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Absiract— Several extensions to neural network based adaptive output feedback employing a high-gain observer is given in [9].
output feedback control of nonlinear systems are developedAn  Here we adopt this approach to derive adaptation laws for the

extension that permits the introduction of e-modification in an error formulations given in [1], [2], thereby removing the contraction
observer based approach is given. For the case of non-affingssems, . - ' ’
mapping condition.

we eliminate a fixed point assumption that has appeared in eder

work, and clarify the role that knowledge of the sign of contol The next section states the output feedback control problem and
effectiveness plays in adaptive control. clarifies the role of the sign of control effectiveness in adaptive
control of non-affine systems. Section Il briefly explains the NN
. INTRODUCTION universal approximation property. Section IV provides an exten-

This paper presents several extensions for augmenting a nd#on of the error observer approach along with boundedness proofs
linear controller, designed via input/output feedback linearizatiorection V shows simulation results of the proposed methods for
with a neural network (NN) based adaptive element, similar t& modified Van der Pol oscillator, and Section VI summarizes the
those described in [1], [2]. NN adaptive control combined withesults and concludes this study.
feedback linearization [3], [4] is a popular method for control
of nonlinear systems. Extensions of the methods from [3], [4] to ) ) . )
state observer based output feedback control are treated in [5], [6 Consider the followingobservableand stabilizable nonlinear

Il. PLANT DESCRIPTION

However, these results are limited to systems with full relative’' SO System:
degree (vector relative degree = degree of the system) with the &= f(x,u)
added constraint that the relative degree of each output is less than y = h(z) (1)

or equal to two. Moreover, since state observers are employed, the

dimension of the plant must be known. Therefore, methods th#there z is the state of the system on a domdn. C %",

rely on a state observer are vulnerable to unmodeled dynamics.3Ad u,y € R are the control and regulated output variables,
[1], a direct adaptive approach is developed that does not makespectively. The functiong andh may be unknown.

use of a state observer and uses linearly-parameterized NNs to

compensate for modeling errors. In [2], these same limitation&ssumption 1.1 The functionsf : D, x# — R" andh : D, —

are overcome by employing an error observer, in place of a stafe are input/output feedback linearizable [10], and the outgut
observer. The only requirement in the latter two approaches s relative degree for all (x,u) € D, x R.

that the relative degree of the regulated output be known. The . . )
adaptive laws in the approaches in [1], [2] have been derived usir%ased on this assumption, the system (1) can be transformed into

o-modification. This paper provides proof of boundedness usingema! form [11]

e-modification. x = Fol&,%)
Another issue concerns knowledge of the sign of control ef- &= i=1,,r—1
fectiveness, which is a common assumption in adaptive control. . 2
For an affine system with constant control effectiveness it is not & = hr (€, x,u)
difficult to show that knowledge of the sign of control effectiveness y==E&
is needed to obtain a reasonable adaptive law. In [1], [2], [7 hereg = [ &1 ... & |7 ho(€,x,u) = Lihandy is the

this issue is addressed for the case of non-affine systems DY ie vector associated with the internal dvnamics
introducing a fixed point assumption for the mapping from the y
adaptive signal to the modeling error. In [1] it is shown that this x = fol&,%) 3)
mapping is a contraction if and only if the sign of the control

effectiveness is known and greater in magnitude than half th&ssumption 11.2 The internal dynamics in (3), with viewed as
actual value. Thus the requirement for knowledge of the sign gfput, are input-to-state stable. [12]

the control effectiveness does not appear explicitly in the stability

analysis. Furthermore, the contraction mapping assumption may A@sumption 11.3 9h, (x, u)/du is continuous and non-zero for
overly conservative. In [8] stability analysis for a non-affine systengvery (z, u) € D, x R and its sign is known.

for the case of state feedback is performed utilizing the mean

value theorem. In this approach the requirement for knowledge The control objective is to synthesize an output feedback control
of the sign of control effectiveness is explicit. The extension tdaw such thaty(t) tracks a smooth reference model trajectory
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yrm (t) Within bounded error. Lek, (y,
model forh,(x,u) so that

u) denote an approximate

he(@,0) = he(y,u) + A

where the modeling error i&(z, u) = h(x,u) —

4)
ha(y, w).

Assumption 11.4 dh,.(y,u)/du is continuous and non-zero for
every(y,u) € Dy x R.

