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A higher order sliding mode controller for a class of MIMO
nonlinear systems: application to PM synchronous motor control

S. Laghrouche, F. Plestan and A. Glumineau

Abstract—A new robust higher order sliding mode con-
troller is proposed for a class of MIMO nonlinear systems.
The controller synthesis takes three steps: a) the higher order
sliding mode problem is formulated in input-output term;
b) the problem is viewed in uncertain linear context by
considering uncertain nonlinear functions as bounded non
structured parametric uncertainties; c) following the optimal
sliding-mode design for linear systems, a time varying manifold
is designed through the minimization of a quadratic cost
function over a finite time interval with a fixed final state. The
control law which engenders the slidin% on the time varying
surface, yields the establishment of am*" order sliding mode.
In order to show that the designed controller is well-adapted
for practical implementation and that all the features of linear
quadratic control can be used to synthesize the controller's
gain, a controller for a permanent magnet synchronous motor
is designed and implemented on an experimental set-up.

I. INTRODUCTION

of o. This procedure has been generalized in [2] to a
class of MIMO systems with uncertainties, but only in
the second order sliding mode case. Arbitrary-order sliding
controller for SISO systems with finite time convergence
has been proposed in [15], [16], [17]. The algorithm in
[16] is inspired by the so-called “terminal sliding modes
control” [22]. By tuning only one “gain” parameter and
from the knowledge of the relative degree of the output,
the controller allows the tracking of smooth signals. As the
control algorithm needs the knowledge of high order time
derivatives of the output, the author proposes to use the
robust exact finite-time convergence differentiators based
on second order sliding mode [14].

The aim of this paper is to present a new arbitrary-order
sliding mode controller for a class of uncertain minimum-
phase MIMO nonlinear systems. The main objective is
to propose a controller for which the implementation is

The standard sliding mode features are high accuragymple, the convergence time is finite and the robustness
and robustness with respect to various internal and external ansured. The controller design is combining standard
disturbances. Let(z,t) (¢ € IR" is the state variable) gjiging mode control with linear quadratic (LQ) one over a
the sliding variable, the basic idea is to force the statgnite time interval with a fixed final state [19]. The infinite-
via a discontinuous feedback to move on a prescribgghyizon linear quadratic control has been used by [20],

manifold S = {z € R"|o(z,t) = 0} (called thesliding

[21] to synthesize sliding mode manifold for MIMO linear

manifold. Specific problem entailed by this technique is theyystems. Actually, the problem of the higher order sliding
chattering effectj.e. dangerous high-frequency vibrations54e control of MIMO minimum-phase uncertain systems

of the controlled system. To overcome this problem, &an pe formulated in input-output terms only through the
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new approach called “higher order sliding mode” has be€gfarentiation of the sliding vectos, and is equivalent to
recently proposed [1], [5], [13]. Instead of influencing thepe finite time stabilization of integrators chains with non-
first sliding manifold time derivative, the “sign” function is |inear uncertainties. These latter are considered as bounded
acting on its higher time derivative. Keeping the main adpo stryctured parametric uncertainties: in this case, the
vantages of the standard sliding mode control, the chatterlrggstem can be viewed as an uncertain linear system. Then
effect is eliminated a?’sl higher order precision is providegyiowing the optimal sliding mode formulation for linear
[13]. In the case ofr™ order sliding mode control, the gystems [21], and considering the uncertain linear system,
objective is to keep the sliding variabteand itsr — 1 first 4 gptimal time varying switching manifold is determined
time derlvatlveﬁs to zero through a discontinuous functiopy minimizing a quadratic cost function over a finite time
acting on ther™ time derivative of the sliding variable.  interyal [0, ¢,] with a fixed final state. The standard sliding
Several second order slld_mg mode algorithms are proposéthde over this manifold (which depends on the sliding
in [5], [13] for SISO nonlinear systems. Among them argector 5 and its(r — 1) first time derivatives) leads to the
the well-known “twisting” and “super-twisting” algorithms. egtaplishment oft" sliding mode in finite time with respect
Another2™? order sliding mode control algorithm derived to o.

