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Abstract

This article presents a new method for on-line approxima-
tion based backstepping control in the presence of known
magnitude, rate, or bandwidth constraints on the inter-
mediate states or actuators. The presentation is based on
developing the design and analysis for a second-order sys-
tem — these results can be recursively extended to higher-
order systems. The new results allow on-line learning to
continue even when known magnitude, rate, or bandwidth
constraints are in effect, even though those constraints do
not allow the control objectives to be met for the duration
of those constraints.

1 Introduction

A variety of feedback control approaches have been devel-
oped to deal with nonlinear systems, including feedback
linearization [10], sliding mode control [14], and backstep-
ping [16]. In their ideal form, both feedback lineariza-
tion and backstepping rely on cancellation of known non-
linearities. To address the issue of uncertainty, several
“robustifying” techniques have been developed: (i) adap-
tive methods deal with parametric uncertainty [12], where
the nonlinearities are assumed to be known but some of
the parameters that multiply these nonlinearities are un-
known or uncertain; (ii) robust methods deal with the case
where known upper bounds on the unknown nonlineari-
ties are available [2] and therefore, they tend to be con-
servative, sometimes leading to high-gain feedback; (iii)
robust adaptive methods combine parametric uncertainty
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and unknown nonlinearities with partially known bounds
[20].

The above control techniques are based on the assump-
tion that the plant nonlinearities are either known or can
be bounded by some known functions. In many appli-
cations, such as control of high performance aircraft and
uninhabited air vehicles (UAVs), some of the nonlineari-
ties need to be approximated on-line. This may be due to
modeling errors during the identification/modeling phase
or, quite often, due to time-variations in the dynamics as
a result of changes in the operating conditions or due to
component wear or battle damage. To address the issue
of unknown nonlinearities, various control system archi-
tectures have incorporated various on-line approximators
of unknown nonlinearities [26]. Examples of such on-line
approximators include sigmoidal neural networks, splines,
radial basis functions, wavelets, etc.

The application of on-line approximation methods to non-
linear systems in a feedback framework yields a com-
plex nonlinear closed-loop system, which is analyzed us-
ing Lyapunov stability methods. Typically, the feedback
control law and the adaptive law for updating the net-
work weights are derived by utilizing a Lyapunov func-
tion, whose time derivative is forced to have some de-
sirable stability properties (for example, negative defi-
niteness). Therefore, the stability of the closed-loop sys-
tem is obtained during the synthesis of the adaptive con-
trol laws. Examples of this type of approach, which
is referred to as Lyapunov synthesis method, include
[3, 4, 5, 7, 8, 15, 18, 21, 23, 22, 27].

From a practical perspective, one of the key problems in
feedback control systems is that the signal u(t) generated



by the control law cannot be implemented due to physi-
cal constraints. A common example of such constraint is
input saturation, which imposes limitations on the mag-
nitude of the control input. In some applications this
problem is crucial especially in combination with nonlin-
ear on-line approximation based control, which tends to
be aggressive in seeking the desired tracking performance.
In aircraft control applications, input saturation is caused
by limitations in control surface deflections. For UAVs,
the absence of humans in the air vehicle may allow more
aggressive maneuvering, however the feedback control law
has to deal both with unknown nonlinearities and input
saturation. Another practical issue of significant impor-
tance in many applications, especially in backstepping
where states are used as intermediate control variables,
is constraints of the state variables. Such constraints in-
clude magnitude, rate and bandwidth limitations of the
state variables.

Control signal rate and amplitude constraints in an adap-
tive linear control framework are addressed in, for exam-
ple, [1, 6, 11, 13, 17, 19, 25]. One possible approach is to
completely stop adaptation during saturation of the con-
trol input. While this ad-hoc method does prevent the
tracking error induced by actuator constraints from cor-
rupting parameter estimation, the stability properties of
the closed-loop system cannot be established. Another
approach that has been proposed, which we refer to as
training signal hedging (TSH), see e.g. [1, 13], modifies
the tracking error definition used in the parameter update
laws. Finally, a third approach, referred to as pseudo-
control hedging (PCH), alters the commanded input to
the loop [11, 17]. The idea behind the PCH approach is
to attenuate the command to the loop so that the gener-
ated control signal is implementable without saturation.

This article presents a robust adaptive backstepping de-
sign with state and actuator constraints. A novel aspect
of the presented approach is the ability to accommodate
magnitude, rate and bandwidth constraints on the actu-
ators signals and each of the intermediate state variables
of the backstepping procedure. The results are developed
herein for two state scalar subsystems and can be recur-
sively applied for application to systems of higher dimen-
sion. The control design framework prevents the presence
of input/state constraints from corrupting the learning
capabilities and memory of an on-line approximator in
feedback control systems.

