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Abstract— This paper proposes a new approach to solve
the controllability (reachability) problem of the sampled-
data/discrete-time piecewise affine systems. First, an algebraic
characterization for the system to be controllable/reachable is
derived. Next, based on this characterization, an approach to
determine if the system is controllable/reachable in a proba-
bilistic sense is proposed based on a randomized algorithm.
Finally, it is shown by numerical examples that the proposed
approach is useful.

I. INTRODUCTION

In the research field of hybrid systems, the controlla-
bility/reachability analysis is one of the important topics.
In particular, for the hybrid systems with the autonomous
switching, e.g., piecewise affine (PWA) systems and mixed
logical dynamical (MLD) systems, only a few analytical
results have been obtained so far, and the problem has
been negatively solved in the sense that it is undecidable
[1]. In addition, it has been shown in [2] that the PWA
system is not always controllable even if the subsystem in
every mode is controllable in the usual sense. In this way,
the controllability analysis for the hybrid systems with the
autonomous switching is a very complex issue and one of
the challenging research topics.

In spite of these theoretical limitations, Bemporad et al.
have discussed the controllability problem of the discrete-
time PWA/MLD systems by specifying in advance the
control time period, where the problem is reduced into the
verification problem [3]. However, this approach involves
the hardness of the combinatorial problem and the computa-
tion on polyhedra. As the control time period is taken larger,
the computation amount becomes exponentially larger. In
addition, this dose not expose any algebraical structure of
the controllability properties.

On the other hand, one of the authors has proposed a
new model of continuous-time hybrid systems called the
sampled-data PWA systems, where the switching action of
the discrete state is determined depending upon if some
condition on the continuous and/or discrete state holds or
not at each sampling time fixed in the digital device [4].
Furthermore, the authors have provided a (necessary and)
sufficient condition for such a system to be controllable [5].
However, for the multi-modal case, the class of the systems
to which the sufficient condition can be applied is limited.

This paper proposes a new approach to the controlla-
bility/reachability analysis for both the sampled-data PWA
systems and the discrete-time PWA systems. First, a neces-
sary and sufficient condition for the system to be control-

lable/reachable is derived by characterizing the set of the
initial/final state from/to which there exists a control input
driving to/from the origin with the control time period fixed.
This condition provides the geometrical structure of the
controllability/reachability spaces, from which it turns out
that large computation amount is required to check this con-
dition in a deterministic way. Motivated by this discussion,
we next propose a probabilistic method to determine if the
system is controllable/reachable with arbitrarily specified
accuracy, where a randomized algorithm is not only applied
to check if the obtained necessary and sufficient condition
for the controllability/reachability holds or not, but also
several techniques for determining it in an efficient way are
developed. It is stressed here that no probabilistic approach
to the controllability/reachability problem of hybrid systems
has been derived. Finally, it is shown that for some examples
for which it may be hopeless to check the controllability in
a deterministic way, the proposed method can solve their
controllability problems in a probabilistic sense within a
practically short time.

In the sequel, we will use the following notation: R,
N , N+, and PC denote the real number field, the set of
nonnegative integers, the set of positive integers, and the
set of all piecewise continuous functions, respectively. Let
the vector inequality x1 ≤ (<) x2 express that each element
of the vector x1 − x2 is nonpositive (negative) and let x(i)

denote the i-th element of the vector x. In addition, 0n×m

and In express the n × m zero matrix and the n × n
identity matrix, respectively, and, for simplicity of notation,
we sometimes use the symbol 0 instead of 0n×m, and the
symbol I instead of In. Finally, the set S given as the form
S := {x ∈ Rn| Ax + b ≤ 0, Cx + d < 0} is called here
the polyhedron where A, b, C, and d are some matrices.

II. SAMPLED-DATA/DISCRETE-TIME PWA SYSTEMS

The hybrid system in general involves two kinds of
discrete events; the discontinuous phenomena of physical
systems (physical discrete event) such as the collision of a
mass to a wall and the logic designed artificially (logical
discrete event) such as emergency measures. Contrary to
the physical discrete events, the logical event is mostly
embedded in the digital device, which means that the
switching action of the discrete state is determined at each
switching time fixed in the digital device. Taking this fact
into account, in this paper, we focus on the class of the
PWA systems with the logical events as shown in Fig. 1,
and discuss the controllability/reachability properties of this
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Fig. 1. Hybrid system with logic.

system from the viewpoints of both the continuous-time
system (sampled-data PWA system) and the discrete-time
system (discrete-time PWA system).

