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Abstract— The first harmonic of the cantilever deflection in
the tapping-mode operation of an Atomic Force Microscope
(AFM) is analyzed using asymptotic methods for weakly
nonlinear oscillators. The resulting amplitude and phase
dynamical equations are obtained which characterize the
transient behavior of tapping-mode dynamics. The steady state
behavior is analyzed by examining the fixed points of the
amplitude phase dynamics and a simple stability criterion
is obtained. Further with a simple tip-sample interaction
model, the experimentally observed discontinuous jumps in
the amplitude versus tip-sample separation plots are explained
and the regions of the interaction regime probed by the tip
are investigated.

I. I NTRODUCTION

Fig. 1. (a) A typical setup of an AFM. The chief components are the
micro-cantilever, a sample positioning system and an optical detection sys-
tem (b)In tapping-mode AFM, the cantilever is oscillated by a dither piezo
attached to the base. Due to tip-sample interaction forces, the oscillations
get modulated and these are used to infer the sample characteristics.

The atomic force microscope (AFM) is a powerful tool
where a micro-cantilever is utilized to image and manipulate
matter at the atomic scale. The schematic of a typical AFM
is shown in Figure 1 (a). The primary component of an
AFM is a micro-cantilever with a sharp tip. The sample to
be interrogated is scanned underneath the cantilever. The
cantilever deflects under the influence of the tip-sample
interaction forces. This deflection is measured using an
optical detection system. Over the years a wide range of
modes of operation have emerged. In contact mode or static
mode operation, the cantilever deflection is primarily due to
the tip-sample interaction and this signal is used to interpret
sample properties. In the tapping-mode or dynamic mode
operation, the cantilever support is forced sinusoidally using
a dither piezo (see Figure 1 (b)) thereby oscillating the
cantilever. The changes in the oscillation (in particular the

amplitude or phase of the first harmonic) introduced due to
the sample are interpreted to obtain the sample properties.

In the tapping-mode operation, the cantilever tip probes a
wide range of the nonlinear tip-sample interaction potential.
Due to the complexity, numerical simulations are primarily
employed in the analysis of tapping-mode AFM dynamics
(see [1], [2]). Compared to numerical investigations there
are fewer analytical studies of tapping-mode operation.

In [3] and [4] a systems approach to the analysis of
tapping-mode AFM dynamics was introduced where the
tapping-mode operation was viewed as a feedback inter-
connection of a linear system (cantilever) with a nonlinear
system (tip-sample interaction) which is forced sinusoidally.
This analysis provided insights as to why in most operating
conditions the cantilever settles down to a near sinusoidal
periodic solution. Bounds were obtained for the higher
harmonics in the steady state. But this analysis is not
suitable to analyze the transient behavior of the tapping-
mode dynamics and cannot explain the experimentally
observed discontinuous jumps in the amplitude and phase
at different values of cantilever-sample separation. Some
of the early analytical efforts to explain these distinctly
nonlinear phenomena are presented in [5], [6] and [7]. In
one of the earliest attempts to characterize the transient
behavior of tapping-mode operation, resorting to the averag-
ing theorem, the amplitude phase dynamics were obtained
(see [8]). Further the connection between the fixed points
of the amplitude phase dynamics and those obtained using
harmonic balance equations is presented.

In this article we provide new insights into the transient
and nonlinear behavior of tapping-mode AFM. The em-
phasis of the paper is on tractable analytical methods and
interaction models with an eye on potential applications
in controller design based on amplitude dynamics and
new modes of imaging. There are recent results which
give directions to utilize the distinctly nonlinear nature of
tapping-mode operation for improved imaging (see [9]).
This focus of the paper is different from the interesting
efforts to analyze the tapping-mode behavior in an elaborate
manner using detailed descriptions for the forcing and
interaction models (see [10]). In this paper the oscillating
cantilever influenced by the tip-sample interaction force is
treated as a weakly nonlinear harmonic oscillator. Methods
suggested by Bogoliubov and Mitropolskii (see [11] and
[12]) are used to arrive at approximate solutions for the dif-
ferential equations characterizing the cantilever dynamics.