from the optimal bang-bang control is proposed for SISGhe aigorithm needs the relative degreewith respect to
nonlinear systems with uncertainties [1] and ensures a Mayge sjiding variabler; and the bounds of uncertainties and
imum convergence time. As only the second order slidingag several advantages. First, the convergence time is fixed
mode problem is studied, an algorithm is given, whichy priori via the parametet; and the control law can be
does not need the knowledge of the first time de”Va“V‘adjusted viat; and two weighting matrices?; and Q.
Furthermore, this strategy can be applied for all value of
sliding mode order (greater or equal to the relative degree).
Finally, the structure of the controller is well-adapted to
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a practical implementation: a robust second order sliding ¢ > 0, provided thatu(t) is continuous and:(t) € U
mode controller is designed to drive a permanent magnet. Furthermorep = «("=*) is bounded byv,;.
synchronous motor and is implemented on an experimentdB. Functionsy;(z,t) and~;;(z,t) are bounded uncertain
setup [24] to reach an industrial benchmark defined in thieinctions: there exisK;;., € R, K;jn» € IR, Co; € R™

framework of a CRAFT European project [9]. (1 <i<p,1<j<p) such that
[I. PROBLEM FORMULATION lpi(z,t)] < Co;
Consider the nonlinear system 0 < Kiim < yii(2,t)| < Kianr 2
. Kijm < [7ij(2,t)| < Kijnr fori # 5.
i = f(z)+g(x)u 1)
y = o) PROBLEM STATEMENT. The »** order sliding mode

wherez € R" is the state variabley € IR? is the input control problem of (1) is equivalent to stabilize to zero, in

control ando € IRP is the output vector (S||d|ng VECtOF). finite time, the following MIMO uncertain linear system

f(z), g(z) and o(z,t) are uncertain sufficiently smooth . s ~

functions. Assume that Zi = AuZi+AnZ
Zy = p+v

3)

H1. The relative degree; of each outputr; of (1) with R
respect tou is assumed constant, known and such thavhereA, = diag[Ay; - A,y] € RP—1>xp(r=1) 4, =

p1 = py = -+ = p, = p. The associated zero dynamicsdiag[A1s--- Aps] € RP(""D*P and

are stable. The sliding mode ordeis the same for all the L L I

outputs. T 2 2.4,
f . 22 = [ 21 . ZP ]T ,

With these hypotheses, the context is more general, at our - 6 1 " 0 A

best knowledge, than previous works: in [2], [18], a solution
has been given only to the second order sliding mode
control for a less wide class of MIMO systems (relative
degrees equal 1). Note also that it allows to deal with a
number of relevant applications (for example, see [7], [3] [ I |
for the control of induction motor, [4], [23], [11] for the

= : . . . . ,

control of synchronous motor). N Lo 0] (r=1)x(r—1) 4)
Definition 1.[2] Given the sliding vector, andr € IN ° L0 (T_p)o ! ](T’(i)_xlj

with » > 1. The*r*" order sliding set” ofs, denoted Y = [“1 T Up }’

S7", is defined asS” = {z | o(x,t) = o(z,t) = -+ = Yo Y2 o Yip

oY (x,t) = 0}. r is called “sliding mode order”. The 5  — : c 7

behaviour of (1) satisfyings” is called %" order sliding ' ]

mode” with respect to the sliding vecter. - L Tp2 Ve pxp

The r" order sliding mode control approach allows the ¥ = {“Pl : %}

finite time stabilization to zero ot and itsr — 1 first pxt

time derivatives by defining a suitable discontinuous contrdbr 1 < i < p andz = [z}, -+, 2L, -+, 20 - 2] =
function which is either the actual control jf = r, or [017...’05“1),...,UW...’U](;“*U]_

its (r — p)t" time derivative ifr > p. Let us consider

the case where > p- Extend System (1) by introduction IIl. SYNTHESIS OF AN HIGHER ORDER SLIDING MODE

of successive time derivatives, @, ---,u(""?~1 as new CONTROLLER

auxiliary state variables and = u("~#) as a new control;  The synthesis of an higher order sliding mode controller
achieve a system with relative degree Denote fo =  for (1) is made through the following idea: an optimal time
[f(z) + g(@)Tni1]", Tpin, o Thgre p’olXP]T’ ge = varying switching manifold is designed by minimizing a lin-
[0, 0, ---,O,u(T*P)T]T, Tny; = W™ o wfTYT  ear quadratic criterion over a finite time interya, to+t ]

