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Abstract— Existing approaches for control of mobile robots us-
ing potential theory emphasize construction of local minimum free
navigation functions in the configuration space. This is generally
analytically complex and fails when nonholonomic constraints are
introduced for a finite sized mobile robot. This paper approaches
the issue by decoupling the problem into two parts: (1) Generating a
non-analytical local minimum free navigation function based on the
workspace obstacles. (2) Trapping the nonholonomic unicycle in a local
virtual potential field and then moving this local field along the path
generated in the first step. This results in the trapped robot following
the generated path. The emphasis here is on following a geometric
path. No explicit parameterization of this path to a time-trajectory
is done. Convergence and stability issues due to the presence of
nonholonomic constraints are addressed. Simulation and experimental
results are provided.

I. INTRODUCTION

The ubiquitous use of wheeled mobile robots (WMR’s) has
prompted their extensive study in the last two decades: see, for
example, [24], [25], [11] and the references therein. In this paper, a
simplified dynamic model of a unicycle is used. A smooth control
law for its stabilization to a lower dimensional sub-manifold
of the configuration space is derived. This result is later used
to derive a path-following control law. A non-analytical local
minimum free potential function (also called a navigation function)
is used to create this path. The problem is formulated in such
a way that it lends itself to a real-time solution and complex
analytical expressions are avoided. This result is useful when a
holonomic path along with the clearances to obstacles around it,
are known and the robot is supposed to follow the path while using
the clearance area to compensate for its nonholonomic equality
constraints.

In this paper, it is assumed that robot’s planar dimensions
are about equal, i.e. elongated geometries are not considered.
Inequality constraints, like steering angle limits are not considered.
This implies that the unicycle’s ability to rotate in place is
assumed.

The organization of this paper is as follows: A brief review
of the past work in the field of WMR’s planning, control laws
for stabilization, trajectory-tracking, path-following control, and
potential theory, with an emphasis on their application to WMR’s
is presented in Sec. II. A methodology for representing the robot
and the environment as bodies consisting of overlapping rings of
virtual charge and a closed form computation of virtual forces and
torque based on such a representation is presented in Sec. III. A
computation of a feasible path in the form of a chain of rings of
different sizes, is presented in Sec. III-A. The dynamic model of
the unicycle is explained in Sec.IV. The behavior of a unicycle
trapped in such a virtual static ring is analyzed in Sec. V. These
results are then extended in Sec. VI to a virtual ring following
the path found in Sec. III-A and having a unicycle trapped inside.

Simulations and experimental results are also included. Finally,
Sec. VII offers concluding remarks.

II. LITERATURE REVIEW

A. Planning and Control

The problem of open-loop planning of WMR’s has been ad-
dressed, among others, in [12] using sinusoidal inputs and in [25]
using a graph search in configuration space.

Brockett’s theorem [1] states that systems like wheeled robots
with non-integrable no-slip constraints cannot be stabilized to a
point in the configuration space using a time-invariant C 1 feedback
control law. However, such systems have been shown to be
strongly accessible and small-time locally controllable at the origin
of the state-space [6] using differential geometric approaches.
The main control approaches for stabilization of nonholonomic
WMR’s could be categorized as:

1) Time-varying smooth feedback control: An extraneous time-
varying component is introduced in the system to stabilize
it using smooth feedback: Samson ([2]). This approach
however results in slow convergence rate and oscillatory
behavior which is not part of the original system. Recently,
exponential stabilization was reported by Tian et al [5].

2) Discontinuous feedback control: This is by far the more
popular approach. Bloch et al [6] use piecewise smooth
analytical feedback and also showed that the system can
always be stabilized to an m−dimensional manifold by
smooth feedback where m is the number of nonholonomic
constraints. Astolfi [8] obtained exponential stabilization by
creating a discontinuity at the origin using a coordinate
transform. A similar result was also obtained by de Wit et
al [4].

Time-trajectory tracking was formulated using feedback lin-
earization by [24] and using sliding mode control by [3].
Trajectory-tracking can usually be done as long as the robot keeps
moving. The concept of time-parameterization (scaling) of a path
for holonomic robots to meet the input constraints was introduced
by Hollerbach [21]. It was extended to nonholonomic robots by
[22] and was studied again in [23]. The path-following of a control
point on the robot was addressed by [11]. In this paper, the path-
following control of a unicycle is addressed. This problem has
been studied less extensively than trajectory-tracking.