Let the approximate function be recast as

v= iLT(y, u)

where v is called pseudo-control. Then the control law can be

defined directly from (5)

u = }Al'r_l(yv U) (6)
The pseudo-control is composed of three signals:
v = y7(];7)1, + Vde — Vad (7)

Whereyﬁ’;)1 is thert" time derivative Ofyrm (t), vac is the output
of a linear dynamic compensator, and,; is an adaptive term
designed to cancel the modeling error.

where
0 1 0 0 0
0 0 1 0 0
A: €§R7‘><7" b: G%TXI,
0 0 1 0
0 0 O 0 1
c=[1 0 0 0] eRr™,

and z is a vector of available signals. With these definitions, the
tracking error dynamics in (11) can be rewritten in a compact
form:

E = AE —|—B(Uud — A)

z=CE (12)

where A, b, c., d. should be designed such thdtis Hurwitz.
Reference [1] points out that depends om,q through (6) and

(7) and that,4 is designed to cancél. A contraction assumption

is introduced to guarantee the existence and uniqueness of a

solution for v,q such thatv,q = A(,v.q4). As can be seen,

the contraction mapping assumption is satisfied if and only if

sgn(2rwly = gon(2hr@w)) gng | 9| > 1|9k | However,

The reference model can be expressed in state space form agowledge of the sign of the control effectlveness is not employed

Trm = Armwrm + brmycom (8)

Yrm = C’r’mwrm

[I>

r-1]"

Lrm Trm i'rm Trm
0 1 0 0 0
0 0 1 0 0
Am=| 00 r s b= |V
0 0 0 0 1
—al —as —as —Qr a1
Crm=[1 0 0 0 0]

. Vq
where z..,, € R" is the state vector of the reference model,

Yeom € R is a bounded external command signal, atd,, is
Hurwitz.

Assumption 1.5 ycom (t) is uniformly bounded so that

||y60m(t)“ < y:om7 y:om > 0
Lete £ y,,m —y. Then
™ = —vge + Vaa — A 9)

For the case > 1, the following linear dynamic compensator is

introduced to stabilize the dynamics in (9):
7:7 = A(‘n + bce7
Vde = €cN + dce

€ Re
K (10)

where n. is the order of the compensator. The vector=
[e ¢ e~ 17 together with the compensator staje
will obey the following error dynamics:

77 _ Ac bCC i Oncxl
{ejl B |:7bcc A— bdcc] {eil + |: b :|(Uad - A)
A —
0 ER. (11)
|: I”c Onc><r:| [ n :| _ |: n :|
z= =
01><n(‘ C e e
c

in the stability analysis.
Define the following signals

v = y,(ﬂf% + Vdc

U* é AT‘(yv h:1($7 ’L)l))
Invertibility of h.(x,u) with respect to its second argument is

guaranteed by Assumption I.3. From (13), it follows thatcan
be written as

(13)

v = he(@, byt (y,07)) (14)
and
d— Az, u) = vaqg — hr(x,u) + fzr(y, u)
= Vaa — ho (@, by ' (y,0)) + V1 — Vad (15)
= —he (2, by (y,0)) + b (@, by (y,0%))
Applying the mean value theorem [8], [9] to (15),
Vad — A = hg(v* —v)
= hu[hr(y, by (@, 00)) — Vi + Vad] (16)
= hg[vea — Az, v1)]
where A = v, — h,(y, h; ' (z,v;)) and
hy & %fzg_z L E=e (-0, and 0< 0) < 1
Assumptions 1.3 and 11.4 indicate thdt, = 2 /2|

either strictly positive or strictly negative.

Assumption 1.6 hy and% (h—1v> are continuous functions ib.

According to this assumption, we can define

B A Ay i i
hP 2 max [hal, H £ max |5 <h) ! )
Now we have the following error dynamics.
E = AE + bhy(vaq — Az, v1)) (18)
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Since A is Hurwitz, then for anyQ > 0, there exists a unique state . This problem can be avoided by removing the current

P > 0 that solves the Lyapunov equatioAT P + PA = —Q. time step pseudo control signal at the expense of increased NN
The adaptive term in (18) is designed as approximation error bound. A NN approximation bound can be
. N derived whenu = [1 v wj(t—d) yj(t)] is used as an
T T
Vaa =W a(V' p) (19)  input to the NN [18].

where W and V' are the NN weights to be updated online in
accordance with one of the weight adaptation laws presented in
Section IV.