Let us consider the sampled-data PWA system Σsd de-
scribed by

ẋ(t) = AI(t)x(t) + BI(t)u(t) + aI(t), (1)

I(t) = I(tk), ∀t ∈ [tk, tk+1),{
x(tk+1) = φ(h, I(tk), x(tk)),
I(tk+1) = I+ if x(tk+1) ∈ SI+

where x ∈ Rn is the continuous state, I ∈ M(=
{0, 1, . . . , M−1}) is the discrete state (or mode), M ∈ N+

is the number of discrete state, u ∈ Rm is the control input,
h ∈ R is the switching period, tk = kh (k ∈ N ) is the
switching time, I+ ∈ M is the new value of the discrete
state at the switching time, AI ∈ Rn×n, BI ∈ Rn×m, and
aI ∈ Rn are constant matrices for mode I . We call (I, x) ∈
M×Rn the hybrid state (or simply the state) of Σsd. In
addition, φ(h, I(tk), x(tk)) denotes the solution x(tk+h) at
time tk +h of ẋ(t) = AI(tk)x(t)+BI(tk)u(t)+aI(tk) with
the initial state x(tk), and the subregion of the continuous
state assigned to I is given by the polyhedron

SI := {x ∈ Rn| CIx + dI ≤ 0, ĈIx + d̂I < 0} (2)

where CI ∈ RpI×n, ĈI ∈ Rp̂I×n, dI ∈ RpI , and d̂I ∈
Rp̂I . For this subregion, it is assumed that

(A1)
⋃

I∈M SI = Rn and SI∩SJ = ∅ for every I, J ∈
M such that I �= J .

This assumption implies that I is uniquely determined for
each x, which guarantees that Σsd is well-posed for all
u ∈ PC. Note that, in this system, the discrete transition (if
possible) occurs only at each switching time tk.

On the other hand, the discrete-time PWA system Σd

with sampling time h, which is the discrete-time model of
the system in Fig. 1, is described by

x(tk+1) = Ad
I(tk)x(tk) + Bd

I(tk)u(tk) + ad
I(tk), (3)

I(tk+1) = I+, if x(tk+1) ∈ SI+

where the symbols x ∈ Rn, I ∈ M, M ∈ N+, u ∈ Rm,
h ∈ R, tk, I+ ∈ M, and SI ⊆ Rn are defined in a similar
way to Σsd, and Ad

I ∈ Rn×n, Bd
I ∈ Rn×m, and ad

I ∈
Rn are constant matrices for mode I . For this system, the
condition (A1) is also assumed to guarantee that Σd is well-
posed for all u(tk) ∈ Rm. For simplicity of notation, we
use hereafter x(0) = x0 ∈ Rn as the initial state instead of
the hybrid state (I(0), x(0)) = (I0, x0) ∈ M× SI0 , since
the value of the initial discrete state I0 ∈ M is uniquely
determined by each x0 ∈ Rn.

It is remarked that, although at first sight, the system
structures of Σsd and Σd seem similar, the controllabil-
ity/reachability properties of Σsd and Σd are quite different
due to the difference of the class of control input signals,
i.e., an control input for Σsd is given by any piecewise
continuous functions of time and an control input for Σd is
given by any piecewise constant functions of time.

III. CONTROLLABILITY/REACHABILITY ANALYSIS

A. Definition of Controllability/Reachability

We define the following notion.
Definition 1: For Σsd (Σd), suppose that the set X ⊆ Rn

of the continuous state and the final time Tf ∈ (0,∞)
(Tf ∈ {t1, t2, . . . }) are given. Let f ∈ N+ denote the
integer satisfying tf−1 < Tf ≤ tf .
(i) Σsd (Σd) is said to be (X , Tf)-controllable if for each
x0 ∈ X , there exists an input function u ∈ PC (an input
vector sequence {u(tk) ∈ Rm | k = 0, 1, . . . , f − 1 })
satisfying x(Tf ) = 0 under the initial state x(0) = x0.
(ii) Σsd (Σd) is said to be (X , Tf)-reachable if for each
xf ∈ X , there exists an input function u ∈ PC (an input
vector sequence {u(tk) ∈ Rm | k = 0, 1, . . . , f − 1 })
satisfying x(Tf ) = xf under the initial state x(0) = 0.