The amplitude and phase dynamic equations are derived.
The multi-valued frequency response curves are obtained
and a simple stability criterion is derived to analyze the
stability of various fixed points. Insights are obtained on the
regions of tip-sample potential probed during tapping-mode
operation. This study further demonstrates that a simple
lumped parameter model captures the transient as well as
steady state behavior.

II. A NALYSIS

Fig. 2. (a) The first mode approximation of the cantilever dynamics.m
is the mass,k is the spring constant,c is the damper,p is the position of
the tip of the cantilever,b is the forcing signal andΦ is the nonlinear tip-
sample interaction force which is a function of the position and velocity. (b)
Typical tip-sample interaction forces consist of long range weak attractive
forces and short range strong repulsive forces. In the model introduced, the
oscillating cantilever encounters the tip-sample interaction forces during
the negative cycle of its oscillation.

A first mode approximation is typically sufficient to
analyze the first harmonic of the cantilever oscillation. The
first mode approximation model of the cantilever is depicted
in Figure 2(a). A typical plot of the nonlinear tip-sample
interaction force is shown in Figure 2(b). The dynamical
equation of the tip of the cantilever,p(t) is given by,

mp̈+cṗ+kp= kb(t)+Φ(p, ṗ) (1)

whereΦ is the force on the cantilever due to the sample and
b describes the displacement of the base of the cantilever.
m is the mass of the cantilever,k, the spring constant andc
the damping coefficient. The tip encounters the tip-sample
interaction forces towards the end of the negative cycle of
the oscillation. Thus during most part of the oscillation cycle
the tip does not interact with the sample. This motivates the
analysis of tapping-mode dynamics using the asymptotic
methods developed for weakly nonlinear systems. In the
case of tapping-mode operation the nonlinear forces are
significantly higher than the non-contact mode of operation
of the AFM, another dynamic mode operation where the
tip probes only the attractive regime of the tip sample
interaction. However the experimental results presented
later validates the assumption that the cantilever sample
system can be modeled as a weakly nonlinear oscillator
even for the tapping-mode operation.

From Equation 1 it can be observed that in free air the
cantilever oscillation is characterized by the parametersk
andc sinceΦ = 0. It is intuitive to assume that due to the
tip sample interaction (whenΦ is nonzero), the cantilever

can still be thought of as a harmonic oscillator with a
new effectivek denoted byke and an effectivec denoted
by ce which themselves are functions of the amplitude of
oscillation. Furthermore intuitively an attractive tip-sample
interaction should result in a lowerke and a repulsive tip-
sample interaction should result in a higherke compared to
the originalk. This process of approximating the original
nonlinear dynamical equation by a second order linear
differential equation in terms ofke(a) and ce(a) is called
equivalent linearization. (See [12]).

A. Amplitude phase dynamics

Equation (1) can be recast as,

mp̈+kp= ε(
−cṗ+Φ(p, ṗ)

ε
)+ ε

mg(t)
ε

(2)

whereg(t) = kb(t)
m . This can be written as,

mp̈+kp= ε f (p, ṗ)+ εEcos(ωt) (3)

where

f (p, ṗ) =
−cṗ+Φ(p, ṗ)

ε
(4)

Ecos(ωt) =
mg(t)

ε
(5)

Also if g(t) = γ cosωt (γ is the forcing amplitude), then
E = mγ

ε
.

