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POWER SYSTEM SINGULARLY PERTURBED DISCONTINUOUS
CONTROL

Adolfo Soto-Cota, Leonid M. Fridman, Alexander G. Loukianov, José M. Caifiedo.

Abstract—The synchronous generators have a natural
different time scale dynamics. That is why for modeling
and control design in such systems the methods of
singular perturbations are widely used. In this paper the
possibilities of sliding mode control design for
synchronous generators are analyzed. With this aim the
concept of singular perturbation is revised in order to
use it for relay control system with a discontinuous slow-
motion integral manifold. Obtained results are used for
variable structure control of synchronous generator.

Index  Terms—sliding  mode
perturbations, nonlinear systems

control, singular

[. INTRODUCTION

Simplifications of plant models is a classical tool for
electric power systems control design, and the most typical
way is the singular perturbation approach (see [1], [2], [3],
[4]). From the other hand, a fruitful and relatively simple
approach, especially when we are dealing with nonlinear
plants subjected to perturbations, is based on Variable
Structure Control technique with sliding mode [5]. However
the usage discontinuous (relay) control to a plant model
with the singular perturbation leads to some problems.
Classical methods of singular perturbation (see [6], and [3])
are based on the spectrum separation and consequently these
approaches need the smoothness of the models and control
law. That is why the classical methods of singular
perturbations are not valid for Singularly Perturbed Relay
Control Systems (SPRCS).

The decomposition methods for SPRCS were developed
by [7], [8], [9], [10],[11], [12]. Some control algorithms for
SPRCS was developed also in [12].The present paper
discusses the advantages and possibilities of sliding mode
control design for nonlinear SPRCS describing the
synchronous generator dynamics. For this we use a Two
Step Control Design (TSCD) procedure:

I. Eliminate the stator dynamics via singular perturbation
methods and derive the reduced (6th order) model
describing the slow mechanical and rotor fluxes dynamics.

II. Design a sliding mode excitation control law using
block control technique [13].
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So the order of the original SPRCS is reduced in two steps:
elimination of the fast dynamics and then the reduction of
the slow dynamics via sliding domain.

This paper is organized as follows. Section II introduces
the basic equations of the synchronous generator. In Section
IIT the concepts of singularly perturbed models with relay
control are justified. In section IV the singular perturbation
approach is applied to design a synchronous generator
controller. Simulation results are shown in Section V.

II. SYNCHRONOUS GENERATOR MODELS
A. Basic Equations
The mechanical equilibrium equations for a synchronous
generator are given by

ds

—=—0 1
" b (1
do o,
L= (T, T, 2
o T Te) @)

where 9§ is the power angle (rad.), @ is the angular velocity
(rad./sec.), @, 1is the synchronous angular velocity
(rad./sec.), H is the inertia constant (sec.), 7,, is the
mechanical torque (p.u.), and 7, is the electromechanical
torque (p.u.). The equilibrium equations affected by the
Park transformations, are expressed as

V:Ri+a)G(p+Zl—(t_D 3)

p=Li “)
where ¢ =w,t , w, is the base angular velocity, ¢ is the
time in pu, ¢t is the time in seconds,

i=ligsipipsigiwin ] > V=V 7,000F

¢ = [¢d7¢qa¢_fa¢g7¢kda(pkq]T
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V means a voltage, i means a current, ¢ means a flux
linkage, » means a resistance, L means an inductance, and

2580



the subscripts means: s is an astator, d is a direct axis
circuit, g is a quadrature axis circuit, f'is a field excitation
circuit, g is a quadrature field circuit, kd is a direct axis
damper, kg is a quadrature axis damper, md is a direct
magnetizing, mq is a quadrature magnetizing.

The equation for the electromechanical torque in terms of
the currents and fluxes, is governed by

Te :¢diq _¢qid (5)
and the excitator dynamics is represented by

where a, and b, are the excitator parameters and u is the

control input.

B. Complete Model

From (1) to (5), we obtain the following model of
synchronous generator of the 8" order:

-1
x F(x',x% 2| [ B 0
x=|x*|= F(x',x* 2) [+ 0 Vit 0 fu (7
vy 0 el by
pi=F(' 0, (8)

where x' :(xl,xz,x3)r,x2 :(x4,x5,x6)r, z:(zl,zz)T ,
X =0, X2=0, X3 =@, X4 =@, Xs =Py, X6 =Py »
7y =iy, 2y =iy, u=o,,
Xy — Oy
F=\d,T, - (a21x322 + ApX47) + Uy3XsZy + ApuXeZ) + ApsZiZ;)
a31X%3 + a3pXs + azs7)

by x4 +byxg +by32, 0
Fy =| by x5 +byyx5 +by3z, |, B =| 0|,

b1 x4 +b3yx6 +b332, b;

o0
F_ Cl1X2Xy FC1pXyXg +C3X02y +C1u2) +C15V g +cl6Vf1
3 - .