Note here that the set of the initial/final state and the final
time are explicitly specified in the above definition. Such a
definition is useful in checking the feasibility of the finite-
time optimal control (model predictive control) problem
with the final state fixed. Note also that the controllability in
(i) and the reachability in (ii) are not in general equivalent;
we can show that there is a Σsd (Σd) which is (X , Tf )-
controllable, not (X , Tf )-reachable, and that there is a Σsd

(Σd) which is (X , Tf )-reachable, not (X , Tf )-controllable.
Next, let Ior ∈ M be the value of the discrete state

satisfying 0 ∈ SIor
. Then for the above definition, the

following fact holds straightforwardly.
Lemma 1: For Σsd (Σd), suppose that X ⊆ Rn and
Tf ∈ (0,∞) are given. Let U := {U ∈ Rmn|
[BIor

AIor
BIor

· · ·An−1
Ior

BIor
]U+

∫ h

0
eAIor (h−τ)aIor

dτ =0}
(U := {u ∈ Rm|Bd

Ior
u + ad

Ior
= 0}). Then if U �= ∅ holds,

the following statements hold for all k ∈ N .
(i) If Tf ∈ {t1, t2, . . . } and Σsd (Σd) is (X , Tf )-
controllable, then it is (X , Tf + kh)-controllable.
(ii) If Σsd (Σd) is (X , Tf )-reachable, then it is (X , Tf +
kh)-reachable.

Lemma 1 implies that, under the condition U �= ∅, if Σsd

(Σd) is (X , Tf )-controllable/reachable, it is also (X , Tf +
kh)-controllable/reachable for any k ∈ N+.

B. Controllability/Reachability Criteria

First, let us consider the controllability/reachability crite-
ria of Σsd. For simplicity of notation, letting x̄ := [xT 1]T

and

ĀI :=
[

AI aI

0 0

]
, B̄I :=

[
BI

0

]
(4)



where ĀI ∈ R(n+1)×(n+1) and B̄I ∈ R(n+1)×m, we
rewrite (1) as ˙̄x(t) = ĀI(t)x̄(t) + B̄I(t)u(t). Let V̄I :=
[B̄I ĀIB̄I · · · Ān

I B̄I ] and rI := rank V̄I , and let V̄ ⊥
I ∈

R(n+1)×(n+1−rI) be a matrix such that rank[V̄I V̄ ⊥
I ] =

n+1 and (V̄ ⊥
I )T V̄I = 0. Thus span(V̄ ⊥

I ) expresses the or-
thogonal complement of span(V̄I). Furthermore, we denote
the hybrid states (Ik, xk) ∈ M×SIk

, k = 1, 2, . . . , f−1,
as I := [I1 I2 · · · If−1]T and x := [xT

1 xT
2 · · · xT

f−1]
T ;

so I ∈ Mf−1 and x ∈ SI for SI := SI1×SI2×· · ·×SIf−1 .
Then we obtain the following result. This characterizes
a condition for the system to have u ∈ PC satisfying
x(Tf ) = xf for the initial state (I(0), x(0)) = (I0, x0),
in terms of the intermediate hybrid states (I, x).
Lemma 2: For Σsd, suppose that the hybrid state
(Ik, xk) ∈ M × SIk

(k = 0, 1, . . . , f − 1), the final state
xf ∈ Rn, and the final time Tf ∈ (0,∞) are given. Then
the following statements are equivalent.
(i) For the initial state x(0) = x0 (that is, (I(0), x(0)) =
(I0, x0)), there exists a u∈PC satisfying (I(tk), x(tk)) =
(Ik, xk) (k = 1, 2, . . . , f − 1) and x(Tf ) = xf .
(ii) The following relation holds:

Ea
I0I x + Eb1

I0I + Eb2
I0I x0 + Eb3

I xf = 0 (5)

where Ea
I0I , Eb1

I0I , Eb2
I0I , and Eb3

I are given by

Ea
I0I :=




E2
I0

0 0 · · · 0
E1

I1
E2

I1
0 · · · 0

0 E1
I2

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 E1

If−2
E2

If−2

0 · · · · · · 0 E1
If−1




,

Eb1
I0I :=




E3
I0

E3
I1
...

E3
If−1


 , Eb2

I0I :=




E1
I0

0
...
0


 , Eb3

I :=




0
...
0

E2
If−1


 ,

E1
Ik

:=(V̄ ⊥
Ik

)T

[−eAIk
hk

0

]
, E2

Ik
:=(V̄ ⊥

Ik
)T

[
In

0

]
,

E3
Ik

:= (V̄ ⊥
Ik

)T

[
− ∫ hk

0
eAIk

(hk−τ)aIk
dτ

0

]
,

hk :=
{

h if k ≤ f − 2,
Tf − tf−1 if k = f − 1.