Assume thatp(t) is sinusoidal with an “amplitude”,a
and “phase”,φ denoted by,

p(t) = acos(ωt +φ). (6)

where

ȧ = −δe(a)a− ε
Esinφ

m(ω0 +ω)
(7)

φ̇ = ωe(a)−ω − ε
Ecosφ

ma(ω0 +ω)
. (8)

where,

ωe(a)2 =
ke(a)

m

= ω
2
0 +

2
a

Φc, (9)

Φc = 1
2π

∫ 2π

0
Φ(acosψ,−aω sinψ)

m cosψdψ

and

δe(a) =
ce(a)
2m

= ξ ω0 +
1

aω
Φd, (10)

Φd = 1
2π

∫ 2π

0
Φ(acosψ,−aω sinψ)

m sinψdψ

Note thata andφ are the amplitude and phase typically
referred to in the tapping-mode literature. It could be shown
that Equation (6) satisfies Equation (3) with an accuracy of
the orderε2 when the forcing frequencyω is chosen such
thatω2

0 −ω2 is of orderε (See [11]). The solution is equiv-
alent to that of a linear system with damping coefficient



ce(a) and spring constantke(a) forced by a sinusoidal input
at frequencyω. Correspondingly the equivalent resonant
frequency is given byωe(a).

Let ∆ω2 = 2
aΦc and∆cm = 2

aω
Φd. ∆cm is a measure of the

dissipative component of the tip-sample interaction since the
energy dissipation in a harmonic oscillator is a function of
the damping coefficient. Similarly∆ω2 is a measure of the
conservative interaction and could take positive or negative
values depending onΦc. If the sample is conservative, the
dissipative component of the tip-sample interaction,Φd = 0
andΦc does not depend on the phaseφ .

For a fixed tip-sample separation and a fixed forcing
frequency, in the transient state the amplitude and phase
of the first harmonic of the cantilever oscillation evolve
according to (7) and (8) which are nonlinear differential
equations unlike in the absence of tip-sample interaction
forces.

B. Steady state behavior

In the steady state the amplitude and phase of the first
harmonic settles down to one of the fixed points of (7) and
(8). The fixed points are given by,

−δe(a)a− ε
Esinφ

m(ω0 +ω)
= 0 (11)

ωe(a)−ω − ε
Ecosφ

ma(ω0 +ω)
= 0 (12)

We obtain with an accuracy ofε2,

2mωδe(a)a = −εEsinφ (13)

ma(ωe(a)2−ω
2) = εEcosφ (14)

From (13) and (14), we get

m2a2{(ωe(a)2−ω
2)2 +4ω

2
δe(a)2} = ε

2E2 (15)

Equation (15) gives the equilibrium points for the amplitude
and phase dynamics. For each fixedl (hence a fixed tip-
sample interaction potential) andω, there could be more
than one equilibrium point. This is an inherent feature of the
nonlinear nature of tapping-mode operation. A purely linear
analysis will not be able to explain experimental behavior
which is due to this inherent nonlinear behavior. This is in
contrast with the contact mode operation where the local
nature of the tip-sample interaction forces permits a linear
approximation.

Moreover let(a0,φ0) be an equilibrium point of the dy-
namical equations (7) and (8). Then the tip sample interac-
tion force signal,Φ(t) = Φ(a0cos(ωt +φ0),−a0ω sin(ωt +
φ0)). Let Φ1 be the first Fourier coefficient of the signal
Φ(t)

m . Then it can be shown thatΦc = Φ1r cosφ0+Φ1i sinφ0

and Φd = Φ1r sinφ0 − Φ1i cosφ0 where Φ1r and Φ1i are
the real and imaginary parts ofΦ1. This connects the
conservative and dissipative components of the interaction
force during steady state to the Fourier coefficients of the
periodic tip-sample interaction force signal.

C. Conditions for the stability of fixed points

Due to the multiple equilibria, there are chances for
discontinuous jumps in amplitude and phase when either
the tip-sample separationl is varied for a fixed forcing
frequency or when the forcing frequency is varied for a fixed
tip sample separation. These discontinuities are frequently
observed in experiments and can be explained by analyzing
the stability of the fixed points given by equation (15).