Co1XpX3 +CpXyXs +Co3XnZy +CouZy +Cos Vq°°
The coefficients of (7)-(8) depend on the plant parameters.
III. SINGULARLY PERTURBED APPROACH
A. Singularly Perturbed Model
In this paper we are dealing with the singularly perturbed

model having the form:
dx

E:f(xaznu’ u)’ x(o):xo (9)
,u%: (x,z,,u,u), 2(0)220 (10)

where xe R", ze R", ueR, u €R; fand g are smooth
functions of their argument and linear on z and u, >0 isa
small parameter, and u is
lu| <uq with ug > 0. (11)
B. Control Design Procedure

The sliding mode control design procedure for original
system (9), (10) consists of two steps.

Step 1. Setting 1 =0 makes instantaneous the fast
dynamics (10)

O=g(x,z,0,u). (12)
Let us consider a smooth isolated solution of equation (12)
z= h( X, u) (13)

where z presents the quasi-steady state. Substituting (13) in
(9) we obtain the reduced order model (ROM)
% = (% h(x,u).0, u) (14)

where x(¢) defines the solution of (14) for a fixed control
u(x) .
Step2. Design a nonlinear sliding surface s(x)=0, s€R

for the system (14) , such that the solution of the equation

ds —
7:=Gf(x,h(x,ueq),0,ueq):0

with respect to the equivalent control, u,, (X) [5], does exist,
and the sliding mode equation (SME)
dx e _ . , _
’ = f(x,h (x),O, ueq(x)) , h(x) =h(x, ueq(x)) (15)
s(x)=0 (16)
has the desired properties. Second, taking into account (16),
it is selected a discontinuous control

{Lﬁ x) if s(x)>0,
u(x)=
u (x) if s(x)<0,

that makes the sliding surface (16) to be attractive.

Note that one of the vector x components can be
expressed from (16) as a function of other ( n—1)
components. Therefore, in fact, SME (15) has the order
(n-1). So, the order of the original system (9)-(10) is
reduced first, by using the motion separation due to different
time scale, and second, via sliding mode.

To justify the proposed control design (TSCD) procedure
(see steps 1 and 2), first we will analyze the behavior of the
original SPRCS (9), (10) and (17) when the state vector
reaches the switching surface, and then investigate the
entrance of SPRCS solutions into the sliding mode domain
(see subsection C). Finally, the stability condition for
original SPRCS will be derived (see subsection D).

C. Analysis of the Reaching Phase for SPRCS Solutions

In this subsection we will study the behavior of the
original SPRCS out from sliding mode domain. If a solution
of the SPRCS is not crossing the discontinuity surface (16)
it can be analyzed by classical method of singular
perturbations (see [6], and [3]). From the other hand, the
specific feature of SPRCS describing the behavior of
synchronous machines is that the equations of slow
variables depend on the relay control (17). We will show
that in this case we can use the reduced order model to
describe the SPRCS. Doing so, we have to describe specific
features of SPRCS for both domains s>0 and s<0 .

‘Lﬁ(x)‘ <uy,
A7)

‘u_(x)‘ <u,
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Moreover, it is necessary to verify the attraction condition
for the switching point.

Denote the domains of definition for variables z and x as
Z and X. The discontinuity surface s(x)=0 divides the

domains X and Z into the parts defined as X and Z~
fors<0, and X' and Z* for s >0, respectively; and
define the system structure as

7wz )= flo o pu® @)
g+(x,z,ﬂ)=g(x,z,u,u+(x)) for s>0
F ez )= ez ).
gf(x, z, ,u)=g(x, z, 1, uf(x)) for s <0
with f*, g© e C? l)?*xf*x[o,,uo]J,
f~, g € C? l)?’xf’x[O,,uO]J.

C.1 SPRCS in the domains <0.
Denote

- +
%(X,Z,,U)=Gf_(x,z,,u), %(xﬂzaﬂ)sz+(x’Zaﬂ)

Suppose that x, € X, z, € Z~ . It is natural to assume that

for the original system (9), (10) and (17) the following
conditions of the Tikhonov theorem (see, for example, [6])
hold:

[al] The function z~ =% (x) is an isolated solution of
0=g (x,2,0) forallxe X .
[a2] The Cauchy problem for slow dynamics

%:f‘(}‘,h‘(}‘lo), x(0)=x, (18)
has a unique solution x~ (¢) on [0,z,], where ¢ is the
switching point i.e. the smallest root of equation S(}_(fs))=0.