Proof: Since the discrete transition in Σsd does not oc-
cur at t ∈ (tk, tk+1), I(t) = Ik holds for all t ∈ [tk, tk+1).
Then letting x̄k := [xT

k 1]T , it follows that for the state
(I(tk), x(tk)) = (Ik, xk) of Σsd, there exists a u ∈ PC such
that x(tk + hk)=xk+1 if and only if x̄k+1 − eĀIk

hk x̄k ∈
span(V̄Ik

), namely, (V̄ ⊥
Ik

)T (x̄k+1 − eĀIk
hk x̄k) = 0. This

can be expressed as E1
Ik

xk +E2
Ik

xk+1 +E3
Ik

= 0. Thus (5)
is obtained by putting together the above relations for all
k ∈ {0, 1, . . . , f −1}. This proves the equivalence between
(i) and (ii).

From Lemma 2, it follows that for given (I0, x0) ∈ M×
SI0 , I ∈ Mf−1, xf ∈ Rn, and Tf ∈ (0,∞), there exists
a u ∈ PC satisfying [I(t1) I(t2) · · · I(tf−1)]T = I and
x(Tf ) = xf under the initial state (I(0), x(0)) = (I0, x0) if
and only if there exists an x ∈ SI satisfying (5), i.e., {x ∈
SI |Ea

I0Ix+Eb1
I0I+Eb2

I0Ix0+Eb3
I xf = 0} �=∅ holds. Thus if I0

and I are fixed, the set of x0 ∈ SI0∩X such that there exists
a u ∈ PC satisfying [I(t1) I(t2) · · · I(tf−1)]T = I and
x(Tf ) = 0 under the initial state (I(0), x(0)) = (I0, x0)
can be expressed as {x0 ∈ SI0 ∩ X |{x ∈ SI |Ea

I0Ix +
Eb1

I0I + Eb2
I0Ix0 = 0} �= ∅}. Then, since the relation X =⋃

I0∈M SI0 ∩ X holds under (A1), let us define the set

X I
0 (X , Tf ) :=⋃
I0∈M

{
x0 ∈ SI0 ∩ X ∣∣

{x ∈ SI |Ea
I0Ix + Eb1

I0I + Eb2
I0Ix0 = 0} �= ∅ }

. (6)

Finally, we can express the set of x0 ∈ X such that there
exists a u ∈ PC satisfying x(Tf ) = 0 under the initial state
x(0) = x0 as follows:

X0(X , Tf ) :=
⋃

I∈Mf−1 X I
0 (X , Tf ). (7)

In a similar way, the set of xf ∈ X such that there exists
a u ∈ PC satisfying x(Tf ) = xf under the initial state
x(0) = 0 (that is, (I(0), x(0)) = (Ior, 0)) is given by

Xf (X , Tf ) :=
⋃

I∈Mf−1 X I
f (X , Tf ) (8)

where X I
f (X , Tf ) :=

{
xf ∈ X ∣∣{x ∈ SI |Ea

IorIx + Eb1
IorI +

Eb3
I xf = 0} �=∅}. Thus the following result is obtained.

Theorem 1: For Σsd, suppose that X ⊆ Rn and Tf ∈
(0,∞) are given. Then the following statements hold.
(i) Σsd is (X , Tf )-controllable if and only if the relation
X0(X , Tf ) = X holds.
(ii) Σsd is (X , Tf )-reachable if and only if the relation
Xf (X , Tf ) = X holds.

The above theorem allows us to analyze these two
properties in a unified way.

Next, let us consider the controllability/reachability cri-
teria of Σd. This is discussed in a similar way to that of
Σsd. Let

Ād
I :=

[
Ad

I ad
I

0 1

]
, B̄d

I :=
[
Bd

I

0

]

where Ād
I ∈ R(n+1)×(n+1) and B̄d

I ∈ R(n+1)×m. In
addition, let V̄ d

I := B̄d
I and rd

I := rank V̄ d
I , and

let V̄ d⊥
I ∈ R(n+1)×(n+1−rd

I ) be the matrix satisfying
rank[V̄ d

I V̄ d⊥
I ] = n + 1 and (V̄ d⊥

I )T V̄ d
I = 0. Then

by defining E1
Ik

:= (V̄ d⊥
Ik

)T [(−Ad
Ik

)T 0T
1×n]T , E2

Ik
:=

(V̄ d⊥
Ik

)T [IT
n 0T

1×n]T , E3
Ik

:=(V̄ d⊥
Ik

)T [(−ad
Ik

)T 0]T instead
of E1

Ik
, E2

Ik
, E3

Ik
in Lemma 2 (ii) and by defining X0 and

Xf in a similar way to (7) and (8), the same result as
Theorem 1 is obtained for Σd.

In this way, since the controllability/reachability condi-
tions of Σsd and Σd are characterized in a similar form, so



we mainly discuss the (X , Tf )-controllability of Σsd here-
after. Furthermore, for simplicity of notation, we sometimes
use the symbol X I

0 instead of X I
0 (X , Tf ), and the symbol

X0 instead of X0(X , Tf ).