B. Potential Theory for WMR’s

Potential theory, first introduced by Khatib [13], is attractive as
it solves the planning and control problem simultaneously. Nav-
igation functions were subsequently introduced ([16],[15],[17])
which did not have the problem of local minima. Most naviga-
tion functions are however analytically involved. Some numerical



navigation functions are discussed in [25]. Most of the current
literature however focuses on holonomic robots. Potential theory
applications for nonholonomic robots have been studied by Kyri-
akopoulos et al [20] where an obstacle free path was first found
by classical methods and this path was time-parameterized. The
resulting time-trajectory was then followed by a trajectory-tracking
controller. In Tanner et al [19], a kinematic model of the unicycle is
used and then a sliding-mode like controller is used to stabilize the
system to the origin which is the global minimum of a potential
function. This approach suffers from chattering and also cannot
be readily generalized to a dynamic model. Recently, Tanner et
al [7] have derived a strategy based on non-smooth Lyapunov
functions and diffeomorphic transforms first introduced by [17].
Another approach [18] used in planning was to locally deform the
holonomic paths by adding a cost which favors directions easier
for the nonholonomic system.

III. POTENTIALS BASED ON RINGS

We consider a potential based on the inverse square law as it
gives closed form analytic expressions for bodies composed of
a union of overlapping rings. The word charge is loosely used
to mean a virtual non-physical charge which gives rise to such
a potential. For two Point Charges q1, q2, the potential energy is
given by Vp = q1q2

r2 , where r is the inter-charge distance.
Consider a point charge q and a uniformly charged ring of radius

R with uniform charge density λ = Q/(2πR). If q is at a distance
d from the center of the ring, then one can use complex residue
theorem to compute the potential energy Vd of the system.

Vd =

∫ 2π

0

qλRdθ

R2 + d2 − 2Rd cos θ
=

qQ

| R2 − d2 | (1)

This integral is singular when the point charge is on the ring (d =
R).

Consider two uniformly charged rings with total charges
Q1, Q2. The rings are of radii Ri and Rj , with their centers at
distance cij . The potential energy of this system can be computed
by integrating Eqn. 1 using the residue theorem:

VRiRj =

∫ 2π

0

2πλiλjRiRjdθ

| Ri
2 − Rj

2 − c2
ij + 2cijRj cos θ | (2)

=
Q1Q2√

2
(
Ri

4 + Rj
4 + c4

ij

)
−
(
Ri

2 + Rj
2 + c2

ij

)2
where λi ≡ Qi/(2πRi). This integral is singular for: | Ri−Rj |≤
cij ≤ Ri + Rj . The singularity corresponds to the case when the
rings are touching or intersecting each other. The result is clearly
symmetric in Ri and Rj and is a property of the configuration.

Now we consider a ring-world where the robots and the
environment are made up of overlapping rings. This representation
can be found using a circle fitting algorithm (Algo. III.1). An
example of a rigid 2D body composed of such rings is shown in
Fig.1.

An advantage of this discretization is that the resolution (min-
imum ring size Rs) can be changed easily in the circle-fitting
algorithm and no ‘holes’ are left. This algorithm is a simple variant
of the bubble-expansion algorithm of [14].

The object’s boundary is initially given by a set of points Γ that
are closer together than the resolution (Rs) of the algorithm. The
starting point (rs = (xs, ys)) is generally taken as a point within
the body (generally the centroid). Each bubble-ring begets other
children bubbles at its boundary which are as big as possible. The

Fig. 1. A downward facing arrow composed of rings. This representation
has been found using the circle-fitting algorithm Algo. III.1.

children are then put in a priority-queue which is prioritized by the
clearance visible to that bubble. The notation B(r, R,Bp) denotes
a bubble-ring of radius R with center at r = (x, y) and a parent
bubble Bp. Rs is the resolution or the radius of the smallest ring
desired. The boundary Γ of the object is discretized to a set of
points q ∈ Γ.

Algorithm III.1: FILLRINGS(Γ, Rs, rs)

Initialize priority queue Q, Initialize tree T
Compute Rb = Min

q∈Γ ‖q− rs‖
B = (rs, Rb, NULL)
Insert B in Q with priority Rb

while Q is not empty

do




Pop Q into B = (r, R,Bp)
Insert B in T with parent Bp

Find n points pi on the boundary of
B by random/uniform sampling
Delete pi ⊂ Bj ∈ (T ∪Q)

Compute Ri = Min
q∈Γ
‖q− pi‖

if Ri > Rs

then

{
Insert Bi = (pi, Ri,B)
in Q with priority Ri

return (T )

The rings concentrate at places where the geometry is complex.
In this ring-world, which is reminiscent of the disk-world of [17],
one composite-ring object affects other such objects. The potential-
energy due to the interaction of rings within a single object is
not important in this formulation because it does not affect the
dynamics of inter-object interaction.

