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Abstract— In this work a discrete–time controller for an
induction motor is proposed. State feedback and diffeomor-
phism are applied to the plant dynamics in order to be finitely
discretized. Then, on the base of the sampled dynamics, a
discrete–time controller is derived, achieving speed and flux
modulus tracking objectives. Finally, a reduced order observer
is designed for rotor fluxes and load torque observation.

Index Terms— Induction motors, sliding mode control,
discrete–time systems, observer.

I. I NTRODUCTION

I NDUCTION motors are among the most used actuators
for industrial applications due to their reliability, rugged-

ness and relatively low cost. On the other hand, the control
of induction motor is a challenging task since the dynamical
system is multivariable, coupled, and highly nonlinear. Sev-
eral control techniques have been developed for induction
motors [1], [3], [13], [12], among which the sliding mode
technique [14],[5]. Typically, when implemented on digital
devices, the control law is approximated by using zero order
holders. This approximation represents a clear disadvantage.
Analogously to [2] and to what done in other applications
such as in [6], [11] and [4], the alternative is to design a
digital controller directly using a digital model of the motor
[9]. Unfortunately, the sampled model of the induction
motor is only approximated, since it is expressed as an
infinite series. To bypass this difficulty, following [10] in
this work we obtain an exact closed form of the sampled
dynamics using a preliminary continuous feedback which
ensures the finite discretizability. In the case of the induction
motors such a closed form discretization can be obtained in
a rather simple way. The advantage of working with a closed
form discretization is clear, and in this respect the use of
the sliding mode technique fits well with the design of the
control law directly in the digital setting. After deriving the
digital controller, we will design a reduced order observer
for the estimation of the load torque and motor fluxes, in
order to eliminate the need of the full state measurements.

The paper is organized as follows. In Section II the
continuous–time induction motor model is briefly reviewed,
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and the exact sampled dynamics of this model are derived.
In Section III a discrete–time sliding mode control for
rotor angular velocity and square modulus of the rotor
flux vector tracking is designed. To remove the hypothesis
on rotor fluxes and load torque measurability, a discrete–
time observer is proposed in Section IV. Section V shows
the simulation of the closed-loop induction motor control
system. Final comments conclude the paper.

II. SAMPLED DYNAMICS OF INDUCTION MOTORS

In the following a sampled version of the dynamics of
an induction motor will be derived. Under the assumptions
of equal mutual inductance and linear magnetic circuit, a
fifth–order induction motor model is written as follows [8]

Φ̇ = −αΦ + pω=Φ + αLmI

İ = αβΦ− pβω=Φ− γI + 1
σ u

ω̇ = µIT=Φ− 1
J TL

θ̇ = ω

(1)

whereθ and ω are the rotor angular position and velocity
respectively,Φ = ( φα, φβ )T is the rotor flux vector,I =
( iα, iβ )T is the stator current vector,u = ( uα, uβ )T is
the control input voltage vector,TL is the load torque,J

is the rotor moment of inertia,= =
(

0 −1
1 0

)
, α = Rr

Lr
,

β = Lm

σLr
, γ = L2

mRr

σL2
r

+ Rs

σ , σ = Ls− L2
m

Lr
, µ = 3

2
Lmp
JLr

, with
Ls, Lr Lm being the stator, rotor and mutual inductances
respectively,Rs andRr are the stator and rotor resistances,
andp is the number of pole pairs.

The following hypothesis will be instrumental for deriv-
ing the sampled model of the motor dynamics.

(H1) The load torqueTL can be approximated by a signal
CL which is constant over the sampling periodδ.

Hypothesis (H1) is acceptable in all cases in whichTL

varies slowly with respect to the system dynamics. In order
to obtain a finite discretization of the system dynamics (1),
in the spirit of [9], [10] let us consider first the following
feedback

u = σpω=(I + βΦ) + epθ=e−pθk=v. (2)

Hereθk indicates the value ofθ at the time instantkδ, with
δ the sampling period andk = 0, 1, 2, · · ·. Note that the
first term of (2) and the termepθ= have to be implemented
via an analogical device, while the terme−pθk= and the
new controlv (designed on the basis of the discrete time
representation of the system) can be implemented via a
digital device.



Hence, the following controlled dynamics are obtained

Φ̇ = −αΦ + pω=Φ + αLmI

İ = αβΦ− γI + pω=I + 1
σ epθ=e−pθk=v

ω̇ = µIT=Φ− 1
J TL

θ̇ = ω.