C. Deterministic Controllability Analysis and Its Problems

Based on Theorem 1, let us discuss how to check the
(X , Tf )-controllability of Σsd. For this purpose, we prepare
the following lemma.
Lemma 3: For Σsd, suppose that X ⊆ Rn and Tf ∈
(0,∞) are given. Then if X is the bounded polyhedron,
X0 can be expressed as

X0 =
⋃

I∈Mf−1

⋃
I0∈M X I0I

0 (9)

by using the set X I0I
0 :=

⋃
i∈N+

Oi
I0I where Oi

I0I is some
polyhedron.

Proof: Since X I0I
0 is considered as {x0∈SI0∩X|{x ∈

SI |Ea
I0Ix + Eb1

I0I + Eb2
I0Ix0 = 0} �= ∅} from (6) and (7),

we prove that it is characterized by the union set of some
polyhedra. For this purpose, we first define S̄I0 ∩ X̄ as
the closure of SI0 ∩ X . For given (I0, x0)∈M×SI0 and
I ∈ Mf−1, let us consider the linear programming (LP)
problem LP(I, I0, x0):

min
x,w

w

subject to
{ CIx + DI ≤ 0, ĈIx + D̂I ≤ w1, −1 ≤ w,

Ea
I0Ix + Eb1

I0I + Eb2
I0Ix0 = 0

where w is the scalar variable, CI , DI , ĈI , and D̂I are
the matrices satisfying SI = {x ∈ R(f−1)n | CIx + DI ≤
0, ĈIx + D̂I < 0}, and 1 := [1 1 · · · 1]T . Then, by
defining the optimal value of LP(I, I0, x0) as w∗(I, I0, x0),
it turns out that {x ∈ SI |Ea

I0Ix + Eb1
I0I + Eb2

I0Ix0 = 0} �= ∅
is satisfied if and only if LP(I, I0, x0) is feasible and the
relation w∗(I, I0, x0) < 0 holds. Thus, for given (I0, I) ∈
Mf , if LP(I, I0, x0) is not feasible for all x0 ∈ S̄I0 ∩ X̄ ,
then the relation {x0 ∈ SI0 ∩ X|{x ∈ SI |Ea

I0Ix + Eb1
I0I +

Eb2
I0Ix0 = 0} �= ∅} = ∅ holds. On the other hand, for

given (I0, I) ∈ Mf , if LP(I, I0, x0) is feasible for some
x0 ∈ S̄I0 ∩ X̄ , then by considering LP(I, I0, x0) as the
multiparametric LP (mp-LP) problem with the parameter
x0 ∈ S̄I0 ∩ X̄ , we can obtain

w∗(I, I0, x0) = Gi
I0I x0 + gi

I0I , if x0 ∈ Gi
I0I (10)

where i ∈ N+, Gi
I0I and gi

I0I are some vectors, and
Gi

I0I (⊆ S̄I0 ∩ X̄ ) is some polyhedron [6]. Note that
LP(I, I0, x0) for given (I0, I) ∈ Mf and x0 ∈ S̄I0 ∩ X̄
is feasible if and only if x0 ∈ ⋃

i∈N+
Gi

I0I . Thus, since
SI0 ∩ X ⊆ S̄I0 ∩ X̄ holds, the relation {x0∈SI0 ∩ X|{x ∈
SI |Ea

I0Ix + Eb1
I0I + Eb2

I0Ix0 = 0} �= ∅} =
⋃

i∈N+
{x0 ∈

Gi
I0I |Gi

I0I x0 + gi
I0I < 0} ∩ (SI0 ∩ X ) is obtained, which

completes the proof.
Lemma 3 implies that, for the bounded polyhedron X ,

X0 is characterized by the union set of some polyhedra

obtained by solving the mp-LP problems LP(I, I0, x0).
Hence, calculating X I0I

0 and then
⋃

I∈Mf−1

⋃
I0∈M X I0I

0

is required for checking the condition X0 = X . However,
such a deterministic way is not always practical; as Tf is
taken larger, the number of the mp-LP problems to obtain
X I0I

0 for all (I0, I) ∈ Mf becomes exponentially large in
the worst case. In addition, in the mp-LP problem, even
when the dimension of the parameter x0 is fixed, the com-
putation amount grows exponentially with the dimension of
the variable and the number of the constraints in general.
In fact, the minimum dimension of the variable and the
minimum number of the constraints are at least n(f−1)+1
and minI∈M(pI+p̂I)·(f−1)+1, respectively, where pI+p̂I

is the number of the inequalities characterizing SI in (2).
Hence, for example, if n = 3, M = 5, minI∈M(pI + p̂I) =
2, and f = 10, then 9,765,625 mp-LP problems with 3-
dimensional parameter and at least 28-dimensional variable
and 19 constraints have to be solved.

