (zi+1 � zi)

(12)
We conclude this section with an extension of the above

results to the case when � is random but does not change
during the evolution, i.e. we consider system (1).

De�nition 17: Let � be an a-priori measure on the Borel �-
algebra onM�N: System (1) is called parametric B�-regular
if there exists a partition of Di; i = 1; :::; n of M �N such
that �(Di) > 0; �(M �N �[iDi) = 0; Di \Dj = ?; i 6= j

and measures ��i ; i = 1; :::; n on M such that for almost every
(x; �) 2 M � N with respect to � there is a j 2 f1; :::; ng
such that

f�(x; �) =

Z
M

fd��j ; (x; �) 2 Dj (13)

where f�(x; �) is the time average (7).
Proposition 18: Assume that (1) is parametric B�-regular

and the family of measures ��i ; i = 1; :::; n has the property
that each ��i (B) is continuous as a function of � for any
B 2 B (M) : Assume that the initial measure � is absolutely
continuous with respect to the a-priori measure �: Then F$a

is piecewise continuous with a �nite number of steps.

Example 19: The system in Example 11 satis�es the con-
ditions in Proposition 18 with sets

D1 = f� < 0;�1 < x <1g ;
D2 = f� � 0;�1 < x < 0g ;
D3 = f� � 0; 0 < x <1g

and ��1 = �fx=0g; �
�
2 = �fx=�p�g; �

�
3 = �fx=p�g:

VI. CONCLUSIONS
In this paper we studied,within a uni�ed framework based

on measure theoretic concepts from the theory of Random
Dynamical Systems, parametric and initial condition uncer-
tainty for discrete-time systems that can exhibit complex time-
dependent behavior. The notion of input measure of an observ-
able was de�ned and its propagation to output measure of the
observable studied by means of transfer operators. Uncertainty
of these measures was de�ned in terms of their cumulative
probability distributions. Effect of pitchfork bifurcation (and
thus nonlinearity, for simple time dependence) on uncertainty
was studied within this formalism. General results on uncer-
tainty for dynamical systems of a Sinai-Bowen-Ruelle type
were derived thus setting the stage for analysis of nonlinear
systems with complex time-dependence.
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