Let a composite object Oc be defined by the coordinates of a
designated center (xc, yc) in a global referential and its orientation
by the angle βc of its front (axis u) with respect to the global X
axis. This is illustrated in Fig. 2. To further define the shape of the
object Oc , the parameters (ri, θi, Ri)C for each of its constituent
rings (i = 1 · · ·n) are given. (ri, θi) are the polar coordinates of
the center of the ith ring in object C-fixed coordinates, and R i is
the radius of the ring.

To find the virtual forces acting on the composite-object (O c)
the gradients of the total potential energy of the system VΣ with
respect to the d.o.f’s of the object i, namely, ∂VΣ

∂xc
, ∂VΣ

∂yc
, ∂VΣ

∂βc

need to be computed. This can be done as follows:
Let VΣc denote the part of VΣ to which Oc contributes. Then
∂VΣ
∂xc

=
∂VΣc
∂xc

etc. hold.
Let (xo, yo, Ro) denote a ring �∈ Oc, with its center at (xo, yo)

in global coordinates and with radius Ro. Let cio be the distance
between the center of ring i ∈ Oc and (xo, yo). The force/torque
on Oc due to the external objects can be computed by the
following algorithm (see Fig. 2):



Fig. 2. The coordinate system of object C (Oc), with an external ring
shown.

Algorithm III.2: FORCESON(Oc)

V ≡ VΣc ← 0,
∂V
∂xc
← 0, ∂V

∂yc
← 0, ∂V

∂βc
← 0

for each (xo, yo, Ro) �∈ Oc

do




for each (ri, θi, Ri)C ∈ Oc

do




comment: Using Eq.(2) for VRiRo

V ← V + VRiRo ,
∂V
∂βc
← ∂V

∂βc
+

∂VRiRo

∂cio

∂cio
∂βc

∂V
∂xc
← ∂V

∂xc
+

∂VRiRo

∂cio

∂cio
∂xc

∂V
∂yc
← ∂V

∂yc
+

∂VRiRo

∂cio

∂cio
∂yc

where the following definitions are used:

xi = xc + ri cos(βc + θi), yi = yc + ri sin(βc + θi),

∂V

∂cio
=

2QiQocio(R
2
i + R2

o − c2
io)

∆3/2
,

cio =
√

(xi − xo)2 + (yi − yo)2,

∆ ≡ 2
(
Ri

4 + Ro
4 + c4

io

)
−
(
Ri

2 + Ro
2 + c2

io

)2
,

∂cio

∂xc
=

xi − xo

cio
= ax,

∂cio

∂yc
=

yi − yo

cio
= ay , (3)

∂cio

∂βc
= −ri sin(βc + θi)ax + ri cos(βc + θi)ay . (4)

Finally, one gets:

Fx = −∂VΣc

∂xc
, Fy = −∂VΣc

∂yc
, τβ = −∂VΣc

∂βc
(5)

which are the virtual force and torque acting at any instant on
the composite body Oc. Far away objects can either be ignored
or only the biggest rings in them need to be considered. Due to
closed form expressions these computations can be done in real-
time. Finally, a virtual potential terrain can be setup to achieve a
desired behavior from the system.

A. Searching Available Space

Given a robot’s start and a goal position in a ring-world envi-
ronment with ring-obstacles, we are interested in a method, which
would find a feasible path in workspace while also characterizing
the surrounding clearance at each point. The classical grid based
methods are inefficient for this. Here a 2D adaptation of the
‘bubble’ expansion algorithm given in Brock et al [14] is used.

The basic algorithm is the same as Algo. III.1. The bubbles
start expanding from the goal point (root of the search-tree) and
the expansion continues till a bubble is found containing the goal
point. The only difference from Algo. III.1 is that the priority
queue is prioritized by the distance of a bubble from the start point.

This means that the bubble closest to the start point is allowed to
be expanded first. After the algorithm terminates, the branch of
the tree containing a leaf node with the start point, is a feasible
path. If each node in this branch is given a ‘potential’ equal to
its depth in the tree, it defines a local minimum free navigation
function from the start to the goal point [14].