(3)

Then, the finite discretization will be obtained making use
of the following globally defined change of coordinates and
inputs




Φ̃
Ĩ
ω
θ


 =




e−pθ=Φ
e−pθ=I

ω
θ


 , ṽ = e−pθk=v. (4)

The transformed variables̃Φ, Ĩ in (4) are the flux and
the current rotated according to the electrical rotor angular
positionpθ. An analogous consideration holds for the new
input ṽ in (4). Note thatṽ is constant over the sampling
period whenv is constant and equal tovk = v(kδ).

In the new variables (4) and under hypothesis(H1), the
dynamics in (3) are expressed as follows

˙̃Φ = −αΦ̃ + αLmĨ

˙̃I = αβΦ̃− γĨ + 1
σ ṽ

ω̇ = µĨT=Φ̃− 1
J CL

θ̇ = ω

(5)

since d
dte

−pθ= = −pω=e−pθ=. Note that equations (5)
are nonlinear, but the closed form discretization is now
easily obtained by noting that the dynamics forΦ̃ and
Ĩ are linear, and the control̃v will be designed to be
constant over the sampling periodδ. DenotingΦ̃k = Φ̃(kδ),
Ĩk = Ĩ(kδ), ωk = ω(kδ), CL,k = CL(kδ), andṽk = ṽ(kδ),
long but trivial calculations provide theexact closed form
discretization of the system (5)

(
Φ̃k+1

Ĩk+1

)
= Ad

(
Φ̃k

Ĩk

)
+ Bdṽk

ωk+1 = ωk + η1,k ĨT
k =Φ̃k − CL,k

J
δ

+
(
η2,kΦ̃T

k + η3,k ĨT
k

)
=ṽk

θk+1 = ωkδ + κ1,k ĨT
k =Φ̃k − CL,k

J

δ2

2

+
(
κ2,kΦ̃T

k + κ3,k ĨT
k

)
=ṽk + θk

with output

yk =
(

ωk

Φ̃T
k Φ̃k

)

where η1,k, η2,k, η3,k, κ1,k, κ2,k and κ3,k are bounded
functions,

Ad = eδA =
(

a11I2x2 a12I2x2

a21I2x2 a22I2x2

)
,

Bd =
∫ δ

0

eξAB dξ =
(

b1I2x2

b2I2x2

)
,

A =
(−αI2x2 αLmI2x2

αβI2x2 −γI2x2

)
, B =

(
02x2
1
σ I2x2

)

a11, a12, a21, a22, b1, b2 are constants, andI2x2, 02x2 are
the identity and zero matrices, respectively.

III. D ISCRETE–TIME CONTROL OF INDUCTION MOTORS

The controlled variables are the angular velocity and flux
modulus tracking. The control aim is to track fixed refer-
ences along with disturbance rejection. This will be realized
by means of a discrete–time sliding mode control [14]. The
hypothesis of full state and disturbance measurability, here
used, will be removed in the next section.

Let us define the output tracking error

ek = yk − yr,k (6)

whereek = (e1,k e2,k)T , yr,k = (ωr,k Φ̃r,k)T with ωr,k

andΦ̃r,k the rotor angular velocity and the rotor flux square
modulus references, respectively. Then, the system error
dynamics are given by

ek+1 =

(
ξ1,k + λT

1,kṽk − δ
J CL,k − ωr,k+1

ξ2,k + λT
2,kṽk + b2

1ṽ
T
k ṽk − Φ̃r,k+1

)
(7)

where

ξ1,k = ωk + η1,k ĨT
k =Φ̃k,

λT
1,k =

(
η2,kΦ̃T

k + η3,k ĨT
k

)
=,

ξ2,k = a2
11Φ̃

T
k Φ̃k + 2a11a12Φ̃

T
k Ĩk + a2

12Ĩ
T
k Ĩk,

λT
2,k = 2a11b1Φ̃

T
k + 2a12b1Ĩ

T
k .

The design of the control law is complicated by the fact
that system (7) depends on quadratic control terms. In order
to simplify the control design, the input̃vk is transformed
into a new controlwk as follows

wk = Bkṽk (8)

where Bk = ( λT
1,k, λT

2,k )T
, wk = ( wα,k, wβ,k )T and

dk = det(Bk) 6= 0. Due to (8), the difference equation for
e1,k+1 depends only on the inputwα,k, and therefore, the
control design is simplified. Now, replacing (8) in (7) we
obtain the following equations

e1,k+1 = ξ1,k + wα,k − δ

J
CL,k − ωr,k+1

e2,k+1 = ξ2,k + wβ,k

+b2
1w

T
k (B−1

k )T (B−1
k )wk − Φ̃r,k+1.

In discrete–time sliding mode control schemes [14],
two steps design are performed. First, a sliding surface
Sk is chosen and, second, a sliding control is designed.
Error functions are natural choices as sliding surface
functions. Therefore, we chooseSk = ( S1,k, S2,k )T =
( e1,k, e2,k )T = 0 as sliding surface.