Let,

R(a,φ) = −2ωaδe(a)− εE
m

sinφ (16)

S(a,φ) = (ωe(a)2−ω
2)a− εE

m
cosφ (17)

From equation (13) and (14), the fixed points are given
by R(a,φ) = 0 and S(a,φ) = 0. If (a0,φ0) denote an
equilibrium point, then the stability of the equilibrium point
is given by the following two conditions,

a0R′
a(a0,φ0)+S′

φ (a0,φ0) < 0 (18)

R′
a(a0,φ0)S′

φ (a0,φ0)−S′
a(a0,φ0)R′

φ (a0,φ0) > 0 (19)

Condition (18) is typically satisfied under usual laws of
friction. Hence it suffices to see if (19) is satisfied.

From equation 16, ifR(a,φ) = 0, then

R′
a

da
dω

+R′
φ

dφ

dω
= −R′

ω (20)

Similarly from equation 17, ifS(a,φ) = 0, then

S′
a

da
dω

+φ
′
φ

dφ

dω
= −S′

ω (21)

From the above two equation,

(R′
aS′

φ −S′
aR′

φ )
da
dω

= S′
ωR′

φ −R′
ωS′

φ (22)

Also from (16) and (17),

R′
φ =

−εE
m

cosφ

R′
ω = −2aδe(a)

S′
φ =

εE
m

sinφ

S′
ω = −2ωa

Hence the right hand side of equation (22) is given by

S′
ωR′

φ −R′
ωS′

φ = (−2ωa)
−εE

m
cosφ − (−2aδe(a))

εE
m

sinφ

= 2a2
ω{(ωe(a)2−ω

2)−2δe(a)2}

From the above discussion we get,

(R′
aS′

φ −S′
aR′

φ )
da
dω

= 2a2
ω{ωe(a)2−(ω2+2δe(a)2)} (23)

Note thatR′
aS′

φ
−S′

aR′
φ

when evaluated at a fixed point
(a0,φ0) is the quantity which should be always positive
under the second stability condition given by equation 19.
So (23) can be interpreted as the following. If one has a
plot of the fixed point amplitudes versus the frequency of
forcing, then a particular fixed point amplitudea0 is stable



if da
dω

|a=a0 is greater than zero whenωe(a)2 > ω2+2δe(a)2

and da
dω

|a=a0 is less than zero whenωe(a)2 < ω2+2δe(a)2.
If the damping is very small, then a fixed point amplitude
is stable if the slope at the point is positive for forcing
frequencies below the equivalent resonant frequency and the
slope is negative for forcing frequencies above the resonant
frequency.

III. E XPERIMENTAL RESULTS AND DISCUSSION

Experiments were performed on aDigital Instruments
Multimode AFM. A silicon cantilever with natural fre-
quency 335.4 kHz was chosen. The deflection signal was
sampled at 5MHz. The cantilever parameters were identi-
fied from the thermal noise response of the cantilever.

The cantilever was oscillated at the frequencyf0 =
335.4 kHz to an amplitude of 24.25 nm. The sample
(Highly Oriented Pyrolitic Graphite (HOPG)) was moved
towards the freely oscillating cantilever and then away. The
cantilever oscillation during this process as a function of the
time is depicted in Figure 3. If the position of the tipp(t)
is assumed to beacos(ωt +φ) whereω = ω0 = 2π f0, then
the resulting amplitude,a is plotted against the tip-sample
separationl (see Figure 4). The approach and retraction
of the sample is performed sufficiently slow so that the
amplitude and phase evolving according to (7) and (8) settle
to an equilibrium amplitude and phase for a particular tip-
sample separation. Note that there is some ambiguity about
the absolute tip-sample separation which will be addressed
when a model is introduced for the tip-sample interaction.
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Fig. 3. The cantilever deflection signal is plotted as a function of time
when the sample is moved towards and then away from the oscillating tip.
The tip-sample separation is also plotted as a function of the time.