(1 <j <r—p). The output vector satisfies an equation with a fixed final state on (3). Le$, (resp.Sy) denote the
of the formo(") = o(x,t) +~(z, t)v, wherey = L’ o and  optimal switching manifold at the timg, (resp. atto + ty)

¢ =Ly L% 0. Assume that with ¢q the time for which the sliding mode begins on the
H2. v e U = {u : |u;| < upng, 1 < i < p} whereup = optimal manifold. An higher order sliding mode behavior
[urri, -+ unp)t is @ real constant vector; if = p, then occurs att = to + t¢. On the intervallty, to + t¢], the

u(t) is a bounded discontinuous function of time and theoefficients of the optimal switching manifold depend on
solution of the differential equation(1) with discontinuoustime and can be computesff line. In general at = 0, the
input » admits a solution in Filippov sense [6] af” system trajectories are not &y = 0. Thus, sum up the
for all t. If » > p, the solution of (1) is well defined control strategy by the three following stages

2593



e t €10, to. At t =0, the system is generally not on From (8), letS(Z, ) defined by
the switching manifoldSy. Then, the control task is to

drive the system trajectories of (3) to reagh= 0. g S1
is the time necessary to reach the switching manifold S(Z,7) = :
So=0 S, (12)

o t € [to, to + ty[. From ¢y, the control task is to
maintain the system trajectories of (3) on the time
varying switching manifoldS(t) (¢ € [to, to + tf])
which permits to reacltyy = 0.

o t € [to+ty, oof. At t =ty +ty, all the components
of Sy equal 0, and front, + ¢ to oo, the control task
is to maintain the system trajectories S = 0.

Zy + (Q2—21A\1T2p(7) - Q2_2121T2
V(n)H(T)V ()T + Qyn Q1) 2

EquationS(Z, 7) = 0 describes the desired dynamics which
satisfy the finite time stabilization of vectdz? ZI]* to
zero and minimize the quadratic cost function (7). Then, the
optimal switching manifoldon which system (3) is forced

A. Optimal switching manifold design to slide on via the discontinuous contral is defined as

First, note thatr = ¢ —¢o with ¢ € [to, to+¢s]. We want
to stabilize (3) in finite time while minimizing the following
linear quadratic cost over a finite time interyal t],

S

{(Z1,25) + S(Z1,Z5,7) =0} (13)

J = {2t PrZ(ty)dr}, tp <+o0  (5)

under the fixed final states constraifi{t;) = 0 with Z =
(zT ZIT, where

] Qui Qr2
Q= [ QT Q2 } ©

is a positive symmetric matrix, such th@dt, Q12 andQs2
are(p-(r—1)xp-(r—1))- (p-(r—1) x(p))- and(p x p)-

B. Controller design

The attention is now focused on the design of the
discontinuous vector control lawwhich drives the system
trajectory of (3) to lie onS in a finite time and which
maintains it on the origin. Consider only the second stage
control, from the reaching ofy at¢ =ty (i.e. 7 = 0) to
the reaching ofS; = 0 (i.e. Z = 0) att = ¢y + t5 (i.e.

T = tf).

dimensional matrices respectively. Criterion (5) becomes H4. The matrixy is positive definite withy; > 0 (1 < <

J = %f(ff ZTQu1Zy + 22T Q1225 + ZT Qo2 Z> dr -

p) and is dominant diagonal.

H5. At 7=0 (le t= to), S(Zl,ZQ,O) =0.