A. Rotor Angular Velocity Control

As mentioned above, the control objective is to realize
angular velocity tracking and disturbance rejection. For, an
equivalent controlweqα,k is calculated fromS1,k+1 = 0,
obtaining

weqα,k = −ξ1,k +
δ

J
CL,k + ωr,k+1.

Let us writeweqα,k andS1,k+1 as follows

weqα,k = −(S1,k + ξ1,k − δ
J CL,k

−ωr,k+1 − ωk + ωr,k)

S1,k+1 = S1,k + ξ1,k − δ
J CL,k

−ωr,k+1 − ωk + ωr,k + wα,k.

(9)

Then, we consider the following control

wα,k =





weqα,k if |weqα,k| ≤ w0,α

w0,α
weqα,k

|weqα,k| if |weqα,k| > w0,α

with w0,α a bound. Now, when|weqα,k| ≤ w0,α, one
haswα,k = weqα,k, ensuring the evolution on the sliding
manifold S1,k = 0. When |weqα,k| > w0,α, the second
equation of (9) yields

S1,k+1 = S1,k + ξ1,k − δ

J
CL,k

−ωr,k+1 − ωk + ωr,k + w0,α
weqα,k

|weqα,k|
=

(
S1,k + ξ1,k − δ

J
CL,k

−ωr,k+1 − ωk + ωr,k

) (
1− w0,α

|weqα,k|
)

and making use of absolute values we have that

|S1,k+1| =
∣∣∣S1,k + ξ1,k − δ

J
CL,k

−ωr,k+1 − ωk + ωr,k

∣∣∣
(

1− w0,α

|weqα,k|
)

=
∣∣∣S1,k + ξ1,k − δ

J
CL,k

−ωr,k+1 − ωk + ωr,k

∣∣∣− w0,α

≤ |S1,k|+
∣∣∣ξ1,k − δ

J
CL,k

−ωr,k+1 − ωk + ωr,k

∣∣∣− w0,α.

If

∣∣∣ξ1,k − δ

J
CL,k − ωr,k+1 − ωk + ωr,k

∣∣∣ < w0,α

then|S1,k+1| < |S1,k| and therefore|S1,k| decreases mono-
tonically and after a finite number of steps|weqα,k| ≤ w0,α

is achieved, so thatωk tends asymptotically toωr,k.

B. Square Modulus Rotor Flux Control

Now, let us turn to the design ofwβ,k in order to stabilize
S2,k. The dynamics forS2,k+1 can be written as follows

S2,k+1 = akw2
β,k + bkwβ,k + ck (10)

where

ak =
b2
1λ

T
1,kλ1,k

d2
k

, bk = 1− 2b2
1wα,kλT

1,kλ2,k

d2
k

ck = ξ2,k − Φ̃r,k+1 +
b2
1w

2
α,kλT

2,kλ2,k

d2
k

.

Then, we calculate the equivalent controlweqβ ,k as
solution ofS2,k+1 = 0:

weqβ ,k =
−bk +

√
b2
k − 4akck

2ak
. (11)

It can be checked thatak 6= 0, ∀ k. On the other hand, the
equivalent control (11) is only valid when the discriminant
is greater or equal to zero, i.e.,b2

k − 4akck ≥ 0. When
b2
k − 4akck < 0, in order to overcome the mathematical

difficulty, we considerw̃eqβ ,k = − bk

ak
as equivalent control,

which is such thatS2,k+1 = ck. Therefore, we introduce
the term

w̃β,k =





weqβ ,k if b2
k − 4akck ≥ 0

w̃eqβ ,k if b2
k − 4akck < 0

(12)

and the following control

wβ,k =





w̃β,k if |w̃β,k| ≤ w0,β

−w0,β
w̃β,k

|w̃β,k| if |w̃β,k| > w0,β

with w0,β an appropriate bound.
When |w̃β,k| ≤ w0,β the applied control isw̃eqβ ,k, and

one can verify that coherently conditionb2
k−4akck < 0 will

take place. In this case,S2,k tends tock, and sinceck tends
asymptotically to zero there exists a critical time instantkcr

in which b2
k − 4akck ≥ 0, ∀ k ≥ kcr, andw̃β,k will switch

to weqβ ,k, determining an evolution on the sliding manifold
S2,k = 0 from the time instantkcr + δ on.

To complete the stability analysis, let us consider the case
|w̃β,k| > w0,β . Correspondingly, (10) is represented in the
following form

S2,k+1 = S2,k + akw2
β,k + bkwβ,k + ck

−Φ̃T
k Φ̃k + Φ̃r,k.

