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Abstract— A new robust higher order sliding mode con-
troller is proposed for a class of MIMO nonlinear systems.
The controller synthesis takes three steps: a) the higher order
sliding mode problem is formulated in input-output term;
b) the problem is viewed in uncertain linear context by
considering uncertain nonlinear functions as bounded non
structured parametric uncertainties; c) following the optimal
sliding-mode design for linear systems, a time varying manifold
is designed through the minimization of a quadratic cost
function over a finite time interval with a fixed final state. The
control law which engenders the sliding on the time varying
surface, yields the establishment of anrth order sliding mode.
In order to show that the designed controller is well-adapted
for practical implementation and that all the features of linear
quadratic control can be used to synthesize the controller’s
gain, a controller for a permanent magnet synchronous motor
is designed and implemented on an experimental set-up.

I. I NTRODUCTION

The standard sliding mode features are high accuracy
and robustness with respect to various internal and external
disturbances. Letσ(x, t) (x ∈ IRn is the state variable)
the sliding variable, the basic idea is to force the state
via a discontinuous feedback to move on a prescribed
manifold S = {x ∈ IRn|σ(x, t) = 0} (called thesliding
manifold). Specific problem entailed by this technique is the
chattering effect,i.e. dangerous high-frequency vibrations
of the controlled system. To overcome this problem, a
new approach called “higher order sliding mode” has been
recently proposed [1], [5], [13]. Instead of influencing the
first sliding manifold time derivative, the “sign” function is
acting on its higher time derivative. Keeping the main ad-
vantages of the standard sliding mode control, the chattering
effect is eliminated and higher order precision is provided
[13]. In the case ofrth order sliding mode control, the
objective is to keep the sliding variableσ and itsr− 1 first
time derivatives to zero through a discontinuous function
acting on therth time derivative of the sliding variable.
Several second order sliding mode algorithms are proposed
in [5], [13] for SISO nonlinear systems. Among them are
the well-known “twisting” and “super-twisting” algorithms.
Another 2nd order sliding mode control algorithm derived
from the optimal bang-bang control is proposed for SISO
nonlinear systems with uncertainties [1] and ensures a max-
imum convergence time. As only the second order sliding
mode problem is studied, an algorithm is given, which
does not need the knowledge of the first time derivative
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of σ. This procedure has been generalized in [2] to a
class of MIMO systems with uncertainties, but only in
the second order sliding mode case. Arbitrary-order sliding
controller for SISO systems with finite time convergence
has been proposed in [15], [16], [17]. The algorithm in
[16] is inspired by the so-called “terminal sliding modes
control” [22]. By tuning only one “gain” parameter and
from the knowledge of the relative degree of the output,
the controller allows the tracking of smooth signals. As the
control algorithm needs the knowledge of high order time
derivatives of the output, the author proposes to use the
robust exact finite-time convergence differentiators based
on second order sliding mode [14].
The aim of this paper is to present a new arbitrary-order
sliding mode controller for a class of uncertain minimum-
phase MIMO nonlinear systems. The main objective is
to propose a controller for which the implementation is
simple, the convergence time is finite and the robustness
is ensured. The controller design is combining standard
sliding mode control with linear quadratic (LQ) one over a
finite time interval with a fixed final state [19]. The infinite-
horizon linear quadratic control has been used by [20],
[21] to synthesize sliding mode manifold for MIMO linear
systems. Actually, the problem of the higher order sliding
mode control of MIMO minimum-phase uncertain systems
can be formulated in input-output terms only through the
differentiation of the sliding vectorσ, and is equivalent to
the finite time stabilization of integrators chains with non-
linear uncertainties. These latter are considered as bounded
non structured parametric uncertainties: in this case, the
system can be viewed as an uncertain linear system. Then,
following the optimal sliding mode formulation for linear
systems [21], and considering the uncertain linear system,
an optimal time varying switching manifold is determined
by minimizing a quadratic cost function over a finite time
interval [0, tf ] with a fixed final state. The standard sliding
mode over this manifold (which depends on the sliding
vectorσ and its(r − 1) first time derivatives) leads to the
establishment ofrth sliding mode in finite time with respect
to σ.
The algorithm needs the relative degreeρi with respect to
the sliding variableσi and the bounds of uncertainties and
has several advantages. First, the convergence time is fixed
a priori via the parametertf and the control law can be
adjusted viatf and two weighting matricesPf and Q.
Furthermore, this strategy can be applied for all value of
sliding mode order (greater or equal to the relative degree).
Finally, the structure of the controller is well-adapted to