A second contribution of this article is a new method
for addressing the derivative of intermediate control com-
mands (i.e., state commands) in adaptive backstepping.
In backstepping, a time derivative of the intermediate
control command appears in each step of the backstep-
ping procedure. These time derivatives cannot be directly
computed when the plant model is unknown. Many ap-
proximate methods have been suggested. The method
introduced herein handles these derivative terms directly

and rigorously.

2 Standard On-Line Approximation Based
Control Problem

In this section we first review the standard on-line approx-
imation based control problem, consider the second-order
system

ẋ1 = f1(x) + g1(x)x2 (1)
ẋ2 = f2(x) + g2(x)u (2)

where x = [x1, x2]> is the state and u is the control signal.
The functions fi, gi for i = 1, 2 are (possibly nonlinear)
Lipshitz functions that are not known. There is a desired
trajectory x1c(t), with derivative ẋ1c(t), both of which lie
in a region D for t ≥ 0 and both signals are known1. The
region D is the specified operation region of the system
and is assumed to be convex and compact. Define the
tracking errors

x̃1 = x1 − x1c

x̃2 = x2 − x2c

where x2c will be defined by the backstepping controller.

Define approximations to the unknown functions fi and
gi as

f̂i = θ>fi
φfi

(x) (3)

ĝi = θ>gi
φgi

(x) (4)

for i = 1, 2, and θfi and θgi will be estimated on-line. The
vector functions φfi

and φgi
are the basis for the func-

tion approximation, which are assumed to be uniformly
bounded. Many options are available as basis for function
approximation: splines, radial basis functions, wavelets,
etc. Herein, we are not concerned with the selection or
motivation of a particular basis set. For simplicity, in this
article we use linearly parameterized approximators. The
case of nonlinearly parameterized approximators can also
be considered by appropriate handling of the higher-order
terms [21].

To simplify the initial analysis, we will assume that the
number of basis elements is selected large enough so that
there exists θ∗fi

and θ∗gi
such that

fi = (θ∗fi
)T φfi

(x)

gi = (θ∗gi
)T φgi

(x).

In practice, the best possible approximation may not be
exact, resulting in a residual approximation error, which

1This assumption can be satisfied by passing a user specified
signal xo

1c through a second order relative degree one prefilter. See
Figure 1.
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Figure 1: Magnitude, rate, and bandwidth limiting filter.

is referred to as Minimum Functional Approximation Er-
ror (MFAE). For simplicity, in this Section we assume
zero MFAE. Note that the on-line approximation based
control law will not depend on θ∗fi

and θ∗gi
, and these val-

ues therefore need not be known. Define the parameter
estimation errors

θ̃fi
= θfi

− θ∗fi

θ̃gi = θgi − θ∗gi
.

According to the standard backstepping procedure [16,
14], first consider the component subsystem described by
(1). Assume that there exist a smooth feedback control
x2 = µ1(x1, x̃1, ẋ1c, θf1 , θg1) and adaptation laws of the
form

θ̇f1 = α1(x1, x̃1) (5)

θ̇g1 = β1(x1, x̃1, µ1) (6)

and a smooth positive definite function V1(x̃1, θ̃f1 , θ̃g1)
such that

∂V1

∂x̃1

(
f̂1 + ĝ1µ1 − ẋ1c + (f1 − f̂1) + (g1 − ĝ1)µ1

)

+
∂V1

∂θ̃f

α1(x1, x̃1) +
∂V1

∂θ̃g

β1(x1, x̃1, µ1) ≤ −W (x̃1) (7)

where W (x̃1) is positive definite in x̃1.

Example. An example of an on-line approximation
based controller satisfying the above assumptions is

µ1 =
1
ĝ1

(
−k1x̃1 − f̂1 + ẋ1c

)
(8)

θ̇f1 = Γf1 x̃1φf1 (9)

θ̇g1 = Γg1 x̃1φg1µ1 (10)

where k1 > 0 is a scalar and Γf1 , Γg1 are positive definite
matrices representing the learning rate. The adaptive law
(10) needs to be modified using, for example, a projection
modification [9] to ensure that ĝ1 is bounded away from

zero. In this example, the Lyapunov function V1 and the
positive definite function W (x̃1) are given by

V1(x̃1, θ̃f1 , θ̃g1) =
1
2

(
x̃2

1 + θ̃>f1
Γ−1

f1
θ̃f1 + θ̃>g1

Γ−1
g1

θ̃g1

)
W (x̃1) = x̃2

1

Through a recursive backstepping procedure, the control
of the second subsystem (2) can be obtained [16, 14, 21].
Next, we consider the case where the state and/or con-
trol signals are constrained by physical limitations. We
introduce some new tools for handling such systems.