IV. THE ERROROBSERVERAPPROACH

In the case of full state feedback [19], [4], Lyapunov-like
stability analysis of the error dynamics in (18) results in update
I1I. NN A PPROXIMATION OF THEINVERSION ERROR laws for the adaptive control parameters in terms of the error
The term “artificial NN” has come to mean any architecture/€Ctor £. In [5], [6] an adaptive state observer is developed for a
that has massively parallel interconnections of simple “neura/Ponlinear plant to provide state estimates needed in the adaptation

processors [13]. Givem € D C R™, a nonlinearly-parameterized laws. However, the stability analysis was limited to second order
(three layer) NN has an output given by systems with position measurements. To relax these assumptions,

we make use of a simple linear observer for the tracking error

no ni . . . . .
o o ' ‘ ‘ dynamics in (18) [2]. This observer provides estimates of the
" Z; o (kzl o +0’”> O, (20) unavailable error signals for the update laws of the adaptive
” - 1 parameters that will be presented in (26).
1=1,...,n3

Consider the following full-order linear observer for the tracking
where ¢;(-) is an activation function defined as;(z;) =  error dynamics in (18):

—21 w,; are the first-to-second layer interconnection 2 . R
Tte 5% . . . ) E=AE+ K (z— %)
weights,w;; are the second-to-third layer interconnection weights, o

and 6,;,0.,; are bias terms. Such an architecture is known to z2=CE,

be a universal approximator of continuous nonlinearities Wm@vhereK should be chosen in a way to make— KC' asymptot-
“squashing” activation functions [14], [15], [16]. This implies thatically stable. The following remarks will be useful in the sequel.
a continuous functio(x) with € D C R™ can be written as

(23)

g(x) =WTe(V' ) + e(x) (21) Remark V.1 One can also design a minimal order estimator that

. . . . treats then component of as a noiseless measurement [20].
whereD is a compact set anelx) is the function reconstruction

error (also called “representation error” or “approximation error”
In general, given a constant real numhér> 0, g(x) is within
€" range of the NN if there exist constant weightsW, such
that for allz € D C R™, (21) holds with €] < €*. The
following theorem extends the results found in [14], [15], [16] to The stability of the closed-loop system should be considered
map the unknown dynamics of abservableplant from available along with the observer error dynamics. Let

input/output history.

)Remark IV.2 Additional measurements (if available) may also be
used in the inversion control, in the compensator design and in
the observer design [7].

A2 A-KC, EAE-E. (24)

Theorem III.1 [17] Given ¢* > 0 and the compact séD C  Then the observer error dynamics can be written:
D. x R, there exists a set of bounded weightsiWW and n»

sufficiently large such that a continuous functidx(x, v;) can E = AE — bhs [vea — A . (25)

be approximated by a nonlinearly-parameterized NN and there exists a positive definite matfixsolving the Lyapunov

Az, v) =WTo(VTp) + e(p, d), - equation:A” P + PA = —Q for arbitrary Q > 0.
Wle <W*, [VIe<V*, [le(pd)] <€ (22) _ Introduce the IargeAst convex compact set which is contained
_ _ in D¢ such thatBr = {¢ ||Cil| < R}, R > 0 where
using the input vector ¢=|ET E' W7 (vecV)T] € D¢. We want to ensure
p@)=[1 v oT@) yie)] e RN p| <t that a Lyapunov function level s&s is a positive invariant set
for the error¢ in D¢ by showing that the level se&@s inside
where Br contains a compact sé&t outside which a time derivative of
va(t) = [v(t) wv(t—d) - w(t—(N1—r—1)d)] T the Lyapunov function candidate is negative. A Lyapunov function
- T level set(},, is introduced to ensure thé&ts is contained inBg,
valt) = [y(t) ylt—d) ooyt = (M= Dd)] and a ballB¢ is introduced to provide thegzg containsl'. Before
with N1 > n andd > 0. we state theorems, we give assumptions that will be used in proofs
of the theorems.
Remark 111.1 In the case of full relative degregr = n), the The update law which we use in this section is a modification

input to the NN need not include the pseudo control signal sincef backpropagation. The algorithm was first proposed by Lewis
the states can be reconstructed without the use of control inpugf.al.[19] in a state feedback setting. In [2], the error observer
and A is not dependent om. It should be noted that for the was implemented in an output feedback setting to generate the
case ofr < n, although there is no need to solve a fixed poinestimated error vector used as a teaching signal to the NN when
solution forv.q to cancelA, there exists a fixed point solution r > 2, and the adaptive law was incorporated witmodification.
problem for the NN output since is needed to reconstruct the The drawback ofr-modification is that when the tracking error
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becomes smally/, V are dominated by the-modification term in  which will be used in a Lyapunov function candidate As=
(26) andW, V are driven towards zero. Therefore, even if the NN¢TT¢, and C £ max (%T, Z*> where