a practical implementation: a robust second order sliding
mode controller is designed to drive a permanent magnet
synchronous motor and is implemented on an experimental
setup [24] to reach an industrial benchmark defined in the
framework of a CRAFT European project [9].

II. PROBLEM FORMULATION

Consider the nonlinear system

ẋ = f(x) + g(x)u
y = σ(x, t) (1)

wherex ∈ IRn is the state variable,u ∈ IRp is the input
control andσ ∈ IRp is the output vector (sliding vector).
f(x), g(x) and σ(x, t) are uncertain sufficiently smooth
functions. Assume that

H1. The relative degreeρi of each outputσi of (1) with
respect tou is assumed constant, known and such that
ρ1 = ρ2 = · · · = ρp = ρ. The associated zero dynamics
are stable. The sliding mode orderr is the same for all the
outputs.

With these hypotheses, the context is more general, at our
best knowledge, than previous works: in [2], [18], a solution
has been given only to the second order sliding mode
control for a less wide class of MIMO systems (relative
degrees equal 1). Note also that it allows to deal with a
number of relevant applications (for example, see [7], [3]
for the control of induction motor, [4], [23], [11] for the
control of synchronous motor).

Definition 1.[2] Given the sliding vectorσ, and r ∈ IN
with r ≥ 1. The“rth order sliding set” ofσ, denoted
Sr, is defined asSr = {x | σ(x, t) = σ̇(x, t) = · · · =
σ(r−1)(x, t) = 0}. r is called “sliding mode order”. The
behaviour of (1) satisfyingSr is called “rth order sliding
mode” with respect to the sliding vectorσ.

The rth order sliding mode control approach allows the
finite time stabilization to zero ofσ and its r − 1 first
time derivatives by defining a suitable discontinuous control
function which is either the actual control ifρ = r, or
its (r − ρ)th time derivative if r > ρ. Let us consider
the case wherer > ρ. Extend system (1) by introduction
of successive time derivativesu, u̇, · · · , u(r−ρ−1) as new
auxiliary state variables andv = u(r−ρ) as a new control;
achieve a system with relative degreer. Denote fe =
[[f(x) + g(x)x̄n+1]T , x̄T

n+2, · · · , x̄T
n+r−ρ, 01×p]T , ge =

[0, 0, · · · , 0, u(r−ρ)T
]T , x̄n+j = [u(j−1)

1 · · · u
(j−1)
p ]T

(1 ≤ j ≤ r − ρ). The output vectorσ satisfies an equation
of the formσ(r) = ϕ(x, t)+γ(x, t)v, whereγ = Lr

fe
σ and

ϕ = LgeL
r
fe

σ. Assume that
H2. u ∈ U = {u : |ui| < uMi, 1 ≤ i ≤ p} whereuM =
[uM1, · · · , uMp]T is a real constant vector; ifr = ρ, then
u(t) is a bounded discontinuous function of time and the
solution of the differential equation(1) with discontinuous
input u admits a solution in Filippov sense [6] onSr

for all t. If r > ρ, the solution of (1) is well defined

∀ t ≥ 0, provided thatu(t) is continuous andu(t) ∈ U
∀t. Furthermore,v = u(r−ρ) is bounded byvM .
H3. Functionsϕi(z, t) andγij(z, t) are bounded uncertain
functions: there existKijm ∈ IR, KijM ∈ IR, C0i ∈ IR+