IV. PROBABILISTIC CONTROLLABILITY ANALYSIS

In Section III-C, we have discussed the hardness of
the deterministic way based on Theorem 1. Hence, as a
practical method, we consider here a randomized algorithm
to solve the condition in Theorem 1 in a probabilistic sense.
For simplicity of discussion, we suppose X is the bounded
and measurable set whose measure is not zero.

A. Principle of Probabilistic Controllability Analysis

Let us define the measures of X and X0 as vol(X ) :=∫
X dx0 and vol(X0) :=

∫
X0

dx0, respectively. In addition,
letting x0 be a random vector with a uniform probability
density function φx0 on X , we formally define

Prob{x0 ∈ X0} :=
∫
X0

φx0 dx0. (11)

Note that Prob{x0 ∈ X0} = vol(X0)/ vol(X ) holds. Then
the following result is straightforwardly obtained from the
result in [7].
Lemma 4: For Σsd, suppose that X ⊆ Rn and Tf ∈
(0,∞) are given. For given ε ∈ (0, 1) and δ ∈ (0, 1), let
Ns be an integer satisfying

Ns ≥ ln 1
δ

ln 1
1−ε

. (12)

Then if for all i.i.d. random vectors xi
0 ∈ X (i =

1, 2, . . . , Ns), xi
0 ∈ X0 holds, the relation

Prob{Prob{x0 ∈ X − X0} ≤ ε} ≥ 1 − δ (13)

holds.
Lemma 4 implies that, when xi

0 ∈ X0 holds for every
i.i.d. random vectors xi

0 ∈ X (i = 1, 2, . . . , Ns), the fact
that the volume of X −X0 (= vol(X −X0)/ vol(X )) is less
than ε holds with the probability more than 1 − δ. Thus if
ε and δ are sufficiently small, the condition X0 = X is



approximately satisfied, in other words, for almost all x0 ∈
X , there exists a u ∈ PC in Σsd satisfying x(Tf ) = 0 under
the initial state x(0) = x0. We may feel here that something
is missing for such a analysis. However, as mentioned in
section III-C, we have to recall that we face on the hardness
of the computation on the analysis of the complex systems
such as hybrid systems. Thus for hybrid systems that can
not be analyzed in a deterministic way, the probabilistic
method will be the alternative.

Now, by letting ϕ(x0) be the function to check whether
x0 ∈ X0 holds or not, given by

ϕ(x0) :=
{

0 if x0 ∈ X0,
1 if x0 /∈ X0,

(14)

and F (I, I0, x0) be the propositional function given by

F (I, I0, x0) :=




0 if LP(I, I0, x0) is feasible and
w∗(I, I0, x0) < 0,

1 otherwise,
(15)

the probabilistic controllability analysis of Σsd is executed
by the following randomized algorithm.

[Algorithm 1: Probabilistic Controllability Analysis]
0: Given ε ∈ (0, 1) and δ ∈ (0, 1);

1: Let Ns be an integer s.t. (12);
2: Generate the i.i.d. random vectors

x1
0, x2

0, . . . , xNs
0 ∈ X;

3: i := 1;

4: If ϕ(xi
0) == 1

then Halt: return “Not (X , Tf )-controllable”;
5: If ( ϕ(xi

0) == 0 ) and ( i == Ns )

then Halt: return “(X , Tf )-controllable

in the sense of (13)”;
6: i := i + 1; goto Line 4;

[Algorithm 2: Computation of ϕ(x0)]
0: Given x0 ∈ X;

1: Stack := Mf−1;
2: Let I0 be the value of the discrete state

s.t. x0 ∈ SI0;

3: I := Pop(Stack);
4: Determine F (I, I0, x0) by solving LP(I, I0, x0);

5: If F (I, I0, x0) == 0
then Halt: return ϕ(x0) = 0;

6: If Stack == empty

then Halt: return ϕ(x0) = 1; else goto Line 3;

Algorithm 1 shows the procedure of the probabilistic
controllability analysis: for given ε ∈ (0, 1) and δ ∈ (0, 1),
Ns is determined by (12) (line 1), and Ns i.i.d. random
vectors x1

0, x
2
0, . . . , xNs

0 ∈ X are generated (line 2). Then
if xi

0 /∈ X0 for some i, the output is given by “Not (X , Tf )-

controllable” (line 4). Note that this is the deterministic
result since X0 �= X holds. Otherwise, that is, xi