[a3] The equilibrium point IT z =0 of the system

M - g*(;(t), M z+ h’(?c’(t)) 0)

dr”
is asymptotically stable, where Hiz =z —h( x(t)], rﬁ =tu,

moreover, for all [0, ]

Re Spec & (3 (0).h™ (& (1)).0) <-a <0.
oIl

Tz
Define W(4~) as the domain of attraction of the equilibrium

point IT z =0, and suppose that
[a4] The initial value for fast variables belongs to the

attraction domain, i.e. z, € ¥(h7).
[a5] The trajectory of the reduced system (15) reaches the
switching surface s(x) =0, without tangential touch, i.e.

S G+ il bo)so.

From Vasil’eva theorem [6] it follows that for sufficiently
small u there exists a time moment ¢ =¢,(x) such that for
the slow coordinate of the original SPRCS we have
s(x(t, (),1)) =0, i.e. a solution of the original SPRCS will

reach the switching surface.

The following lemma is true [10]:

Lemma 1. Suppose that the original SPRCS (9), (10) and
(17) satisfies the conditions [al]-[a5]. Then there exist
small py > 0and 6y >0,t,(u) such that for all u<[0, 1]
there is a unique solution (x(t,,u),z(t, y)) of Cauchy

problem (9) and (10) on [0,t,(u)], and
lim x(, 1) = x(t) = x (1) for t €[0.1, ()],
1

lin})z(t,y):h_(f_(t)) for t €[8y.t,(11)-8,], 3y >0.
ra=s

Remark 1. In the same way, we can prove that it is possible
to use the equations for slow motions in the case when a

solution of (9), (10) and (17) leaves the domain X" xZ"
and reaches the switching surface [10].
C.2 Transition into sliding domain
The behavior of the original SPRCS (9), (10) and (17)
into the sliding domain, is described. Denote the domains
ds™ — ds* —
So {x. 7 (x, 7(x),0)> 0, 7 (x, h(x),0) < 0},

ds” ds™*
Sy :{(X,Z,,U)Idt(x,z,,u)> Oag(xaz,ﬂk 0}.

Suppose that the control resources achieve the following
sliding mode existence conditions [5]:

[cl]

dsti (?f(is),h*(x (ES))O)>0,

+

d - _

" (F e eolo)<o

Now from the Tikhonov theorem it follows that for
sufficiently small

dcsT; = Gf ~(x(t, (1)), 2(t, (u)), #)> 0 and

d; = GF * (x(t, (). 201, (1)), 1) < 0.

This means that a solution of the original system (9), (10)
and (17) enters into the sliding domain S, without

tangential motions. Therefore, we can consider the
coordinate of the switching point (x(,(), 1), z(ts(,u), ,u))
as the initial condition for SPRCS into S, . Hence, a solution
of the Cauchy problem (9), (10) with (17) into §, is
described by the following system [5]:

A g 2 0) (19)
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dZ* * * * *
/’l?:g(x »Z 7;u’ueq(x »Z ,,Ll)) (20)

where x (¢, (1), 1) =x(t, (1), 12) , 2 (t, (), 1) =2(t, (), 1)
s(x")=0, telty(u),T] , x er"", z eR™, ueR,
HE [0, ,uo], and u,, (x*,z*,,u) is the equivalent control

calculated as a solution of

%:Gf(x*,z*,,u,ueq)zo, s(x*)=0.

Similar to the above case (subsection C./) we suppose that
for the system (19)-(20) the following conditions hold:

[c2] The function z* = 4" |x" | is an isolated solution of
0= g(x*,z*,O,ueq (x*,z*,O)) forall xe§,.
[c3] The reduced ( by x =0) sliding mode equation

di* — % * % — — % —% = *
sz(x 9h (x )90=ueq('x ))s X (ts):xo

with Eeq(i*)=ueq(§*,h (x ),0) has a unique solution

x"(¢) on [t,,T],and x"(¢)e S, forall te[t,,T].
[c4] The equilibrium point [1°z=0 ofthe system
H* —k * [ —*
A7) warson (s oho)
T

where[Tz=z— h*(fc*(t)l T =11y, is asymptotically stable,

moreover, for all ¢e[t,T]

*

Re Spec o
0

(Sc*(t),h*(i*(t)),o) <-a<0, a>0.

%
z

Define ‘I‘(h*) as the domain of attraction of the equilibrium
point n'z=0, suppose that

[c5] The initial value of the jump for fast variables at the
switching point belongs to the attraction domain, i.e.