The idea is to determine the switching manifold resulting irf "orem 1. Consider the nonlinear system (3). Suppose
the minimum of the criterion (7); the sliding mode occurghat it is minimum phase and that hypothesés H, Hs,
on this manifoldr = 0 (i.e.t = o ) is the instant for which Ha and 75 are fulfilled. LetS < Ir” defined by (12) with

the sliding mode begins, it is regarded as the initial point irfl12 defined by (4),P(7) the unique non-negative definite

function (7). In the first equation of (3), considgg as the

solution of the differential matrix Riccati equation (9) (with

state variable, and, as a fictive control input. Then, the & 9ivenP(ty) = Py), V and H the solutions of equations

problem leads back to the resolution of th€ problem (7)
for the dynamics ofZ;, under the constraing; (t;) = 0.
A fictive control Z,, stabilizing Z; to Z;(¢;) = 0 in finite

time and minimizing the quadratic cost function (7), is given

by [19]
Zy = —(Qz‘zlﬁsz— Qz_ng{QVH_lVT

+Q% Q1) 7. ®)

(10) and (11) and? is a symmetrical and positive matrix
defined by (6). The control input whose the(r — p)t*
time derivative is defined as

where P(t) € R"~Y>*("=1 is the unique solution to the ith

differential Riccati equation (with a statd@(t;) = Py)

—P = P(A, - g12Q§21Q1Tg)A+ (211 - 212622721
)P — PAQy ALP+ (Qu
—Q12Q5 Q%)
9

V e RUO-DUx0-D and H ¢ RU-D*0-1 are the
solutions to two linear differential equations (< ty,
V(t) =1, H(t;) = 0)

_V = (A\ll - 12[12@2_2162{2 - A\IQQg_Qle{zP)TVa (10)
H=VTA,Q5 AT, V. (11)

ugr_p) sign(Sh)
v o= = —a- (14)
u](f*P) sign(Sp)
a 2 Maxigjcp Co; 4;®j )
Kjjm — Z Kjim
i=1,ij
01
: > Max(]¢- X +A-%))
’ (15)
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where

E = [O'T O'T . e O_(sz)T]T
U = QuALP - QuALVH 'V + Q50
A Qu AL - (P-VH'WT —v(H-)VT

~VH-}(VT))
(16)
with P, V and H defined respectively by (9)-(10)-(11),
leads to the establishment of* order sliding mode with
respect too by attracting each trajectory in finite time.

The convergence time is. -

Sketch of proof. By the same way as [12], and knowing
that the outputs are sufficiently decoupled (Hypothesis H4),
i.e. it is possible toindependently}choose each component

of the control vectorv in accordance to the control law
(14) which guarantees that each component @, Zs, t)

IV. CONTROL OF SYNCHRONOUS MOTOR
A. Model and uncertainties

The electrical and mechanical equations of a 3-phase
permanent magnet synchronous motor can be expressed
in the so-called(d, q)-frame by application of the Park
transformation and described in [8]

db

&

w P . . f'u Cl
@~ glkam Loiat oo =Fw =7
7:ri Rs Lq .

E T P S R L

dZ % d . 7:is. 1
q _ P f P

T P P TR

q q q q

(20)
where 6 is the angular position of the motor shaft, the

reachs zero in finite time, it is easily proved that (15) igingular velocity of the motor shaft; the direct current and

sufficient to ensures; - S; < 0 for 1 < i < p for the under

consideration uncertainties. -

The instantr = 0 (i.e. t = ty), which is the initial time in

iy the quadrature current:; is the flux of the permanent
magnet,P the number of pole pairs}, the stator windings
resistance,L; and L, the direct and quadrature stator
inductances respectively. is the rotor moment of inertia,

(5), is the instant for which the sliding mode begins [20].f the viscous damping coefficient add the load torque.

In general, before = ¢, (i.e.t € [0, to]) the system is not
on the optimal switching manifold, i.e. not on (from 12)

S S(Z,0) = [S1(Z,0) -+ S,(Z,0)] = 0.

17)

t =ty is the time necessary to reash = 0 by the control
law v; = —a sign (S;(Z,0)) (1 <@ < p). Att =tq (i.e.