(1 ≤ i ≤ p, 1 ≤ j ≤ p) such that

|ϕi(z, t)| < C0i

0 < Kiim ≤ |γii(z, t)| ≤ KiiM

Kijm ≤ |γij(z, t)| ≤ KijM for i 6= j.
(2)

PROBLEM STATEMENT. The rth order sliding mode
control problem of (1) is equivalent to stabilize to zero, in
finite time, the following MIMO uncertain linear system

Ż1 = Â11Z1 + Â12Z2

Ż2 = ϕ̂ + γ̂v
(3)

whereÂ11 = diag[A11 · · ·Ap1] ∈ IRp·(r−1)×p·(r−1), Â12 =
diag[A12 · · ·Ap2] ∈ IRp·(r−1)×p and

Z1 =
[

z1
1 · · · z1

r−1 · · · zp
1 · · · zp

r−1

]T
,

Z2 =
[

z1
r · · · zp

r

]T
,

Ai1 =




0 1 . . . 0 . . .
...

.. .
. ..

. ..
. ..

...
.. .

. ..
. ..

. ..

0
.. .

. .. . . . 1

0
.. .

. ..
. .. 0




(r−1)×(r−1)

,

Ai2 = [ 0 · · · 0 1 ](r−1)×1

v =
[

u
(r−ρ)
1 · · · u

(r−ρ)
p

]
,

γ̂ =




γ11 γ12 · · · γ1p

...
...

...
...

γp1 γp2 · · · γpp




p×p

,

ϕ̂ =
[

ϕ1

... ϕp

]

p×1

(4)

for 1 ≤ i ≤ p and z = [z1
1 , · · · , z1

r , · · · , zp
1 , · · · , zp

r ] =
[σ1, · · · , σ(r−1)

1 , · · · , σp, · · · , σ(r−1)
p ].

III. SYNTHESIS OF AN HIGHER ORDER SLIDING MODE

CONTROLLER

The synthesis of an higher order sliding mode controller
for (1) is made through the following idea: an optimal time
varying switching manifold is designed by minimizing a lin-
ear quadratic criterion over a finite time interval[t0, t0+tf ]
with a fixed final state on (3). LetS0 (resp.Sf ) denote the
optimal switching manifold at the timet0 (resp. att0 + tf )
with t0 the time for which the sliding mode begins on the
optimal manifold. An higher order sliding mode behavior
occurs att = t0 + tf . On the interval[t0, t0 + tf ], the
coefficients of the optimal switching manifold depend on
time and can be computedoff line. In general att = 0, the
system trajectories are not onS0 = 0. Thus, sum up the
control strategy by the three following stages



• t ∈ [0, t0[. At t = 0, the system is generally not on
the switching manifoldS0. Then, the control task is to
drive the system trajectories of (3) to reachS0 = 0. t0
is the time necessary to reach the switching manifold
S0 = 0

• t ∈ [t0, t0 + tf [. From t0, the control task is to
maintain the system trajectories of (3) on the time
varying switching manifoldS(t) (t ∈ [t0, t0 + tf ])
which permits to reachSf = 0.

• t ∈ [t0 + tf , ∞[. At t = t0 + tf , all the components
of Sf equal 0, and fromt0 + tf to ∞, the control task
is to maintain the system trajectories onSf = 0.

A. Optimal switching manifold design

First, note thatτ = t− t0 with t ∈ [t0, t0 + tf ]. We want
to stabilize (3) in finite time while minimizing the following
linear quadratic cost over a finite time interval[0, tf ],

J = 1
2{Z(tf )T PfZ(tf )dτ}, tf < +∞ (5)

under the fixed final states constraintZ(tf ) = 0 with Z =
[ZT

1 ZT
2 ]T , where

Q =
[

Q11 Q12

QT
12 Q22

]
(6)

is a positive symmetric matrix, such thatQ11, Q12 andQ22

are(p · (r−1)×p · (r−1))-, (p · (r−1)× (p))- and(p×p)-
dimensional matrices respectively. Criterion (5) becomes

