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ABSTRACT — In this paper, we consider a game theoretic 
approach for the task assignment problem associated with a 
team of semiautonomous unmanned aerial vehicles (UAVs) 
targeting as set of enemy ground units.  A typical task 
would be to attack a unit or on the other side given a 
probability of kill of the UAV weapon against that unit.  
We introduce the concept of Distance Discount Factor 
(DDF) to address the fact that targeting close but less 
significant units could be more rewarding than targeting far 
but more significant units.   To illustrate the effect of the 
DDF on the target assignment process, we consider a 
simulation example, involving a team of UAVs engaged in 
battle with a group of surface to air missiles (SAMs).  We 
illustrate and compare the simulation results with and 
without DDF using feedback control.   

 

I. Introduction 
 

The planning and management of a military operation 
conducted by teams of semi-autonomous entities, such as 
unmanned aerial vehicles (UAVs) must take into account 
the uncertainty associated with the environment in which 
the operation will take place.  One important type of 
uncertainty that is always present in a military operation is 
the presence and impact of an intelligent adversary.  This 
uncertainty is accounted for by including the adversary in 
the mathematical model used to describe the battle space.  
Clearly, all the control decisions for the friendly units will 
be influenced by the presence of the adversary.  The battle 
space model [1] simply indicates where the friendly 
controls enter in the mathematical model.  The calculations 
are performed after each team’s objectives are modeled and 
then the team optimal tactics are derived.  This neutrality of 
the battle dynamics is also preserved with respect to the 
adversarial controls.  The framework of non-cooperative 
nonzero-sum games is used to calculate the optimal tactics 
for each friendly team.  In each team, the cooperative 
strategies among team members can be best analyzed using 
team theory [2].  Necessarily, the forecasted tactics of the 
adversary are calculated simultaneously.  In this 
framework, the objective function of the adversary is 

considered as known or estimated.  In [3], an efficient 
search algorithm was developed to calculate the Nash 
strategies for target assignment for both the friendly team 
(which will be referred to as the Blue force) and the 
adversarial team (which will be referred to as the Red 
force).  Two implementations of this algorithm as open-
loop and feedback controllers are described in [4].  The 
performance of these controllers and the advantages and 
disadvantages of each are evaluated in simulations 
performed on various scenarios using a simulator 
developed by Boeing [4].    

The objective functions used in finding the Nash 
solutions are linear combination of the strength of the 
remaining units after the battle. The relative importance, or 
worth, of the corresponding units is often taken as the 
weight in the objective functions [4].  Using this 
formulation, a problem will arise when there are critical 
Red units with very high worth that are far from the 
attacking Blue units, and at the same time there are less 
important Red units which have strong killing capabilities 
but are closer to the attacking Blue force.  In such a 
situation, the target selection algorithm, which assigns Red 
targets to the Blue units, would very likely ignore the less 
important Red units and assigns all Blue units to target the 
high worth Red units.  This issue will be even more critical 
if the Blue force has limited resources as compared to the 
Red force.  It is clear that, by ignoring the close Red units, 
the Blue force could itself be targeted by these units and 
may suffer considerable losses before it can reach the 
important Red targets.  In this paper, we introduce a new 
parameter in the objective functions, which we call the 
distance discount factor (DDF).   For each Red target, this 
factor is selected based on its specific geographic 
distribution with respect to the other Red targets.  The 
paper is organized as follows.  In section 2, we formulate 
the target assignment problem as a varying moving horizon 
game and define its corresponding Nash strategies.  In 
section 3, we discuss the introduction of the DDF and its 
effect on the Nash strategy when implemented in feedback 
form.  In section 4, we give a simulation example 
performed on a Boeing simulator to illustrate and compare 
the results with and without the DDF.  Finally, in section 5 
we present some concluding remarks.  



 