0 ∈ X0 for
all i ∈ {1, 2, . . . , Ns}, the output is given by “(X , Tf )-

controllable in the sense of (13)” (line 5).
On the other hand, Algorithm 2 shows the procedure

to compute ϕ(x0) in Algorithm 1: for x0 ∈ X and I ∈
Mf−1, since the condition x0 ∈ X I

0 holds if and only

if {x ∈ SI |Ea
I0Ix + Eb1

I0I + Eb2
I0Ix0 = 0} �= ∅ holds for

I0 ∈ M satisfying x0 ∈ SI0 , we can determine if the
condition x0 ∈ X I

0 holds or not by solving LP(I, I0, x0) for
I0 ∈ M satisfying x0 ∈ SI0 and verifying F (I, I0, x0) =
0. Therefore, if F (I, I0, x0) = 0 for some element I in
Stack(= Mf−1), then the output is ϕ(x0) = 0 (line 5),
and if there exists no I ∈ Mf−1 such that F (I, I0, x0) =
0, then the output is given by ϕ(x0) = 1 (line 6).

The number NLP ∈ N of LP problems solved in the
proposed algorithm is estimated by

min{Ns, Mf−1} ≤ NLP ≤ NsM
f−1. (16)

In fact, Algorithm 2 needs to solve at most Mf−1 times
LP problems for step i in Algorithm 1, and if Σsd is
(X , Tf )-controllable, the condition ϕ(xi

0) = 0 is checked
for all x1

0, x
2
0, . . . , xNs

0 ∈ X , and if Σsd is not (X , Tf )-
controllable, for some xi

0 ∈ X , the condition xi
0 /∈ X I

0 is
checked for every I ∈ Mf−1. Hence we obtain (16).

The probabilistic controllability analysis has some good
properties. First, the large memory in the computer is
not needed. Although the mode sequence set Mf−1 is
stored in Stack at a time in Algorithm 2 for simplicity
of discussion, we do not have to do such a way: if we
use ordered sequences, the large memory is not required.
Second, even when we check if xi

0 ∈ X0 holds for some
N ′

s(< Ns) sampled data, we can estimate ε and δ for N ′
s

samples, based on Lemma 4. Thus it is possible to estimate
the controllability of Σsd for a fixed computation time.
For any deterministic methods, such advantages will not
be satisfied.

B. Techniques for Efficient Probabilistic Controllability Analysis

In this subsection, we present several techniques to more
efficiently execute the above randomized algorithm. First,
the following result is obtained from (6) and (7).
Lemma 5: For Σsd, suppose that X ⊆ Rn and Tf ∈
(0,∞) are given. Let MC := {I0 ∈ M|rI0 = n} and

XC :=
{ ∅ if MC = ∅,⋃

I0∈MC
SI0 ∩ X if MC �= ∅. (17)

Then, the relation XC ⊆ X0 holds.
Lemma 5 implies that Σsd is (X , Tf )-controllable if and

only if it is (X − XC , Tf )-controllable. Thus since the set
X −XC is smaller than X , we can check the controllability
by smaller size of samples than Ns defined by (12) as
follows.
Lemma 6: Suppose that X ⊆ Rn, Tf ∈ (0,∞), ε ∈
(0, 1), and δ ∈ (0, 1) are given and that vol(X − XC) �= 0
holds. Let ε′ := ε(vol(X )/ vol(X −XC)) and let Ñs be the
integer satisfying

Ñs ≥ ln 1
δ

ln 1
1−ε′

. (18)

Then if for all i.i.d. random vectors xi
0 ∈ X − XC (i =

1, 2, . . . , Ñs), xi
0 ∈ X0 holds, the relation (13) holds.



Thus we obtain an efficient algorithm, where the state-
ments in lines 1 and 2 of Algorithm 1 are replaced by
1: Let Ñs be the integer s.t. (18);

2: Generate the i.i.d. random vectors

x1
0, x2

0, . . . , xÑs
0 ∈ X − XC;

and Ns in line 5 is replaced by Ñs.
Next, the following result obtained from Lemma 2, the

proof of Lemma 3, and (15), plays a central role to compute
ϕ(x0) in an efficient way.
Lemma 7: For Σsd, suppose that X ⊆ Rn and Tf ∈
(0,∞) are given. Then the following statements hold.
(i) For given (I0, x0) ∈ M× SI0 and I ∈ Mf−1, if
rank Ea

I0I �=rank[Ea
I0I Eb1

I0I +Eb2
I0Ix0], then F (I, I0, x0)=

1 holds.
(ii) Suppose that (I0, x0) ∈ M × SI0 , j ∈ {1, 2, . . . , f −
1}, and Ij ∈ Mj are given. Then for the initial state
x(0) = x0 if there exists no u ∈ PC satisfying
[I(t1) I(t2) · · · I(tj)]T = Ij , F (I, I0, x0) = 1 for all
I ∈ Mf−1 such that [Ij 0j×(f−1−j)]I = Ij .