3 State and Actuator Constrained Scalar
Problem

When the state and actuators have physical limitations,
the above approach may not be able to be successfully im-
plemented. To address magnitude, rate, and bandwidth
constraints on the state and control, define the following
procedure:

1. Define

xo
2c = µ1(x1, x̃1, ẋ1c, θf1 , θg1)− ξ2 (11)

ξ̇1 = −k1 ξ1 + ĝ1 (x2c − xo
2c) , (12)

where ξ2 will be defined in step 3. The signal xo
2c is

filtered to produce the magnitude, rate, and band-
width limited command signal x2c and its derivative
ẋ2c that is within the operating envelope D of the
system. Such a filter is shown in Figure 1.

2. Define the compensated tracking errors as

x̄i = x̃i − ξi, for i = 1, 2. (13)

3. Define2

uo
c =

1
ĝ2

(
−k2x̃2 + ẋ2c − f̂2 − ĝ1x̄1

)
(14)

ξ̇2 = −k2ξ2 + ĝ2(uc − uo
c) (15)

2Note that uo
c is computed using ẋ2c, not ẋo

2c. The quantity ẋ2c

is available as the output of the filter in step 1. The quantity ẋo
2c is

not available and cannot be computed, since the time derivative of
µ1 is not tractable.



where uo
c is filtered to produce uc which is within the

magnitude, rate, and bandwidth limitations of the
actuation system. Therefore, uc is achievable by the
actuators. We therefore assume that u = uc.

4. Define the parameter update laws according to

θ̇f1 = Γf1φf1 x̄1 = α1(x, x̄1) (16)

θ̇f2 = Γf2φf2 x̄2 (17)

θ̇g1 = Γg1φg1 x̄1x2 = β1(x, x̄1) (18)

θ̇g2 = Γg2φg2 x̄2u. (19)

Note that the parameter update laws for θf1 and θg1 are
similar to the corresponding update laws (9), (10), de-
rived in the standard on-line approximation based control
problem with the tracking error x̃i being replaced by the
compensated tracking error x̄i. As we will see later, the
use of the compensated tracking error in the update laws
is crucial in preventing state and actuator constraints in
on-line approximation schemes from destroying their pre-
viously learned information.

In the definition of the control law (14), we again assume
that the update law for θg2 uses some type of projection
modification in order to ensure that ĝ2 is bounded away
from zero. An implicit assumption here (which is stan-
dard in the adaptive control literature [9]) is that the sign
of g1 and g2 are known. Moreover, typically a known
lower bound for |g1| and |g2| is assumed to be available.
It is noted that this requirement, which is a consequence
of the stabilizability problem of adaptive schemes, arises
independent of the issue of handling magnitude, rate and
bandwidth constraints of the state and the actuators,
which is the main topic of this article.

Given the above procedure, we now analyze the stability
of the control law subject to the physical limitations. The
tracking error dynamics can be written as

˙̃x1 = f̂1 + ĝ1 xo
2c − ẋ1c + (f1 − f̂1)

+ĝ1(x2c − xo
2c) + (g1x2 − ĝ1 x2c)

= f̂1 + ĝ1µ1 − ẋ1c − ĝ1 ξ2 + (f1 − f̂1) (20)
+ĝ1(x2c − xo

2c) + (g1x2 − ĝ1 x2c)
˙̃x2 = f̂2 + ĝ2 uo

c − ẋ2c + (f2 − f̂2)
+ĝ2(uc − uo

c) + (g2u− ĝ2 uc)

= −k2x̃2 − ĝ1x̄1 + (f2 − f̂2) (21)
+ĝ2(uc − uo

c) + (g2 − ĝ2)u.

As defined in (12) and (15), the variables ξ1, ξ2 represent
the filtered effect of the non-achievable portion of x2c and
the control signal uc respectively. The variables x̄i repre-
sent the compensated tracking errors, obtained after re-
moving the corresponding non-achievable portion of x2c

and uc. After some algebraic manipulation, the dynamics

of the compensated tracking errors are described by

˙̄x1 = f̂1 + ĝ1 µ1 − ẋ1c − ĝ1ξ2 + (f1 − f̂1)
+(g1x2 − ĝ1x2c) + k1ξ1

= f̂1 + ĝ1µ1 + k1x̃1 − ẋ1c − k1 x̄1 + (f1 − f̂1)
+(g1 − ĝ1)x2 + ĝ1x̄2 (22)

˙̄x2 = −k2x̄2 − ĝ1x̄1 + (f2 − f̂2) + (g2 − ĝ2) u. (23)