II. Varying Moving Horizon Nash Strategies 

We consider a military operation, in which there are two 
opposing forces, referred to as Blue and Red, respectively.  
The Blue force consists of air power such as unmanned 
aerial vehicles and its objective is to attack some fixed 
targets that are defended by a ground based Red force.  The 
Red force consists of Red ground troops, such as tanks and 
mobile vehicles, Red air defenses such as surface to air 
missiles (SAM’s), and extremely important (or valuable) 
fixed Red targets.  The objective of the Blue force is to 
destroy the Red fixed targets.   Let BI  and RI represent the 
number of Blue units and Red units, respectively.  Let  
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where T denotes the duration of the battle.  The Nash 
strategies [6] are determined based on these objective 
functions.  We note that Bφ and Rφ  in the above expressions 
depend on the final state and final time.  Also BL  and RL  
depend on the states and control inputs at intermediate 
times in [ 0 ,t T ].  The general system attrition model can be 
described by the following dynamical equations: 
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For the purpose of analyzing problem in the level 
considered in this paper, we will not consider the pointwise 
objective function BL  and RL  in the objective functions 
and we can do this by maintaining desirable vehicle control 
during those intermediate times.  In other words, we 
consider only the terminal terms Bφ and Rφ  in our objective 
functions.  However, the Nash strategies over the entire 
time horizon T are extremely difficult to determine and 
even when determined may not be very useful for practical 
situations because of the uncertainty in the battle 
environment such as unknown or pop-up targets.  To deal 
with this issue, the objective functions are optimized over a 
shorter time horizon H T<  instead of the entire the 
duration of the battle. The horizon H   is called an 
optimization or planning horizon [7].  Moreover, in most 
applications, even though the Nash strategies are 
determined over the optimization horizon H , they are 

implemented over a much shorter time horizon h H≤ .  
This horizon is called the implementation horizon [7].  An 
illustration of both types of horizons is given in Fig. 1.   
Note that as illustrated in Fig. 1, both the optimization and 
implementation horizons can vary with time.  Let 
{ }, 0,1, ,kt k =  denote the time instants when the 
optimization horizon ( )kH t  is updated and a new Nash 
strategy is solved over ( )kH t .   It is clear that 
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Let the control vectors ( )B
i ku t  (or ( )R

j ku t ) denotes the 
target selection of the ith Blue unit (or the jth Red unit ) at 
time kt .  We will assume that the objective of each force is 
to assign for each unit in that force a target in the 
adversarial force so that: 
 (1) The total strength of units and the total number of 
weapons of its own forces remaining at the end of each 
optimization horizon are maximized, and  
 (2) The total strength of units in the adversarial force 
remaining at the end of each optimization horizon is 
minimized.  

Thus, the objective functions for the Blue and Red forces 
can be written as: 
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(2a) 
for the Blue force, and  
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(2b)              
for the Red force. 
  In the above expressions, ( )X

ip t  is the strength of the ith 
unit in force X (where X=B or R), ( )X

iq t  is the number of 
weapons carried by the ith unit in force X , and ( )XU ⋅  is the 
set of admissible controls for force X.   In each of the 
previous expressions, we will assume that thew ’s and l 's 
are all non-negative coefficients that represent weights to 
assign relative importance to the terms in the objective 
function.   For example, B

iw  represents the value (or worth) 
of the ith Blue unit, and  R

jl  represents the value (or worth) 
of each weapon carried by the jth Red unit.   
 
 



 

 
 

 
Fig. 1:  Diagram of horizons H and h 

 
The expressions of each weapon carried by the jth Red unit.  
The expressions in (2) are linear combinations of the 
strength of units and weapons at the end of the optimization 
horizon and express the objective of each force to 
maximize the remaining strength of its own units and 
weapons while minimizing the remaining strength of units 
in the opposing force.   The attrition model for ( )X

ip t  and 
( )X

iq t  has been developed in [4].  Suppose that the target 

selections ( )B
i ku t  and ( )R

j ku t  ( 1, , ; 1, ,B Ri I j I= = ) are 

fixed during the optimization horizon [ ], ( )k k kt t H t+  
resulting in one-step look-ahead Nash strategies.   As was 
mentioned earlier, both optimization horizon ( )kH t and 
implementation horizon ( )kh t can be varied at different 
time instants kt ’s.   Therefore, the corresponding solutions 
are called varying moving horizon (VMH) one-step look-
ahead Nash strategies.   

Considering straight-line flight path of Blue air vehicles 
from the current location to the target location, the 
optimization horizon can be calculated as: 
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j k j k j k j kb t x t y t z t= ) is the location 
coordinate of the ith Blue unit (or the jth Red unit) in three 
dimensional space at time kt , and ( )B kO t (or ( )R kO t ) is the 
set of observed Blue units (or Red units) at time kt , and 

( )B
iv ⋅  is the flight speed of the ith Blue unit.  Note that all 

Red units are fixed during the progress of battle.   In 
expression (3), the Euclidean distance between the location 
of the ith Blue unit and the location of the jth Red unit is 
given by  
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The optimization horizon ( )kH t represents the maximal 
time required by the slowest Blue UAV to reach the farthest 
Red target in one step.  After determining the Nash strategy 

{ }* *,B Ru u based on the objective functions given in (2), the 
implementation horizon can be calculated as: 
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In the above expression, *( )B
j i kR u t∈  means that the ith 

Blue unit selects the jth Red unit as its target at time kt .   
The implementation horizon ( )kh t  denotes the duration 
when the first Blue unit arrives at its selected target, 
and ( )k kt h t+ , i.e., 1kt + , is the next updated time instant. 