Hence

S2,k+1 = S2,k + akw2
0,β − bkw0,β

w̃β,k

|w̃β,k|
+ck − Φ̃T

k Φ̃k + Φ̃r,k

and making use of absolute values

| S2,k+1 | ≤ | S2,k + akw2
0,β − bkw0,β

w̃β,k

|w̃β,k|
+ck − Φ̃T

k Φ̃k + Φ̃r,k | .



Now, if ∣∣∣w̃β,k − Φ̃T
k Φ̃k + Φ̃r,k

∣∣∣ < w0,β

it can be checked that|S2,k| and w̃β,k decrease monotoni-
cally. Hence, when|weqβ ,k| ≤ w0,β , the control will change
from −w0,β

w̃β,k

|w̃β,k| to (12).

IV. D ISCRETE–TIME CONTROL FROM MEASURED

VARIABLES

In practical cases, the rotor flux and the load torque are
not measurable. Hence, a discrete–time observer is proposed
in the following.

For the load torque estimation we consider the following
hypothesis.

(H2) The load torque dynamics are slow with respect to
the electromagnetic ones, namelyCL,k+1 = CL,k.

The flux observer is of the following form

ˆ̃Φk+1 = a11
ˆ̃Φk + a12Ĩk + b1ṽk

so that the dynamical error equation becomes

eΦ,k+ = a11eΦ,k, eΦ,k = Φ̃k − ˆ̃Φk.

It can be checked that|a11| < 1. Hence,ˆ̃Φk asymptotically
converges tõΦk.

As far as the load torque estimation is concerned, let us
consider the following estimator

ω̂k+1 = ωk + η1,k ĨT
k =̂̃Φk

+
(
η2,k

̂̃Φ
T

k + η3,k ĨT
k

)
=ṽk

− δ

J
ĈL,k + l1(ωk − ω̂k)

ĈL,k+1 = ĈL,k + l2(ωk − ω̂k).

Settingeω,k = ωk−ω̂k, eL,k = CL,k−ĈL,k as rotor angular
velocity and load torque estimate errors, respectively, the
dynamical error equations are

(
eω,k+1

eL,k+1

)
=

(−l1 − δ
J

−l2 1

)(
eω,k

eL,k

)

+η1,k ĨT
k =eΦ,k + η2,keT

Φ,k=ṽk.(13)

SinceeΦ,k tends asymptotically to zero andη1,k ĨT
k = and

η2,k=ṽk are bounded terms, choosingl1 and l2 such that
the dynamical matrix in (13) is Hurwitz, then̂wk, ĈL,k

asymptotically converge towk, CL,k.

V. SIMULATION RESULTS

The results of the above sections are simulated consider-
ing a three–phase, two pole induction motor with parameters
values defined as follows:Rs = 14 Ω, Ls = 400 mH,
Lm = 377 mH, Rr = 10.1 Ω, Lr = 412.8 mH, J = 0.01
Kg m2 andδ = 0.0001 s.

The output tracking simulations results are shown in fig-
ure 1. The rotor angular velocity reference has a sinusoidal
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Fig. 1. (a) Rotor angular velocity tracking (b) Flux modulus tracking.
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Fig. 2. (a) Transient angular velocity response (b) Transient flux modulus
response
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Fig. 5. Graphical depiction of the discriminant andck

shape and the flux modulus reference is constant at0.2 Wb.
Figure 2 is a zoomed image of 1 in order to observe the
transient response. The unknown load torque is supposed
square–shape and the observer behavior is shown in figure
3, where the observer gains arel1 = 50 and l2 = −45.78.

The estimate of the rotor fluxes is shown in figure 4. It is
worth to mention that the continuous–time induction motor
model is simulated with the discrete–time controller, and
as can be appreciated, the results predict that the control
strategy here presented performs well.

Now, we show by simulations the facts presented in
Section III about the discriminant(b2−4akck) and the value
ck. Figure 5 shows these variables. It can be appreciated
that the discriminant starts with a negative value but, asck

asymptotically decays to zero, the discriminant approaches
zero and finally reaches the steady–state positive value equal
to one. All initial assumptions are satisfied by any initial
conditions and any value of the plant load torque.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have used some results on finite dis-
cretizability of nonlinear continuous–time systems [9], [10]
to determine an exact sampled–data representation of in-
duction motors. Using the model so determined, we have

designed a hybrid observer–based controller to solve the
tracking problem on output velocity and flux modulus,
in presence of an unknown load torque. Open problems
remain, among which the implementation with discrete
devices of the continuous part of the controller, and the
study of the robustness versus parameters uncertainties.
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