J = 1
2

∫ tf

0
ZT

1 Q11Z1 + 2ZT
1 Q12Z2 + ZT

2 Q22Z2 dτ
(7)

The idea is to determine the switching manifold resulting in
the minimum of the criterion (7); the sliding mode occurs
on this manifold.τ = 0 (i.e. t = t0 ) is the instant for which
the sliding mode begins, it is regarded as the initial point in
function (7). In the first equation of (3), considerZ1 as the
state variable, andZ2 as a fictive control input. Then, the
problem leads back to the resolution of theLQ problem (7)
for the dynamics ofZ1, under the constraintZ1(tf ) = 0.
A fictive control Z2, stabilizingZ1 to Z1(tf ) = 0 in finite
time and minimizing the quadratic cost function (7), is given
by [19]

Z2 = −(Q−1
22 ÂT

12P −Q−1
22 ÂT

12V H−1V T

+Q−1
22 QT

12)Z1.
(8)

whereP (t) ∈ IR(r−1)×(r−1) is the unique solution to the
differential Riccati equation (with a statedP (tf ) = Pf )

−Ṗ = P (Â11 − Â12Q
−1
22 QT

12) + (Â11 − Â12Q
−1
22

QT
12)

T P − PÂ12Q
−1
22 ÂT

12P + (Q11

−Q12Q
−1
22 QT

12)
(9)

V ∈ IR(r−1)×(r−1) and H ∈ IR(r−1)×(r−1) are the
solutions to two linear differential equations (t ≤ tf ,
V (tf ) = I, H(tf ) = 0)

−V̇ = (Â11 − Â12Q
−1
22 QT

12 − Â12Q
−1
22 ÂT

12P )T V, (10)

Ḣ = V T Â12Q
−1
22 ÂT

12V. (11)

From (8), letS(Z, τ) defined by

S(Z, τ) =




S1

...
Sp




= Z2 + (Q−1
22 ÂT

12P (τ)−Q−1
22 ÂT

12

V (τ)H(τ)−1V (τ)T + Q−1
22 QT

12)Z1

(12)

EquationS(Z, τ) = 0 describes the desired dynamics which
satisfy the finite time stabilization of vector[ZT

1 ZT
2 ]T to

zero and minimize the quadratic cost function (7). Then, the
optimal switching manifold, on which system (3) is forced
to slide on via the discontinuous controlv, is defined as

S = {(Z1, Z2) : S(Z1, Z2, τ) = 0} (13)

B. Controller design

The attention is now focused on the design of the
discontinuous vector control lawv which drives the system
trajectory of (3) to lie onS in a finite time and which
maintains it on the origin. Consider only the second stage
control, from the reaching ofS0 at t = t0 (i.e. τ = 0) to
the reaching ofSf = 0 (i.e. Z = 0) at t = t0 + tf (i.e.
τ = tf ).
H4. The matrixγ̂ is positive definite withγii > 0 (1 ≤ i ≤
p) and is dominant diagonal.
H5. At τ = 0 (i.e. t = t0), S(Z1, Z2, 0) = 0.

Theorem 1. Consider the nonlinear system (3). Suppose
that it is minimum phase and that hypothesesH1, H2, H3,
H4 andH5 are fulfilled. LetS ∈ IRp defined by (12) with
Â12 defined by (4),P (τ) the unique non-negative definite
solution of the differential matrix Riccati equation (9) (with
a givenP (tf ) = Pf ), V andH the solutions of equations
(10) and (11) andQ is a symmetrical and positive matrix
defined by (6). The control inputu whose the(r − ρ)th

time derivative is defined as

v =




u
(r−ρ)
1

...

u
(r−ρ)
p


 := −α ·




sign(S1)
...

sign(Sp)


 (14)

with

α ≥ Max1≤j≤p




C0j + Θj

Kjjm −
p∑

i=1,i 6=j

KjiM




,




Θ1

...
Θp


 > Max(|ψ · Σ̇ + ∆ · Σ|)