 

III. Nash Strategies with DDF 

We notice that the more important the Red unit, the 
higher weight it has in the Blue objective function and the 
more likely that it will be selected as a target.  A problem 
will arise if the geographic distribution of the Red targets is 
such that some extremely important targets are farther than 
other less important targets.  In that case, the Blue targeting 
strategy could select the more important Red units and 
ignore the less important ones.  This will even be more 
crucial if the number of Blue UAVs is less than the number 
of Red targets.  By ignoring the close Red units, it is very 
likely that these could destroy the Blue UAVs before they 
reach the important Red units.  As a result, this may cause 
the Blue force to incur considerable losses before 
accomplishing its objectives.  In order to deal with this 
problem, we will introduce a distance discount factor 
(DDF) with respect to the ith Red unit in the following 
form: 
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(6) 
where c is an adjustable positive constant, and ( )Bb ⋅ is the 
center location1 of the grouped Blue units, which can be 
calculated as: 
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The DDF concept is illustrated in Fig. 2 where the Red 
force consists of one extremely important Red unit R1 and 
two less important units R2 and R3.  We notice that R2 and 
R3 are closer to one Blue UAV than R1.  Because of the 
importance of R1, it is very likely that this UAV will be 
assigned R1 as a target leaving it to be a possible target for 
either R2 or R3.  The corresponding DDF given by (6) is 
shown in Fig.3.  We observe that the DDF is a decreasing 
function of the distance between the Blue UAV and the 
corresponding Red target.   
 
 
 

                                                 
1 In reality, we could have a DDF between individual units; however for 
simplicity in this paper, we consider the distance between the center 
location of the Blue units and each Red unit. 
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Fig. 2:    Scenario of illustrating DDF 
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Fig. 3:  DDF calculated for Scenario in Fig. 2 

 
 

The objective function for the Blue force equipped with 
the DDF can be written as: 
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We observe, in above expression, that the weighting 
coefficients corresponding to the Red units can be modified 
at the updated time kt . 

The one-step look-ahead Nash strategy with DDF 

{ }* *,B Ru u should satisfy the following inequalities: 
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After calculating the Nash strategies for both forces, 
i.e., { }* *( ), ( ) , [ , ( )]B R

k k ku t u t t t t H t∈ + , only { }* *( ), ( )B Ru t u t  

in the time horizon [ , ( )]k k kt t h t+  (or 1[ , ]k kt t + ) are 
implemented in the battle.  

The varying moving horizon Nash strategies with DDF 
are implemented in feedback form as illustrated in [4].  In 
this implementation, the unit damage information from the 
battlefield at the updated time sequence { kt }, which are fed 
back to the algorithm at the end of every step, are used to 
calculate the target assignments at the next step.   In [4], our 
simulation results show that, the availability of feedback 
sensor information on target damage, as the battle 
progresses, will allow the Blue force to optimally allocate 
the available resources by avoiding the assignment of tasks 
that have already been satisfactorily accomplished, either 
fully or partially.    In this paper, we assume that the sensor 
information on target damage can be obtained as the battle 
progresses.  Therefore, we consider only the case of 
feedback control implementation. 

An important issue that needs to be addressed in 
determining the Nash solution, even for the one-step look-
ahead case, is scalability.  An exhaustive search over the 
entire space of control options is feasible only if the number 
of units on each side is small.  When the number of units on 
each side is larger than 6 or 7, the search space becomes too 
large and computationally not feasible to search within for 
the Nash solution.  An efficient search algorithm that 
overcomes this scalability issue is described in [3] and will 
be implemented in determining the Nash strategy for the 
Blue feedback controller. 

 

IV. Illustrative Example 

In this section, we will illustrate the performance of the 
feedback controllers with and without DDF on a test bed 
scenario. In this scenario, the Blue force consists of a 
limited number of UAVs. The Red force has a limited 
number of long range and medium range, surface-to-air 
missiles (SAMs) and is centered in the Red area also 
labeled 3 shown in Fig. 4.  The strategic objective for the 
Blue force is to eliminate the SAM sites in the Red area.  
In order to compare the performance of the feedback 
controllers with and without DDF, we will consider a 
specific detailed experiment.  Suppose that the Blue team of 
UAVs is dispatched to neutralize the Transport Erector 
Launchers (TELs), which are carrying SSMs, and the 
integrated air defenses (IADs) in Red area 3.  TELs are 
critical offensive units and bring most risk to the Blue base, 
and the IADs are defending units including long range and 
medium range SAM sites.  The deployment of Red forces 
in Red area 3 is shown in Fig. 4.  The Blue team consists of 
a total of 5 UAVs equipped as described in Table 1.   