A sample run is given in Fig.3. The minimum ‘bubble’ size
should be greater than the actual robot radial size. This planning
algorithm can be repeatedly run in a dynamic environment. The
centers of the resulting ‘bubbles’ are joined by a smooth interpo-
lating curve, which gives us the path to be tracked. This would be
made use of in the path-following control discussed in Sec.VI.

Fig. 3. A ‘bubble’ path: filled circles are obstacles, doughnuts are the
start and the goal positions. The remaining rings are the bubbles found by
the algorithm where the size of the ring represents the radial clearance.

IV. UNICYCLE DYNAMIC MODEL

The dynamic model for the unicycle used is a simplified version
of the model presented in [11]. It has been assumed that the inertial
quantities for the two wheels are negligible compared to those
of the robot platform. Let q = [xc, yc, φ]T be the configuration
variables, where xc, yc are the coordinates of the center of mass
of the robot in a global referential and φ denotes its orientation
(see Fig. 4). The inputs to the system are the motor torques on
the two wheels. The nonholonomic no slip constraint can be given
by:

A(q)q̇ = 0, A(q) = [sin(φ),− cos(φ), 0]. (6)

The null-space of A(q) is:

S(q) =

(
cos(φ) 0
sin(φ) 0

0 1

)
. (7)

Let the heading velocity of the robot be v and the turning
velocity be φ̇ The system dynamic equations can be written as:

ν =

(
v
φ̇

)
,x =

(
q
ν

)
, q̇ = S(q)ν (8)

ẋ =

(
Sν
f

)
+

(
0

(ST MS)−1ST E

)
τ, (9)

M =

(
m 0 0
0 m 0
0 0 I

)
, τ =

(
τr

τl

)
, (10)

E =

(
cos(φ)/r cos(φ)/r
sin(φ)/r sin(φ)/r

R/r −R/r

)
,

f = −(ST MS)−1(ST MṠ)ν. (11)

where m is the mass and I is the moment of inertia of the platform.
τr is the motor torque on the right wheel and τ l, that on the left.



2R is the distance between the wheels and r is the radius of each
wheel. In our case, simple calculations show that f = 0.

According to the third condition given in Brockett’s theorem in
[1], the mapping

(q, τ)→ (Sν, (ST MS)−1ST Eτ) (12)

should contain a neighborhood of 0. This is not satisfied at points
such as: (q̇d, (ST MS)−1ST Eτ) where A(q)q̇d �= 0 are not
present in the range of the mapping. This system therefore is not
asymptotically stabilizable to a point. It is however stabilizable to
a 1 dimensional manifold Ne = {(q, q̇)|q̇ = 0, s2×1(q) = 0}
[6].

V. STABILIZATION USING AN EXTERNAL STATIC VIRTUAL

RING

Fig. 4. A unicycle inside a virtual ring

Let the robot be trapped in a static virtual ring of an arbitrary
charge distribution (see Fig. 4). Let us consider the robot itself to
be a charged ring with a certain charge density along its periphery.
The charge distribution between the robot and the outer ring gives
rise to a potential energy of the system denoted by UΣ(q). Since
the outer ring is at rest, we set its configuration variables qo = 0.

We would like to investigate smooth control laws based on
charge-interactions and the equilibrium configuration manifolds of
the robot inside the outer ring. The initial configuration of the robot
is completely inside the outer ring and it has arbitrary heading and
turning speeds. This initial state is given by x0. We then consider
a candidate Lyapunov function:

V (x) = UΣ(q) + (1/2)νT (ST MS)ν (13)

ST MS is positive definite and in our case it is diag(m,I).

V̇ =
∂UΣ

∂q

T

Sν + νT (ST Eτ). (14)

The control law is chosen as:

ST Eτ = −ST ∂UΣ

∂q
−Kν, (15)

V̇ (q, ν) = −νT Kν ≤ 0. (16)

In the present case ST E is a full rank square matrix and we can
always find τ This shows that V (x) is a non-increasing function
and the robot stays within the closed set S = {x|V (x) <=
V (x0)}. If the robot periphery were to intersect the outer ring,
V would become unbounded and therefore it would mean that the
robot state has gone out of set S. This shows that the robot is
trapped in the ring and would come to rest within the ring.