7 = 0), the state variables are on the optimal manifold.

Over the time intervalty, to + t7] (i.e. 7 € [0, ¢f]), the
control lawv; = —a sign S;(t) maintains

S(Z,7)=0.

(18)

vq 1S the direct voltage and, is the quadrature voltage. The
parametersk,, Ly, L, and f, are supposed to vary with
respect to their nominal valu€s,o, Lo, Lso and f,o (for
instance,R, has high variations due to the temperature).
The formalization of these variations is stated through

F(La—Lg) =k sz =ky —H =k
Rs _ q _ 1 _
“h Pl L= "
_P¢>f_k _PLg _ _Rs_k ( )
Lq - 7 Lq - Lq - 9
L%:/ﬁo

wherek; = ko; + 0k; (1 < i < 10) with ky; the nominal

Consequently, the equality (8) minimizing (5) under thevalue of the concerned parameter afig is uncertainty

constraintZ(t;) = 0, holds. Then, higher order sliding
mode occurs. The convergence timetist t;. Fromt =

to +ts the control task is to maintain the system trajectory: = [z x5 23 4]

on the origin. This objective is fulfilled by the control law
v; = —a sign (Sy;) which allows the continuation of the
sliding on

S; = S(Zt;)=0. (19)

The proposed algorithm can be expressed through the

following sequence of steps.

Algorithm. After the determination of the equation
of the optimal switching manifold (13), the control is
described by

(l) At t = 0, if SO # 0, applyvl = —« sign (SOi)i

(i) If So = 0, thent = ¢, (i.,e. 7 = 0). Apply
for any t € [to, to + ty] (i.e. 7 € [0, ty])
v; = —asign (S;(7)).

(i) If tefto+ty, oof, applyv, = —asign (Sy;).

on the concerned parameter such that| < 0ko; < |kil,
with §kq; a known positive bound. Let denote the state
= [0 w iq ig)" andu the inputu =

[u1 ua]” = [va vy]T. Then, a state space representation
of the synchronous motor can be written as the following
nonlinear system

i’l = X2

i’g B (kll'g + kQ)fL’4 + kg(EQ — % (22)
T3 = kaxs+ ksxoxy + keuq

Ty = krxo+ ksxoxs + koxy + kious

with z € X ¢ R* andu € Y C IR? such thatX¥ =
{.’17 c R* | 1 € IR, |£CZ| < xipax, 2 <1 < 4} and
U={ue R | |u| < umax, 1 <i < 2}, zopmax
the maximum value of the angular velocityzy;4x and
zamax the maximum values of the currents, angh;ax

andusyr 4x the maximum values of the voltage inputs.

B. Problem statement

The aim is to design an appropriate control which guar-
antees robust performance in presence of parameters and
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load torque variations. The control objective is double. Firsti11,,,, K11y, Koom, Koopr and Koy such tha1121| < Ch,

the rotor angular position:; = 6 must track a reference 0 < Kiim < ]§11 < Kiim, |ﬁ2| < Cy 0 < Koy, <
trajectory x1,.y. Secondly, the nonlinear electromagneticB,, < Kooy, and |§21\ < Ks1. Then, one can apply the
torque can be linearized to avoid reluctance effects artdgher order algorithm previously presented: the optimal
torque ripple. This objective is equivalent to constrajn=  sliding manifold and the control law are defined by (for

iq to track a constant direct current referengg.r = 0. i=11,2])
C. Control design Si = &i+(Qy ALP(H) + Q5 Qs

The problem under interest in this section is to design _Q521A{QV(t)H(t)_IV(t)T)Ui (27
a MIMO second order sliding mode controller for a per- v = —a;-sign(S;).

manent magnet synchronous motor. It is assumed that gihen it is possible to choose each component of the control

state variables are available for measurement. The contr@lin accordance to Theorem 1, such that the sliding mode
goal is to steer to zero, in finite time, the sliding vectol,ccrs on the intersection of = 0 andé = 0.