(15)



where

Σ = [σT σ̇T · · · σ(r−2)T
]T

Ψ = Q−1
22 ÂT

12P −Q−1
22 ÂT

12V H−1V T + Q−1
22 QT

12

∆ = Q−1
22 ÂT

12 · (Ṗ − V̇ H−1V T − V ˙(H−1)V T

−V H−1 ˙(V T ))
(16)

with Ṗ , V̇ and Ḣ defined respectively by (9)-(10)-(11),
leads to the establishment ofrth order sliding mode with
respect toσ by attracting each trajectory in finite time.
The convergence time istf .

Sketch of proof. By the same way as [12], and knowing
that the outputs are sufficiently decoupled (Hypothesis H4),
i.e. it is possible toindependentlychoose each component
of the control vectorv in accordance to the control law
(14) which guarantees that each component ofS(Z1, Z2, t)
reachs zero in finite time, it is easily proved that (15) is
sufficient to ensureSi · Ṡi < 0 for 1 ≤ i ≤ p for the under
consideration uncertainties.

The instantτ = 0 (i.e. t = t0), which is the initial time in
(5), is the instant for which the sliding mode begins [20].
In general, beforet = t0 (i.e. t ∈ [0, t0]) the system is not
on the optimal switching manifold, i.e. not on (from 12)

S0 = S(Z, 0) = [S1(Z, 0) · · · Sp(Z, 0)] = 0. (17)

t = t0 is the time necessary to reachS0 = 0 by the control
law vi = −α sign (Si(Z, 0)) (1 ≤ i ≤ p). At t = t0 (i.e.
τ = 0), the state variables are on the optimal manifold.
Over the time interval[t0, t0 + tf ] (i.e. τ ∈ [0, tf ]), the
control lawvi = −α sign Si(t) maintains

S(Z, τ) = 0. (18)

Consequently, the equality (8) minimizing (5) under the
constraintZ(tf ) = 0, holds. Then, higher order sliding
mode occurs. The convergence time ist0 + tf . From t =
t0 + tf the control task is to maintain the system trajectory
on the origin. This objective is fulfilled by the control law
vi = −α sign (Sfi) which allows the continuation of the
sliding on

Sf = S(Z, tf ) = 0. (19)

The proposed algorithm can be expressed through the
following sequence of steps.

Algorithm. After the determination of the equation
of the optimal switching manifold (13), the control is
described by

(i) At t = 0, if S0 6= 0, apply vi = −α sign (S0i),
(ii) If S0 = 0, then t = t0 (i.e. τ = 0). Apply

for any t ∈ [t0, t0 + tf ] (i.e. τ ∈ [0, tf ])
vi = −α sign (Si(τ)).

(iii) If t ∈ [t0 + tf , ∞[, apply vi = −α sign (Sfi).

IV. CONTROL OF SYNCHRONOUS MOTOR

A. Model and uncertainties

The electrical and mechanical equations of a 3-phase
permanent magnet synchronous motor can be expressed
in the so-called(d, q)-frame by application of the Park
transformation and described in [8]





dθ

dt
= ω

dω

dt
=

P

J
[(Ld − Lq)id + φf ]iq − fv

J
ω − Cl

J
did
dt

= −Rs

Ld
id + P

Lq

Ld
ωiq +

1
Ld

vd

diq
dt

= −P
Φf

Lq
ω − P

Ld

Lq
ωid − Rs

Lq
iq +

1
Lq

vq

(20)
whereθ is the angular position of the motor shaft,ω the
angular velocity of the motor shaft,id the direct current and
iq the quadrature current.φf is the flux of the permanent
magnet,P the number of pole pairs,Rs the stator windings
resistance,Ld and Lq the direct and quadrature stator
inductances respectively.J is the rotor moment of inertia,
fv the viscous damping coefficient andCl the load torque.
vd is the direct voltage andvq is the quadrature voltage. The
parametersRs, Ld, Lq and fv are supposed to vary with
respect to their nominal valuesRs0, Ld0, Lq0 andfv0 (for
instance,Rs has high variations due to the temperature).
The formalization of these variations is stated through