(e @)-n"@))ewa.
The following lemma is true [11]:
Lemma 2. Suppose that the original SPRCS (9), (10) and
(17) satisfies the conditions [al]-[a4] and [cl]-[c4]. Then
there exist a small py >0 and 8, >0 such that for all

HE [0, ,uo] there is a unique solution (x(t,11),(t, 1)) of (9),
(10) and (17) on [0,T] and

D lim x* (e 0)=5"(6) for t<lt, ). T1,
=
2) /1111)1}) U, (e, ), 2(t, ), 1) = U, (}* (t)), telt, +6,,T],

X (1) for te[0,t,(u)]
X'(1) for e[t (u).T]

#) tim 2(t, 1) = (v (0)) for 1 €[Sy, 5,1,

1—0

lim (e, 1) = 1" (%" () for teli, +50,T).

u—>0

3)ygﬂm@=f@={

Note if a solution of (9), (10) and (17) will leave the sliding
domain, then it will not affect the zero approximation of the
fast and the slow dynamics equations, since the slow motion
integral manifold is continuous [10].

D. Stability Analysis
Consider the case, when the original SPRCS has the

equilibrium into S, . Solving (20) for u; (x(z, ), 2(¢, 1)) and
substituting it in (19), we obtain the smooth algebraic -
differential singularly perturbed system described the

sliding mode dynamics. From the equation of the sliding
surface, taking into account that G # 0 one can express one

coordinate or x as a function of other (n—1) coordinates.
Then a sliding mode dynamics is governed by the following
singularly perturbed (n+m —1)th order system:
dx® dz®
7/ dt

where the vector x® e R™™! consists of

o2 u), = g®(x®,2%, ), @1)

the (n—-1)
independent coordinates of x, ®=z, g®,and f ®ep™!
are the values of g and the corresponding component of f

computed at u:ueq(x®,z®,,u). For the case of

synchronous machine equations, g® (fc ® n® (fc @ ),O) =0 has
a unique solution z® = 4® ()?® ), then the slow dynamics in
(21) are described by the system
x® el - _
A"
0=¢%[®,n%(x®)o). (22)
Let us denote xeq® as the equilibrium point of (22). Then
from Klimushchev — Krasovskii theorem [14] it follows that

the equilibrium point of system (21) is uniformly
asymptotically stable for ye[O, #0] , if the matrices

Il ho) ana (o0, o)
(;;@(xeq ,h®(xeq 0) and af—@ Xeg h® Xeq 0] In
(22) are Hurwitz.

Now we can conclude that in order to verify correctness
of the proposed control design procedure it is sufficient to
check the conditions presented in the subsections B. - D.

IV. CONTROL OF GENERATOR

In this section we will derive a reduced model and a
discontinuous control law for the generator.

A. Reduced Model of Synchronous Machine

The fast dynamics (8) rewritten as

HOZ) =€y XaXy +CpXaXg +C13X02) + 12 +C5V +eV
(23)
M Zy =CpXyX3 + CopXpXs +C3Xp21 + CuZ +025qu (24)
can be neglected by making x =0, that is
0=Agz+Fy+ BV, (25)
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c c Ciy. X, +Cpp Xe FC VT
14 13 11 4 12 6 157 d
where ARz{ ”},FR={ “ “ ,

Couy  Cou Co1pXs +CppyXs + CstqOO
c .
Bp :[ 2)6} , and rank Ap =2 . So, a solution of (25) for z,

and z, is calculated as

h 19 znVrnV‘
Z:_AIEIFR_A;BRV./’ ::h(XI,XZ,Vg’Vf) ::{ (0,37 f)}

h?(x1$xZ9Vgsz)

(26)
Substituting (26) in (7) gives the following reduced (6”’
order) model:

R,
v, 0 —ar by 27)

').Cz = E(xlaxzan)

by | by by by bus by
A21 = b51 , A22 = b52 b53 b54 > A23 = b55 b56 >
bsl_ béz b63 b64 bss b66
by | 0
Ay =|bsy | and A; =| —a,5d\; —aydy
be7 | ayydy7 +by