To find the equilibrium states, one uses LaSalle Invariant Set
Theorem [10]. The Invariant set corresponds to:

ν = 0, ST ∂UΣ

∂q
= 0 (17)

Eqn.(17) gives two conditions and therefore the system pose q
can be stabilized to a 1 dimensional manifold. These conditions
are:

∂UΣ

∂φ
= 0,

∂UΣ

∂x
cos(φ) +

∂UΣ

∂y
sin(φ) = 0 (18)

This means that at equilibrium, the net torque should be zero
and the net force should be parallel to the wheels’ axis. Such a
manifold is shown for some charge distributions of the inner and
outer ring in Fig. 5. These also happen to be the chattering surfaces
in the discontinuous control law based on a kinematic model in
[19].

Fig. 5. Four different charge distributions and their equilibrium states

In the equilibrium states illustrated in Fig. 5, the peripheral
charge along the ring is taken to be much smaller than the point-
charges denoted as filled circles. For most cases, an equilibrium
in one orientation also implies an equilibrium in an orientation
with the front and the back of the robot reversed. The equilibrium
configurations can be found by evaluating Eq. 18 using Algo. III.2.
In most cases analytical solution is difficult and a numerical search
is employed. In most of the arguments presented, an exact solution
is not required and visualization of forces and torques can be used
as an aid.

In part I of Fig. 5, both the robot and the outer ring have only
uniform charge density along the perimeter. In this case no torque
acts on the robot and it settles down in a configuration where the
wheels’ axis is parallel to a diameter of the outer ring. In this case
the net force pushing the robot to the center of the external ring
is parallel to the wheels’ axis.

In part II of Fig. 5, apart from the uniform charge density, the
robot has a point charge at its front. The external ring also has
two point charges along a diameter. Note that there is no stable
equilibrium such that the wheels’ axis are perpendicular to the
external ring’s diameter containing the point-charges. This fact is
made use of in Sec. VI

In part III of Fig. 5, apart from the uniform charge density, the
robot has two point charge at its front and back. Now a torque
acts on it and it is zero only when either the front is aligned
along a diameter or is perpendicular to one, consequently these are
the equilibrium positions. However the position where the point
charges are along the diameter have been analytically found to be
unstable.

In part IV of Fig. 5, both the robot and the outer ring have two
additional point charges each along a diameter. The torque is now
zero only along the diameter of the outer ring containing its point
charges (the y-axis), and along an orthogonal diameter (x-axis).
Along the x-axis φ = π/2 is an (unstable) equilibrium, whereas



along the y-axis, φ = 0 is a (stable) equilibrium. This has been
determined using a numerical search in the configuration space for
the solution of Eqs.(18).

In all the above cases, the origin is the global minimum but
due to the nonholonomic constraint, the robot could get stuck in
the above mentioned manifolds and they can be escaped only by
a discontinuous feedback law.

VI. PATH-FOLLOWING USING AN EXTERIOR MOVING RING

We use the fact that part IV of Fig.5 always provides the right
values of alignment and of at least one other coordinate (φ =
0, x = 0). This is utilized in deriving a control law for following
a path whose equation is given in a parametric form with the
parameter p. This path is obtained by the method in Sec.III-A and
could be periodically refreshed. The size of the outer virtual ring
is determined by the diameter of the clearance ‘bubble’. The path
is divided into segments where the ‘bubble’ size remains about
the same and the outer virtual ring size is chosen as that of the
smallest ‘bubble’ in that segment. In the following we consider
one such segment.

The outer virtual ring moves along the path towards the goal
(p = 0) and while dragging the robot along. The robot applies a
drag force on the outer ring as it moves. We now need to show that
the outer ring in fact reaches the destination. The two point charges
of the outer ring always stay normal to the path being traversed.
Let the pose variable (xc, yc, φ) of the outer ring be denoted by
qo and that of the robot by q. The control input variable for the
outer-ring is the force ft tangent to the path which drags it towards
the goal. The following simple dynamic equation is used for the
virtual ring.

q0 = [x(p), y(p), tan−1(y′(p)/x′(p))], p̈ = ft. (19)

The following Lyapunov function is used:

V (x,xo) = UΣ(q,qo) +
1

2
νT (ST MS)ν +

1

2
Kpp

2 +
1

2
ṗ2 (20)

V̇ =
∂UΣ

∂q

T

Sν +
∂UΣ

∂q0

T dqo

dp
ṗ + νT ST Eτ + Kppṗ + ṗft (21)

The control law chosen is:

ST Eτ = −ST ∂UΣ

∂q
−Ksν,

ft = −∂UΣ

∂q0

T dqo

dp
−Kpp−Kvṗ. (22)

V̇ = −νT Ksν −Kvṗ2 ≤ 0 (23)

Applying LaSalle’s Invariant Set Theorem again for this system,
one gets at equilibrium:

ν = 0, ST ∂UΣ

∂q
= 0 (24)

ṗ = 0,
∂UΣ

∂q0

T dqo

dp
= −Kpp (25)

Note that the control law derived is independent of the iner-
tial parameters of the robot and therefore no explicit parameter
adaptation needs to be added as in [9]. Eq.(24) is similar to the
one in Sec.V. Eq.(25) states that the attraction of the outer ring
towards p = 0 should be the same as the drag caused by the
robot trapped within at equilibrium. The value of Kp is critical. It
should be high enough to get the system started. As K p increases,
the accuracy of the path-tracking decreases and the total time to

traverse the path also decreases. This is illustrated in Fig. 6 and
Fig. 7. Since the two point charges of the outer ring always stay
normal to the path being traversed, the robot cannot come to an
equilibrium such that its wheels axis is parallel to the path and
thus the trapped robot will not block the outer virtual ring. Its
static equilibrium is always such that it is oriented along the path.
The system can thus not get trapped midway and the outer-ring
does reach the point p = 0. For the last segment of the path, the
virtual outer ring’s size should be close to that of the robot to
ensure a convergence near the desired goal configuration.

A simulation result is shown in Fig. 6. The path to be followed
is parameterized as: x = s, y = sin(2πs/sf ). It is interesting to
see that during sharp turns, the outer ring’s speed automatically
decreases until the robot aligns itself along the new traveling
direction. If the robot motor torques saturate, the outer ring has to
again decrease its speed due to the increased drag caused by the
robot. On straight stretches, the speed picks up.

Fig. 6. Path-following control simulation on a path-segment having a
constant outer virtual ring size. The charge-configuration was as shown in
Fig. 4. The robot’s periphery is a charged ring with a point charge at its
front. The dotted line shows the actual path of the robot’s center, whereas
the solid line shows the reference sinusoidal path. K p = 5, Path-traversal
time= 5 sec.

Fig. 7. This figure shows that the path-tracking can be significantly
improved by lowering Kp. Kp = 0.5, Path-traversal time= 25 sec.
Compare with Fig. 6.

A. Experiment

For the experiment an IRobot’s Magellan Pro unicycle was
employed. Since the control programmatic interface only allows
set points for the heading speed v and turning speed φ̇ to be
specified at each sampling interval, a variant of the above strategy
was used. The robot odometry was sampled for the robot’s
configuration at each instant. The dynamic equations of the outer
virtual ring and the robot as given previously were integrated for
one sampling period by using the motor torques as computed by
the Eq.23 and the current system state. The result of integration
gives the new v, ω = φ̇ which are given as the new set-points.
The experimental setup is shown in Fig. 8.

The experimental data is plotted in Fig. 9. The results show that
the path was followed within the spatial freedom allowed. The
robot is not exactly tangential to the desired path at each point.
This offset is due to the fact that the charge configuration IV of



Fig. 8. The experimental setup

Fig. 9. The experimental plot. The area swept by the robot is denoted
by colored disks whose color gradient denotes the time progression. The
orientation is denoted by a diameter of the circle. The reference path is
denoted by the dotted red line. The virtual external ring was twice the size
of the robot and charge configuration IV of Fig. 5 was used.

Fig. 5 was used. The equilibrium manifold of this configuration
is such that the robot is oriented perpendicular to the diameter
containing the two point charges on the external ring.

VII. CONCLUSIONS

A novel practical method of path-following control of a circular
unicycle is introduced. The representation of the environment as
well as computation of feasible paths is done using rings in 2−D.
The technique involves surrounding the robot with a local virtual
potential field with known minima and computing the robot inputs
based on it. Only continuous control is considered and the robot
is controlled to follow an obstacle-free geometric path found in a
prior step. No explicit time parameterization of the path (trajectory
generation) is required and the speed of path traversal can be
controlled by tuning some control parameters. This technique is
useful because due to the presence of nonholonomic constraints a
feasible time-trajectory is difficult to find.

Further work needs to be done for arbitrary shaped nonholo-
nomic robots having inequality constraints on inputs. An extension
of this approach to multiple-robot groups is being explored.
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