When the cantilever is freely oscillating, the amplitude is
24.25 nm. As the sample is moved towards the oscillating
tip, at a separation of 20.33 nm, the amplitude jumps to
a higher value for an arbitrarily small decrease in the tip-
sample separation. Similarly as the sample is moved away
from the tip, at a separation of 23.2 nm, for an arbitrarily
small increase in tip sample separation the amplitude drops
down to a lower value. These discontinuous jumps can be
explained using the multi-valued frequency response curve
as discussed in the previous section.
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Fig. 4. The amplitude is plotted as a function of the tip-sample separation.
When the sample is approaching the oscillating tip, the cantilever jumps to
a higher amplitude at a tip-sample separation of 20.33nm. While retracting,
the amplitude drops to a lower amplitude at a tip-sample separation of
23.2 nm.

Fig. 5. The tip-sample interaction forces are characterized by long range
attractive forces and short range repulsive forces. A negative spring is
used to model the attractive forces and a positive spring is used to model
the repulsive forces. The tip-sample separationl is defined to be distance
between the tip and the beginning of the repulsive spring. The length of the
attractive region,d is the separation between the attractive and repulsive
springs. The damping in the sample is captured by a damper.

In order to analyze this behavior a simple model is
developed for the tip-sample interaction force. This is
first introduced in [3]. Figure 5 depicts the models for
the cantilever and the tip-sample interaction force. The
tip-sample interaction force has long range attractive and
short range repulsive components. The model parameters
are normalized for unit mass. The long range attractive
component is modeled by a negative spring denoted by
−ω2

a . The repulsive component is modeled by a positive
spring denoted byω2

b . The dissipation in the sample is
captured by a damper denoted byca. l is a good measure of
the tip-sample interaction forces and is the distance between
the tip and the beginning of the repulsive regime.d is
the length of the attractive regime. Using the identification
schemes described in [3],ωa, ωb, ca andd were estimated
for the experimental data.ωa = 0.765 µs−1, ωb = 3 µs−1,
ca = 0.017 µs−1 andd = 2.55 nm. Using these parameters
simulation were performed and the resulting amplitude
versus separation data is compared with the experimental



results in Figure 6.
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Fig. 6. The amplitude versus tip-sample separation curve is obtained using
the interaction model and is compared with that obtained from experiments.
There is remarkable agreement between the two. The discontinuities are
observed in both plots.
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Fig. 7. To simplify the analysis, the sample is assumed to be conservative
or non-dissipative. The simulation results still agree with the experimental
results qualitatively and show the discontinuities.

Note that there is remarkable similarity between the
experimental data and those obtained through simulations.
For simplifying the future discussion, the damping term
ca is assumed to be zero in the model. This brings about
a minor discrepancy with the experimental data as shown
in Figure 7. This assumption means there is no additional
damping due to the introduction of sample. There is a loss of
generality as seen in the mismatch between the experimental
and simulation data depicted in Figure 7. But this simplifies
the analysis at the same time retaining the essential features.

The multi-valued frequency response and the stability of
the resulting multiple equilibria when forced at a particular
forcing frequency (the resonant frequency in this case) can
explain the discontinuities present in the amplitude versus
separation plot. The multi-valued frequency response curves
at different tip-sample separations are depicted in Figure 8
for the model developed earlier. These curves are obtained
by solving for Equation (15). When the oscillating can-
tilever is away from the sample surface, it can be modeled
as a linear system with a single valued frequency response
curve. As shown in Figure 8 (l = 24.5), in the attractive
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Fig. 8. For different tip-sample separations, the multi-valued frequency
response curves are obtained by solving Equation 15.
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Fig. 9. For a tip-sample separation ofl = 23 nm, the multi-valued
frequency response curve is shown. For a forcing frequency off0, there
are three possible fixed point amplitudes. From the stability criteria two
of the three are stable.