The coefficients of (27) depend on the plant parameters.
B. Angular Speed Control
The system (27) has the Nonlinear Block Controllable
Form with internal dynamics. Therefore in order to design
the nonlinear sliding surface we use the block control
technique [13]. To satisfy the control objective, namely:
rotor angle stability enhancement, we define the control
error as
G =Xy~ Wy (28)
Then taking the time derivative of (28) along the trajectories
of (27), gives
Gy = X2V T, b, (x  xP)xs bV, (29)
where
fr=d,T, - (a22x4h1 () + ay3xshy (-) + aruxshy () + apshy (')hz(')) >
by=a, () , and b/rz =(—a,5d,; —a,d,;) are positive
functions of the time. To eliminate the old dynamics in (29)
and introduce a new one we put
%y ==by () /s 4DV, +hogs =5, k>0 (30)
Then using (30) the switching surface can be defined as

s =by()x3 + f,() + bV +ko(x —wp) =0 (€2))
The projection motion on the subspace s, can be derived
using (31) and (30) of the form

$=fs(x1,x2 V

VoV Ty +bgu

where f; is a bounded function, by =ay;b, , and is a

positive function of the time.
C. Stability Analysis.
C.1 Sliding mode stability.
Under the following condition:

by 2 fs(xl,xz,Vg,Tm)
the proposed relay control law
Vi =-ugsign(s,), ug >0 (32)
ensures the convergence of the state to the surface (31) in a
finite time.
C.2 Sliding dynamics stability
Once the sliding mode motion is achieved, this motion is
governed by the reduced order (Sth order) system:
X1 =62, 62 =—koGy, X3 =azx3+Vg, (33)
XZ’: E(xlaxzahl(xlsxzan’ Vf)a%(xlaxzanan)) (34)
where the two first equations (33) describing the linearized
mechanical dynamics, has the desired eigenvalue —kj ,

while the third equation and (34) represent the internal
excitator and rotor flux dynamics. This system can be
rewritten as linear system with nonvanishing perturbation

Sy =y +V gy 3= Agx + flx 2V VT,

sV g m
b]l + b]3d22 bl3d23 blZ + bl3d24

where 4, =| byd), by, +byd;, byd,, , and
b31 + b33d22 b33d23 b32 + b33d24

erq and f (xl,x2 V Vf,T )are bounded functions. The

N m
matrix A, is Hurwitz (see section V) and a; >0
therefore the zero dynmamics on the invariant subspace
x, =0, ¢, =0 and s(x)=0 is stable. Hence, the solution
x?(¢) is ultimately bounded [15], the control error ¢, tends
exponentially to zero, and the angle x; tends to a constant
steady state Oy .
C.3 Fast dynamics stability
_{zl} [hl (x(O))} .
Define T1z = - _ , then the fast dynamics is
22 hy (x (0))
governed by
dllz,

dr Cly  Ci3y || Iz Ciy  Crau | . )
= “ R “ s Hurwitz,
dllz, €3, Cy || Iz, €. Co4
dr

hence the equilibrium point [T z =z /" (¥(0))=0 of the

system is exponentially stable. So all the assumptions
described in section III are satisfied.
V. SIMULATION RESULTS

The proposed control algorithm was tested on the
complete eight order model of synchronous generator
connected through a transmission line to an infinite bus,
Fig.1.
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Synchronous Infinite
Generator Bus

Lext Rext

) i i Vigen £¢
Line

Fig. 1. Single machine with infinite bus.

The parameters of the synchronous machine and external
network in p.u. are:

T, ;,0 =8.0 sec. T;D =1.0sec. T, ;0 =0.03sec. T, q"0 =0.07sec.
L;=181,L,=03,L,=023 , L ,=176 L, =06 |,

L,,=0.1, R,, =0.001. From this we obtain the parameters

of model (9)-(10), and (17). The controller gains was
adjusted to &k, =10. The eigenvalues of (34) was calculated

as, A, =-38.77, 15 =-0.5024 and A, =-27.04 . Figures

2-4 depict results under a three-phase short circuit (150 ms.
long) simulated at the transformer terminals.
These Figures reveal some important aspects:
1 State variables hastily reach a steady state condition after
small and large disturbances, exhibiting the stability of the
closed-loop system.
2 The terminal voltage recovers their steady state value after
the short circuit

VI CONCLUSIONS

In this paper the possibility of usage a sliding mode control
algorithms for nonlinear SPRCS describing a power system
dynamics is analyzed. For this system the following two
steps control design (TSCD) is proposed: firstly, the natural
two scale properties of synchronous generator are used to
obtain the reduced order model, and then the sliding mode
control algorithm ensuring the desired behavior of the
generator, is designed. The effectiveness of proposed
algorithm is illustrated by simulations.
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Fig. 2. Rotor angular velocity affected by a 0.15 sec. short circuit.

Rad.

Fig. 3. Power angle affected by a 0.15 sec. short circuit.

Short circuit.

i z 3 H i b 7 A b n

Fig. 4. Generator voltage affected by a 0.15 sec. short circuit.
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