reconstruction error and Taylor series expansion higher order terms

are eliminated, the errors do not converge to zero. This drawback - T 571 B T

motivates the use of another variation ca?&emodification, which "= MHPbU + al(”Pbe + HPbHZ )

was suggested by Narendra and Annaswamy [21], [22]. The idea #3 = 272 Pb|| + 202 (|| Pb|[h” + || Pb||) + k. Z*

is to multiply thes-modification term by the norm of the tracking } A(ns + 1)||PB|? (34)
error so that it tends to zero with the tracking error. The adaptive Z* = ¢2Z*2 + 2—2

law with e-modification is given by ke

. T é 2/{22* —+ K3

W=-Tw [sgn(hf,)(ﬁ' - &/VTH)ETPE + ke||EHW]

6) Let o be the minimum value of the Lyapunov functiénon the
boundary of Bg and 3 be the maximum value of the Lyapunov
function L on the boundary ofB-. The following compact sets
are defined as

V=T [sga(ho)uE" PO + k| E|[V]

whereT'y, T'w > 0 andk. > 0. Note that knowledge of the sign
of control effectiveness is explicit in the adaptive law.
For the boundedness proof we need the Taylor series expansion Qu={CeBr|L

~ ~ . a = ? mzn(T)}
of WTe(VTu) atW =W andV = V. Define

<a=R)\
2 (35)
Qs ={CEBr|L<B=CA

Wew-w, vev_v, z2 { e } (27)
Theorem IV.1 Let Assumptions 1.1, 1.2, 1.3, 1.4, IL.5, V.1
For the stability proof we will need the following representation:hold. If the initial errors belong to the compact s@t, defined
N T o ) in (35), then the feedback control law given by (6) and the
Vada —A=W"6-W (U +o(Vip=Vip+0 > —e adaptation law (26) ensure that the signas E, W and V in
— W <& _ a_/VTﬂ) i WT&/VTM L@ the closed-loop system are ultimately bounded with the ultimate

28) boundC/ SO

whereo = o(VTw), 6 = o(VTp), the disturbance termv = Proof: Boundedness of all the error signals is shown in
Ws'Vvip —WT0? —eand0* = O(-V"p)> =0 — 6+  two steps. First, boundedness of weight error signals is shown
&'VT . The following bounds are useful to prove the stability ofemploying a Lyapunov analysis, and then this result is used to

the proposed adaptive scheme: show boundedness of the tracking and observer error signals.
Consider the following candidate Lyapunov function for the
T
W=l < Vnz + W], (29) weight error signals
|zioi ()] < § = 0.224, (30)
IWT6'VT || < 6v/na + 1||W|| (31) Ly = %WTF;VIVV + %tr(f/TT‘;IV)

The equality in (30) holds when;z; = 1.543 [23]. Using the
above bounds, a bound fapr over the compact seb,, can be
expressed: i

The time derivative ofL., is

=T {sgn(hg)(ﬁ' &'V W E" Pb+ kEHE’HW]
ol = [W'e - WTs'Vip+ W e'Vip— |

< 2Vna + IW™* + 6vna + 1IW™ + ||W||%V*u* te
<nliZlle + 2

— {7 [sgn(hg)uETPl_JWT&' n /ce||123||f/] }
= —sgn(he)WTGE" Pb— ke| E|[{WTW + tr(VTV)}
Using —2tr(Z72) < —||Z)|2 + 2*" and v/nz + 1||W ||| PB|| <

wherey; = %Z*u*, o = (24 §)vVne+ 1+ y)W* 4+ €. k—9||V~V||2 + (n2+1)||Pb||?
veqa — A can be shown to be bounded by 4 ke

i ~ - T - 1 k’le - 7 *
lvad = Al = W' 6 —Wo | @2 Le <V RTIWIIENPS| - TIEN(Z] - 27)
s allzl o <y {Eegzyp - e - nt IR
wherea; = vna + 1 andas = 2v/ne + 1IW™* +€¢* h 4 2 ke
S , 4 1)|| Pb||2
. — <0 if 2] > \/22*2 1 Ana + VI PO
Assumption IV.1 Let R > C/3=2() > C, where A (T) ke
and A\ (1) are the maximum and minimum eigenvalues of the . ) ) _ N
following matrix: HenceZ is bounded and its bound is denoted|jgs)| < Z~
Consider the following Lyapunov function candidate for the
P 0 0 0 entire error system
TElG by o | @) 1 ,
w _ || gT T 5 f
0 0 0 F\_,l Lf‘hﬁEPEJrE PE + 2L,
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NN=0 (On=1, Off=0)
T T T