regime the frequency response curve starts becoming multi-
valued and will have a slant towards a frequencies lower
than the free resonant frequency. But since the cantilever
is being forced at the resonant frequency there is still only
one equilibrium point. But this scenario changes once the
repulsive forces start influencing the oscillating tip. For
example for a separation of 23nm, at the forcing frequency
there are three equilibrium points as depicted in Figure 8
and separately in Figure 9. From the stability analysis of
the previous section two of the three equilibrium amplitudes
are found to be stable. The equivalent resonant frequency
ωe(a) is evaluated as a function of the amplitude for the tip-
sample interaction model and is shown in Figure 9. If the
forcing frequencyω is greater thanωe(a), then the slope
da
dω

has to be negative and if the forcing frequencyω is
less thanωe(a), then the slopeda

dω
has to be positive for an

equilibrium amplitude to be stable.
The discontinuities in the amplitude versus separation

plot can be explained in terms of the multi-valued fre-
quency response plots, the resulting multiple equilibrium
amplitudes and their stability. As the sample approaches
the oscillating tip, the amplitude remains on the lower
branch till the separationl = 21.1nm (see Figure 8. At this



point, the amplitude is forced to jump to a higher value,
21.5 nm from the lower value of 21.1 nm as there is only
one equilibrium amplitude for tip-sample separation values
below l = 21.1nm. While moving away from the oscillating
tip, the amplitude will remain on the higher branch till when
the separationl = 23.9 nm when the amplitude is forced
to drop to 23.1 nm from 24.2 nm since for the tip-sample
separations abovel = 23.9 nm, there is only one equilibrium
amplitude when forced atω0. Note that the amplitude never
takes the value between the high and low values since those
equilibrium amplitudes are unstable.

Fig. 10. In tapping mode operation, the oscillating tip is found to
either traverse only the attractive regime (low amplitude branch) with an
amplitude less than the tip-sample separation or traverse the attractive and
repulsive regimes (high amplitude branch). When the tip-sample separation
equals the oscillation amplitude the tip jumps in a discontinuous fashion
from the low amplitude branch to the high amplitude branch.

It is useful to analyze the regions of the tip-sample
forces the oscillating cantilever probes at different tip-
sample separations. From the force curves (both experi-
mental and theoretical) the oscillating tip is found to either
traverse only the attractive regime (low amplitude branch)
with an amplitude less than the tip-sample separation (as
defined by the above model) or traverse the attractive and
repulsive regimes (high amplitude branch). When the tip-
sample separation equals the oscillation amplitude the tip
jumps in a discontinuous fashion from the low amplitude
branch to the high amplitude branch (see figure 10. For
the same tip-sample separation, the cantilever could be
in the low amplitude (attractive region) branch or in the
high amplitude (repulsive region) branch depending on
whether that particular tip-sample separation was achieved
by bringing the sample closer to the tip or by moving the
sample away from the tip.

IV. CONCLUSIONS

In the tapping-mode operation of the AFM, the cantilever
tip traverses a wide regime of the nonlinear tip-sample
interaction forces and hence a linear analysis is not suf-
ficient to delineate the salient features. However since the
oscillating tip encounters the nonlinear sample interaction
forces only for a small fraction of the total oscillation time,

averaging methods can be used to analyze the tapping-
mode dynamics. Correspondingly an approximate solution
is obtained for the cantilever oscillation where the amplitude
and phase of the first harmonic evolves according to a
nonlinear differential equation. The transient behavior of
tapping-mode operation is captured by these equations.
The steady state values for amplitude and phase are given
by the fixed points of these amplitude phase dynamical
equations. With a simple tip-sample interaction model and
the stability of these fixed points some of the experimentally
observed behavior of tapping-mode operation is explained.
It is surprising that a piecewise linear interaction and an
analysis which assumes the tip-sample system to be weakly
nonlinear (which appears to be simplistic for tapping-mode
operation where the interaction forces are quite significant)
explains the experimental behavior in a remarkable manner.
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