Consider the following Lyapunov function candidate

V =
2∑

i=1

Vi(x̄i, θ̃fi
, θ̃gi

)

=
2∑

i=1

1
2

(
x̄2

i + θ̃>fi
Γ−1

fi
θ̃fi

+ θ̃>gi
Γ−1

gi
θ̃gi

)
(24)

The derivative of V along solutions of eqns. (16-19) and
(22-23) is

V̇1 = x̄1[f̂1 + ĝ1µ1 + k1x̃1 − ẋ1c − k1 x̄1 + (f1 − f̂1)

+(g1 − ĝ1)x2 + ĝ1x̄2] + θ̃>f1
φf1 x̄1 + θ̃>g1

φg1 x̄1x2

= −k1x̄
2
1 + x̄1ĝ1x̄2

V̇2 = x̄2

(
−k2x̄2 − ĝ1x̄1 + (f2 − f̂2) + (g2 − ĝ2)u

)
+θ̃>f2

φf2 x̄2 + θ̃>g2
φg2 x̄2u

= −k2x̄
2
2 − x̄2ĝ1x̄1

V̇ = V̇1 + V̇2 = −k1x̄
2
1 − k2x̄

2
2. (25)

Since V̇ is negative semi-definite, the variables x̄1, x̄2, θf1 ,

θf2 , θg1 , θg2 are each bounded. Therefore, f̂i and ĝi are
bounded for i = 1, 2. Since V̈ is bounded, Barbalat’s
lemma implies that x̄1 and x̄2 each approach zero as t
approaches infinity. Finally, the last line of the above
analysis implies that x̄1 and x̄2 are each in L2, since

V̇ = −k1x̄
2
1 − k2x̄

2
2

V(t)− V(0) = −
∫ t

0

k1x̄
2
1(τ) + k2x̄

2
2(τ)dτ

V(0) ≥
∫ ∞

0

k1x̄
2
1(τ) + k2x̄

2
2(τ)dτ.

Therefore, we can summarize these results in the following
theorem.

Theorem 1 Given a system described as (1-2). Let the
on-line approximation based control law of eqns. (5-6)
solve the tracking problem for system

ẋ1 = f1(x) + g1(x)µ1

with Lyapunov function V1 satisfying (7). Then the on-
line approximation based controller of (11-19), with phys-
ical contstraints, solves the tracking problem with Lya-
punov function (24) satisfying (25), which guarantees:



1. x̄1, x̄2, θf1 , θf2 , θg1 , θg2 ∈ L∞;

2. x̄1 and x̄2 ∈ L2;

3. limt→∞ x̄1(t) = 0; limt→∞ x̄2(t) = 0.

Note that this theorem can be applied recursively (n-1)
times to address a system with n states.

The goal of the derivation of this theorem was the ability
to accommodate magnitude, rate, and bandwidth limita-
tions of the physical system. This goal has been achieved
in the sense that on-line approximation will continue to
function correctly even when the physical limitations do
not allow the the desired control signals to be imple-
mented. Note that the theorem guarantees desirable
properties for the compensated tracking errors x̄i, not
the actual tracking errors x̃i. During periods when the
control signals are not physically achievable, the system
is incapable of achieving at least one command xo

ic for
some i. Once the physical constraint is no longer in ef-
fect, x̃i → x̄i.

In addition to achieving the desired objective, the ap-
proach described above eliminates another complexity of
the backstepping approach (see pp. 588-589 in [14]).
Without the command filter introduced herein, implemen-
tation of the backstepping approach requires calculation
of µ̇1. When the model (f1 and g1) are known, this is
possible, but cumbersome as the number of iterations of
the Lemma 13.2 of [14] increases. When the model is not
known, but estimated on-line, the calculation of µ̇1 is usu-
ally very complicated since it involves the rate of change
of the functions that are being approximated. Various
authors address this term in different ways [16]. The the-
orem of this section handles this term rigorously using
filtering techniques.

4 Conclusions

This article has presented an extension of the backstep-
ping approach with on-line approximation. The primary
goal of this extension is to allow on-line approximation to
continue to function correctly, even when physical lim-
itations of the system (magnitude, rate, or bandwidth
limitations of the state or actuators) affect the system
performance.

The presented approach also removes an implementation
difficulty that previously existed for adaptive backstep-
ping approaches and a computation inconvenience for
nonadaptive backstepping. That difficulty was the com-
putation of the time derivative of the commands to inter-
mediate states.

Due to space constraints, we were not able to include an
example in this article with the proper level of attention.

Preliminary examples showing good performance are in-
cluded in [6] and [19]. The method has been successfully
applied to full six degree of freedom flight control for an
unmanned vehicle (in a medium fidelity simulation). An
article describing those results is under review.
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