Lemma 7 (i) implies that, without solving LP(I, I0, x0),
we can often check if F (I, I0, x0) = 1 holds; thus the
computation amount NLP can be decreased. Lemma 7 (ii)
is also very useful. For example, if there exists no u ∈ PC
satisfying I(t1) = I1 for the initial state x(0) = x0 and
I1 = 0 (this can be checked by solving some LP problem),
it turns out that F (I, I0, x0) = 1 for all I ∈ Mf−1 whose
first element is “0”. Thus the corresponding elements in
Stack can be removed. It is stressed that, by integrating the
above techniques into Algorithms 1 and 2, we can expect
that the computation amount NLP is made smaller than the
lower bound of (16) derived for Algorithms 1 and 2.

V. EXAMPLE

Let us consider the following Σsd with n = 2, M = 5,
and h = 1, which include a parameter ζ ∈ {0, 1}:

A0 :=
[

0 1
1 −1

]
, B0 :=

[
0
1

]
, a0 :=

[
0
−1

]
,

A1 :=
[

2 −1
1 2

]
, B1 :=

[
1
−1

]
, a1 :=

[
0
0

]
,

A2 :=
[ −3 0

0 1

]
, B2 :=

[
1
0

]
, a2 :=

[
0
0

]
,

A3 :=
[−ζ 0

0 −3

]
, B3 :=

[
0
1

]
, a3 :=

[
1
0

]
,

A4 :=
[

0 0
0 −9

]
, B4 :=

[
0
0

]
, a4 :=

[
0
0

]
.

The subregions of the continuous state assigned to each
value of the discrete state are shown in Fig. 2. Note that, the
subsystems in only mode 0 and mode 1 are controllable for
any ζ ∈ {0, 1}, so MC = {0, 1} and XC = (S0 ∪ S1)∩X
in Lemma 5.

Let us apply the proposed algorithm to Σsd for Tf =
10, X = [−100, 100]2, in order to determine if there is a

-50

50

-50

50
0

x(2)

x(1)

S2

S0

S1

S3

S4

S0 :=




x ∈ R2

∣∣∣∣∣∣∣∣




1 0
−1 0
0 1
0 −1


x +



−50
−50
−50
−50


 ≤ 0




,

S1 :=
{

x ∈ R2
∣∣ [ 1 0 ] x + 50 < 0

}
,

S2 :=


x ∈ R2

∣∣∣∣∣∣
[

1 0
−1 0

]
x +

[−50
−50

]
≤ 0

[ 0 1 ] x + 50 < 0


 ,

S3 :=
{

x ∈ R2

∣∣∣∣ [ 0 1 ] x − 50 ≤ 0
[−1 0 ] x + 50 < 0

}
,

S4 :=
{

x ∈ R2

∣∣∣∣ [−1 0 ] x − 50 ≤ 0
[ 0 −1 ] x + 50 < 0

}
.

Fig. 2. Subregions of the continuous state assigned to each value of the
discrete state.

TABLE I

RESULT OF PROBABILISTIC CONTROLLABILITY ANALYSIS.

Value of ζ 0 1

Result Not (X , Tf )-controllable (X , Tf )-controllable
Computation time [sec]
(min. / mean / max.)

804 / 959 / 1,107 202 / 233 / 260

NLP [times]
(min. / mean / max.)

27,063 / 32,929 / 38,778 5,398 / 6,325 / 7,550

probability more than 99.9 [%] that vol(X−X0)/ vol(X ) ≤
0.1 [%]. So we set ε = 0.001, δ = 0.001, and Ñs = 3, 500
by (18). We used MATLAB on the computer with the Intel
Pentium 4 2.20GHz processor and the 768MB memory and
the techniques of Lemmas 5–7 are used. Table I shows the
numerical results based on ten trials. For each case, the
algorithm answered the same result in every trial.

From (16), the computation amount is given by 7, 000 ≤
NLP ≤ 13, 672, 187, 500. These values are the case where
we do not use any techniques of Lemmas 5–7. However,
if these lemmas are applied, we can see that the actual
number NLP in Table I for each case is around the lower
bound of the estimated times. In contrast, note that, if we
apply the deterministic method in section III-C to these
examples, in worst case, we will have to solve 9,765,625
mp-LP problems with 2-dimensional parameter and at least
19 variables and 10 constraints. Thus it will be hopeless to
get any solutions.
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