P
J (Ld − Lq) = k1

Pφf

J = k2 − fv

J = k3

−Rs

Ld
= k4 P

Lq

Ld
= k5

1
Ld

= k6

−Pφf

Lq
= k7 −PLd

Lq
= k8 −Rs

Lq
= k9

1
Lq

= k10

(21)

whereki = k0i + δki (1 ≤ i ≤ 10) with k0i the nominal
value of the concerned parameter andδki is uncertainty
on the concerned parameter such that|δki| ≤ δk0i < |ki|,
with δk0i a known positive bound. Letx denote the state
x = [x1 x2 x3 x4]T = [θ ω id iq]T and u the inputu =
[u1 u2]T = [vd vq]T . Then, a state space representation
of the synchronous motor can be written as the following
nonlinear system





ẋ1 = x2

ẋ2 = (k1x3 + k2)x4 + k3x2 − Cl

J
ẋ3 = k4x3 + k5x2x4 + k6u1

ẋ4 = k7x2 + k8x2x3 + k9x4 + k10u2

(22)

with x ∈ X ⊂ IR4 and u ∈ U ⊂ IR2 such thatX =
{x ∈ IR4 | x1 ∈ IR, |xi| ≤ xiMAX , 2 ≤ i ≤ 4} and
U = {u ∈ IR2 | |ui| ≤ uiMAX , 1 ≤ i ≤ 2}, x2MAX

the maximum value of the angular velocity,x3MAX and
x4MAX the maximum values of the currents, andu1MAX

andu2MAX the maximum values of the voltage inputs.

B. Problem statement

The aim is to design an appropriate control which guar-
antees robust performance in presence of parameters and



load torque variations. The control objective is double. First,
the rotor angular positionx1 = θ must track a reference
trajectory x1ref . Secondly, the nonlinear electromagnetic
torque can be linearized to avoid reluctance effects and
torque ripple. This objective is equivalent to constrainx3 =
id to track a constant direct current referencex3ref = 0.

C. Control design

The problem under interest in this section is to design
a MIMO second order sliding mode controller for a per-
manent magnet synchronous motor. It is assumed that all
state variables are available for measurement. The control
goal is to steer to zero, in finite time, the sliding vector
σ = [σ1 σ2]T defined as (withe1 = x1 − x1ref and
e3 = x3 − x3ref )

σ =
[

e3

ë1 + λ1ė1 + λ2e1

]
(23)

whereλ1 andλ2 are positive parameters such thatP (z) =
z̈ +λ1ż +λ2z is Hurwitz polynomial. Note that the relative
degree ofσ equals 1. In order to eliminate chattering
phenomena, the second order sliding mode strategy exposed
in Section2 is applied. So, the controĺu = u̇ is used instead
of the actual controlu(t). It turns out thatú acts directly
on σ̈. Then, the problem is to steerσ to zero by acting on
its second derivative. Consider the second time derivative
of σ, σ̈ = A + Bú whereú = [u̇1 u̇2]T ,

A =
[

A10

A20

]
+

[
δA1

δA2

]
=: A0 + δA,

B =
[

B110 0
B210 B220

]
+

[
δB11 0
δB21 δB22

]

=: B0 + δB.