The objective functions without DDF, i.e., ( , )B R
BJ u u  

and ( , )B R
RJ u u , are given in (2). With respect to the 

calculated feedback target selections without DDF for the 
first four rounds for the Blue UAVs, it is not surprising that  
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Fig. 4:  Deployment of Red units in Red Area 3 

 

Table 1.   Blue Team assigned to Red Area 3 

 
 

all Blue UAVs have been assigned the critical targets TELs, 
instead of the defending SAM sites.  This is so because, 
compared to the worth of other units, each TEL has an 
extremely high value.  When these controls are 
implemented, after the first round of engagement, we 
observe that all the Blue UAVs except Small Combo 2 on 
their ways to the assigned targets are destroyed by the Red 
defending units.    In the following rounds, Small Combo 2 
still selects one TEL as its target and gets destroyed as 
expected.  

In the next experiment, we use the DDF given by (6) to 
reduce the relative importance of the critical Red targets far 
from the Blue team.  The corresponding objective function 
for the Blue force is now ( ) ( , )d B R

BJ u u  and the objective 

function for the Red force remains ( , )B R
RJ u u  is given by 

(2b).   We then calculate corresponding control choices for 
the first 5 steps for Blue UAVs.  When these controls are 
implemented,  the target assignment for the Blue units at 
the first round includes neutralizing those medium SAM 
site and long range SAM site, which are much closer to 

Blue team than the TELs.     Similarly, at the second round, 
the Blue team continues to weaken the defending units and 
subsequently upon detecting that all TELs are now near the 
Blue team, the surviving Blue UAVs are now able to attack 
those important targets.  Clearly, the feedback controller 
with DDF allows for more reasonable decisions to be made 
by the Blue team in the battlefield.  Note that with DDF, 
four Long-SAM-14 launchers, one medium SAM site, and 
four TELs are destroyed.  In addition, one Blue UAV is 
preserved.  In contrast, in the case using the feedback 
controller without DDF, only two TELs are destroyed and 
none of Blue UAVs is preserved.   

We also compared the worth of the remaining Red force 
and the remaining Blue team at the end of each round using 
the feedback controllers with and without DDF.  These are 
shown in Fig.5 and Fig.6, respectively.  The total worth of 
the Red and Blue force at step k is given by  

1

( ) ( )
XI

X X
X i i k

i

W k w p t
=

=∑  for X=B,R at round k          (9)                       

where the worth values of units B
iw  are obtained from the 

third column of Table 1, and R
iw =75 for TELs, R

iw =10 for 

LSAMs and R
iw =7.5 for MSAMs , which are also used as 

weighting coefficients2 in the objective functions (2).  We 
note that the worth of the Red force when using the 
feedback controller with DDF is higher in the early stages 
of the battle, and then becomes lower than that of Red force 
when using the feedback controller without DDF as the 
battle progresses.  This essentially confirms that only close 
and less important defending units are weakened at the 
early stages, and those critical targets with high values are 
then destroyed in the end.   Similarly, more Blue UAVs are 
preserved when using the feedback controller with DDF.  

Another measure is the total gain of the Blue force plus 
the total loss of the Red force.  We refer to this as the net 
performance of the Blue controller and at round k is 
calculated according to: 

( ) ( )( ) ( ) (0) ( ) (0)B B R RNet k W k W W k W= − − −         (10) 

We compared the net performance of the Blue force when 
controls are implemented with and without DDF in 
feedback form.  The results are shown in Fig.7.   As we 
expected, the net performance of the Blue force tends to 
improve when using feedback controller with DDF as the 
battle progresses.  However, this was not the case for the 
feedback controller without DDF. 

 

 V.  Concluding Remarks 

In this paper, we discussed a varying moving horizon 
Nash strategy with distance discount factor (DDF) for the 
target selection for the Blue force in a battle system.  We 
introduced a distance discount factor to the objective 

                                                 
2 These data are obtained from a simulator developed by Boeing as a part 
of the test bed. 
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MSAM site  27 MSAM site  28 
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functions used to calculate the optimal target selection, and 
presented simulation results to assess the performance of 
two implementations of the feedback controller with and 
without DDF.  We used an efficient search algorithm for 
calculating the Nash target assignments. Our simulation 
results show that the DDF is important in target selection 
especially when the target units have different worth and 
the more valuable targets are farther than the less valuable 
ones. The DDF provides a tradeoff between the cost and 
reachability of the target.   
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Fig.5:  Worth of Red Force deployed in Red Area 3 
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Fig.6:  Worth of Blue Team assigned to Red Area 3 
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