The time derivative ofl. is 2

AT
dt | hy
1 T T pf, A '
+ 5| (—E"QE + 2E” Pbhy(vaa — A)
— E"QE — 2E" Pbhy(vaa — A)
+2W T W+ 2te (VT V) ’

Applying the adaptive law (26) and the representation (28),

. d 1 T 1 T ~T - _
i=2 |~ |E"PE+|—|(-E"QE 2prh,j)

dt ‘ha + ‘ ha QB+ v =

~T ~ ~ ~T ~— _
— E QFE —2E Pbhy(vea — A) s ‘ ‘ ‘ ‘ ‘ ‘ i
~T _ _ o 5 10 15 20 25 30 35 40
— QSgn(h@)E Pb(’l}ad — A) Time [sec]
- 2keHEH(WTW + tT(VTV)) Fig. 1. Output response with a linear compensator
Utilizing Assumption 11.6,
1 s ‘ NN:l(On‘:L Off=0) ‘
L < Hmaw (P)|E|* = 75 Amin (Q) | EII* | = e
o-modification

+ 2B Pl (11 Z]] +72) = Amin (@) E|I*
+2/|El|(h” [ PBl + [ P (enl| Z|| + a2)
— 2%k||E||tr(Z7 2)

Usingg £ min[*=5% —Hpnar (P), Awin (Q)], —2tr(2" 2) <
—ZII?+2* <Z*,and||Z| < Z*.
; a - =11y S
L<—=SUIEl+ IEN? + 2x2( B + | EINZ
+r3(|E| + | E)

WheI'EI?% = 71HPBH_+ Oél(le_)uhB + ||131_)||)7 K3 = 2’}/2”]‘75” + 15 . . . = = - = o
202 (|| Pb||h® + || Pb||) + k. Z* . Combining terms to obtain Time foec

i<-— (IE| + ||EH) [g(”EH T ||E||) ke — KS] Fig. 2. Tracking performance with error observer approach

The following condition renderé < 0. . .
controller is designed such that the closed-loop poles of the

|E|| + ||E|| > %T approximate model in (37) are placed-a8, —2 + 2i.
q
. o o 20(s 4 1.2)
whereY = 2k2Z* + k3. Therefore¢ remains inQs after a finite Vde = — (38)
time period. [ ]

The approximate inversion law becomes

V. NUMERICAL EXAMPLE
. . U=v= yrm + Vde — Vad (39)
The efficacy of the adaptive output feedback controllers devel-

oped in Section IV is demonstrated using a modified Van defhen the error dynamics becomes,
Pol oscillator model treated in [1] with an additional constant

disturbance term in:2 equation. §=G(s)(vaa — A),

. G(s) = s+7 (40)

T1 = T2 3 4+ 7s2 +20s + 24

@2 = =2(2% — Dzz — a1 +u+1 where A = —2(z} — 1)z2 — 21 + 1. The output response

&3 = x4 (36)  without NN augmentation in Fig. 1 exhibits a limit-cycle-like

G4 = —x3 — 0.204 + 71 oscillation due to unmodeled dynamics. The eigenvaluezi af

y =21 423 (24) have been placed to be four times faster than thosd of

in (18). Five hidden neurons were implemented in the NN design

The initial condition for the plant isz1(0) = 0.5,22(0) =  with activation potentials chosentobe 0.8 0.6 0.4 0.2].
2.5,23(0) = 0,24(0) = 0. The output has relative degree= 2.  Simulation results for the application used two different NN
We assume that we have an approximate model as weight update laws. One is witbrmodification in (26), and the

J=u 37) other is with o-modification in [2]. Thee-modification gaink.
and the o-modification gaink, in the NN update laws were

A second order reference model is selected with a naturaklected to be 0.01 and 0.4, respectively. The adaptation gains
frequency of 1 rad/sec and damping ratio of 0.707. The linedrave been set té&'w = 3I, I'v = 4I for e-modification and
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