o = [o1 oo]T defined as (withe; = x1 — 21,4 and
€3 = T3 — T3pef) D. Implementation Results
es The designed second order sliding mode controller is
é1 + Aé1 + Agey (23)  implemented on the experimental set-up located at IRC-
N CyN's laboratory (Nantes, France) [24]. To implement the
where ), and ; are positive parameters such tetz) = feedback controller, a real time controller board dSPACE

Z4+XA1Z+ gz is Hurwitz polynomial. Note that the relative ps1103 drives the PM synchronous motor. Another syn-
degree ofos equals 1. In order to eliminate chatteringchronous motor is coupled to the shaft of the PM motor in
phenomena, the second order sliding mode strategy exposgfer to apply a load torque. Four sensors give measure-
in Section2 is applied. So, the contral = 4 IS used instead ments of phase currents and voltages. An optical encoder is
of the actual controk(t). It turns out thati acts directly ,sed to measure the position of the motor. The PM motor

on g. Then, the problem is to steerto zero by acting on s 5 putymAx 95DSC060300 (Leroy Somer Co.) drive. Its
its second derivative. Consider the second time de”Vat'Vﬁ'arameters ar®, = 3.3Q, Ly = 0.027H, L, = 0.0339H

of 0, 5 = A+ Bii whered = [iy ], ¢p = 0.341Wb, J = 0.00037kg.m?, f, = 0.0034N.m.s
Ao 5A;, and P = 3. The maximum accepted values are a phase
A = Asg SA, | T Ao +04, current equal to= 6.04, load torque equal t6 N.m, and

angular velocity equal t8000rpm. The rotor inertia of the
B - { Biio 0 } { 0Bin 0 } (24)  load synchronous motor i = 0.00223kg.m?. The angular
B0 Bago 0Ba1 0Ba position reference and the behavior of the load tor@le
applied to the synchronous motor are represented in Figure
=t Bo+0B. 1. The controller is synthesized so that the performances
Expressionsdg, Az, Biio, B21o and Basg are the well are kept despite the load torque applying and parameters
known nominal expressions, whereas the expressiegns variations 50% with respect toR,, +25% with respect
dAs, §B11, 6By anddBs, contain all the uncertainties due to Ly and Lo, £20% with respect tof,0). The controller
to parameters and load torque variations (see the formparameters arey; = —9 €8, as = —3 €5, ty = 0.3s
expressions in [11]). Now, using the static feedback Q11 =2, Q12 = 0 and Qa2 = 25 e — 7. The experimental
i BO_1 Ay + 0] (25) results are givgn in Figures 2-3. An excelleqt_ tracking_is
observed in Figure 2-a that shows the position tracking
where[v1, v9]T is the new control vector, it leads to [11] error does not exceed 0.0%d in spite of the load torque
and parameters variations. Figure 2-b displays the good

[ b1 } _ A Bu 0 [ vy ] (26) convergence of the current; towards its desired value
02 As Ba1  Bao V2 (0.0A). Figure 3 display the voltages, andv,,.

By 0 _ ] V. CONCLUSION
where] <~ > 0. In fact, B~1 A, the first part _ ,

By1 B A methodology for the design of a robust arbitrary order

of control (25) which is also the first derivative of the so-sliding mode controller with a simple structure for a class of
called equivalent controin the sliding mode context [21], MIMO nonlinear uncertain systems has been proposed. The
allows to cancel partially the non-linearities and guaranteecbntroller design combines standard sliding mode control
that min(B22) > max(|B21]). In this case, decoupling the with linear quadratic LQ one over a finite time interval with
MIMO problem into a set of single-input problems can bea fixed final state. The controller is able to steer to zero
done. Asx,, 3, x4, anddk; are assumed to be bounded ,in finite time the outputs of any uncertain smooth MIMO
and under assumption thfBi1| < |B11], [0B21] < |B21|  minimum-phase dynamic system for which the outputs have
and |0 Baa| < |Basl, there exist positives constants, C,, the same relative degree, and for which the sliding mode
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order is the same for all the outputs. The effectiveness
of the method is shown through experimental results of a
permanent magnet synchronous motor control.
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