(24)

ExpressionsA10, A20, B110, B210 andB220 are the well
known nominal expressions, whereas the expressionsδA1,
δA2, δB11, δB21 andδB22 contain all the uncertainties due
to parameters and load torque variations (see the formal
expressions in [11]). Now, using the static feedback

ú = B−1
0 · [−A0 + v] (25)

where[v1, v2]T is the new control vector, it leads to [11]
[

σ̈1

σ̈2

]
=

[
Â1

Â2

]
+

[
B̂11 0
B̂21 B̂22

] [
v1

v2

]
(26)

where

[
B̂11 0
B̂21 B̂22

]
> 0. In fact, B̄−1A0, the first part

of control (25) which is also the first derivative of the so-
called equivalent controlin the sliding mode context [21],
allows to cancel partially the non-linearities and guaranteed
that min(B̂22) > max(|B̂21|). In this case, decoupling the
MIMO problem into a set of single-input problems can be
done. Asx2, x3, x4, andδki are assumed to be bounded ,
and under assumption that|δB11| < |B11|, |δB21| < |B21|
and |δB22| < |B22|, there exist positives constantsC1, C2,

K11m, K11M , K22m, K22M andK21 such that|Â1| < C1,
0 < K11m < B̂11 < K11M , |Â2| < C2 ,0 < K22m <
B̂22 < K22M and |B̂21| < K21. Then, one can apply the
higher order algorithm previously presented: the optimal
sliding manifold and the control law are defined by (for
i = [1, 2])

Si = σ̇i + (Q−1
22 AT

12P (t) + Q−1
22 QT

12

−Q−1
22 AT

12V (t)H(t)−1V (t)T )σi

vi = −αi · sign(Si).
(27)

Then, it is possible to choose each component of the control
v in accordance to Theorem 1, such that the sliding mode
occurs on the intersection ofσ = 0 and σ̇ = 0.

D. Implementation Results

The designed second order sliding mode controller is
implemented on the experimental set-up located at IRC-
CyN’s laboratory (Nantes, France) [24]. To implement the
feedback controller, a real time controller board dSPACE
DS1103 drives the PM synchronous motor. Another syn-
chronous motor is coupled to the shaft of the PM motor in
order to apply a load torque. Four sensors give measure-
ments of phase currents and voltages. An optical encoder is
used to measure the position of the motor. The PM motor
is a DutymAx 95DSC060300 (Leroy Somer Co.) drive. Its
parameters areRs = 3.3Ω, Ld = 0.027H, Lq = 0.0339H,
φf = 0.341Wb, J = 0.00037kg.m2, fv = 0.0034N.m.s
and P = 3. The maximum accepted values are a phase
current equal to= 6.0A, load torque equal to6N.m, and
angular velocity equal to3000rpm. The rotor inertia of the
load synchronous motor isJ = 0.00223kg.m2. The angular
position reference and the behavior of the load torqueCl
applied to the synchronous motor are represented in Figure
1. The controller is synthesized so that the performances
are kept despite the load torque applying and parameters
variations (±50% with respect toR0, ±25% with respect
to Ld0 andLq0, ±20% with respect tofv0). The controller
parameters areα1 = −9 e8, α2 = −3 e5, tf = 0.3s
Q11 = 2, Q12 = 0 andQ22 = 25 e − 7. The experimental
results are given in Figures 2-3. An excellent tracking is
observed in Figure 2-a that shows the position tracking
error does not exceed 0.01rad in spite of the load torque
and parameters variations. Figure 2-b displays the good
convergence of the currentid towards its desired value
(0.0A). Figure 3 display the voltagesvd andvq.

V. CONCLUSION

A methodology for the design of a robust arbitrary order
sliding mode controller with a simple structure for a class of
MIMO nonlinear uncertain systems has been proposed. The
controller design combines standard sliding mode control
with linear quadratic LQ one over a finite time interval with
a fixed final state. The controller is able to steer to zero
in finite time the outputs of any uncertain smooth MIMO
minimum-phase dynamic system for which the outputs have
the same relative degree, and for which the sliding mode



order is the same for all the outputs. The effectiveness
of the method is shown through experimental results of a
permanent magnet synchronous motor control.
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Fig. 1. (a) Benchmark angular position referenceθref , (b) Load torque
versus time (sec.)
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Fig. 2. (a) Position tracking error, (b) Currentid versus time (sec.)
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Fig. 3. (a) Voltagevd, (b) Voltagevq versus time (sec.)
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