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Abstract— In this paper we study the safety control of
multiple vehicles moving along a straight line. Each vehicle
implements a linear feedback law on the positions and veloci-
ties of the adjacent vehicles. We assume the number of vehicles
is large so by taking to the continuum limit the model is
described by a hyperbolic partial differential equation, namely
the wave equation. We analyze the stability of the system when
each vehicle is subject to finite bandwidths of sensing and
actuation. We also investigate the dynamic response of the
system to disturbances. Finally, we specify the safety conditions
of the system and safety control is formulated as a robust
control problem.

I. INTRODUCTION

Continuum representation of the dynamics of solids and
fluids has existed for a long time, though strictly speaking
nothing in the physical world is a continuum. Nonetheless,
the continuum models widely used in physics are also
suitable for spatially discrete systems such as traffic flows
(see [18], [13]), which consist discrete vehicles interacting
with their neighboring vehicles. Lighthill and Whitham are
the first to use continuum wave equations to describe the
behavior of cars that are dense enough on a highway, where
disturbances of densities of cars are modelled as waves
travelling with respect to the traffic. Recent work on control
of traffic flows has used this model extensively (see [11],
[14]).

Much of recent research effort is to control systems
with a platoon of land vehicles ([12], [16]), multiple aerial
vehicles ([5], [19]), spacecraft ([8], [10], [15]). General
theoretic framework has been developed to control inter-
connected systems ([1], [6], [17]). In [6], a general theory
of robust control analysis and synthesis of interconnected
systems is established, using the framework of linear matrix
inequalities (LMIs).

On the other hand, there is also a rich theory in control
of linear distributed parameter systems (see [3], [4]). In
this paper we consider the continuum limit of decentralized
control of multiple vehicles, where the emphasis is on the
effects actuator bandwidth and sensor bandwidth on the
stability and safety of the vehicles. In particular, the stability
of the dynamics of different length scales are studied in the
presence of actuator and sensor bandwidths. The effects of
disturbances from the vehicles on the dynamic responses
of different modes are also studied. The choice of control
gains must keep a trade off between robust stability and
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the performance of disturbance rejection. Numerical calcu-
lations are provided for parametric studies on the effects of
feedback gains on robust stability and robust performance.

II. DYNAMIC MODEL AND STABILITY

In this section we approximate the dynamics of multiple
vehicles using partial differential equations. We study the
effects of actuator and sensor bandwidth on the stability of
the system.

Consider n vehicles moving along the straight line with
uniform speed v, and equally spaced. Suppose each vehicle
is to remain in the middle between the vehicle in front of it
and that behind it. The goal is to characterize the stability
and dynamic response of different vehicles. Assume the
coordinate is moving with the vehicles. Suppose the states
of the i-th vehicle are the position and velocity and are
denoted by (pi, vi). Also suppose the input for each vehicle
(except the first one and the last one) is the positions of its
two adjacent vehicles and the feedback control law is linear.
The equations of motion of each vehicle are given by the
following ordinary differential equations (ODEs):

ṗi = vi,

v̇i = Ki

2

∆2

(

pi+1 + pi−1

2
− pi

)

,

for i = 2, 3, · · · , n− 1. Here ∆ is the spacing between the
vehicles when there is no disturbances, and Ki/∆2 > 0 is
the feedback gain. The positions of the first and the last
vehicle are given by p1(t) and pn(t). By taking the limit
n −→ ∞, and ∆ −→ 0, the above ordinary differential
equations can be approximated by the following partial
differential equation (PDE):

∂2p

∂t2
= K(x)

∂2p

∂x2
, (1)

with the boundary conditions

p(0, t) = p0(t), p(L, t) = pL(t). (2)

The above equation is the linear wave equation, with
√

K(x) being the local speed of the disturbances. Suppose
K(x) is constant and K = a2, then the solution of the
equation for the homogeneous boundary condition p(0, t) =
pL(t) = 0 is given by

p(x, t) =

∞
∑

m=1

sin
mπx

L

(

Am sin
mπat

L
+Bm cos

mπat

L

)

,

where Am and Bm are determined by initial conditions. It is
easy to see that the damping of the disturbances is zero and



and each mode of is neutrally stable. We can use velocity
feedback to add damping to the system. The ODEs become

ṗi = vi,

v̇i = K1

2

∆2

(

pi+1 + pi−1

2
− pi

)

+K2

2

∆2

(

vi+1 + vi−1

2
− vi

)

,

where 2 ≤ i ≤ n− 1. Since vi = ṗi, in the limiting case of
∆ −→ 0 and n −→ ∞, the ODEs can be approximated by
the following PDE:

∂2p

∂t2
= K1

∂2p

∂x2
+ K2

∂3p

∂t∂x2
, (3)

It is easy to see that the PDE is stable if K1 and K2 are
positive. It can be argued as follows. For the homogeneous
boundary condition p(0, t) = p(L, t) = 0, the spatial modes
of the PDE are given by sin mπx

L
for m = 1, 2, · · · , so the

solutions are given by

p(x, t) =
∞
∑

m=1

Am(t) sin
mπx

L
,

where the amplitude Am(t) satisfies the following ODE:

Äm +
(mπ

L

)2

K2Ȧm +
(mπ

L

)2

K1Am = 0.

It is clear that the amplitude equation is stable if K1

and K2 are positive. This implies that all the modes are
asymptotically stable.

In reality, the sensors and the actuators of the vehicles
have bandwidths associated with them. Suppose the both the
sensor dynamics and the actuator dynamics are described as
first order differential equations, then the dynamics of the
vehicles is given by

ṗi = vi,

v̇i = ui,

u̇i =
1

τa

[

K1

2

∆2

(

ps
i+1 + ps

i−1

2
− ps

i

)

+K2

2

∆2

(

vs
i+1 + vs

i−1

2
− vs

i

)

− ui

]

,

ṗs
i =

pi − ps
i

τs

,

where τa is the time constant of the actuator, and τs is the
time constant of the sensor. By taking the limit, we get a
PDE coupled with an ODE

τa

∂3p

∂t3
+

∂2p

∂t2
= K1

∂2ps

∂x2
+ K2

∂3ps

∂t∂x2
, (4)

∂ps

∂t
=

p − ps

τs

, (5)

with boundary conditions

p(0, t) = p0(t), p(L, t) = pL(t). (6)

We first consider the homogeneous boundary conditions,
and study the stability property of the system. By letting

p(x, t) = A(t)eikx, ps(x, t) = B(t)eikx,

where k is the wave number, we get the ODEs for amplitude
of the k-th mode,

τa

d3A

dt3
+

d2A

dt2
= −k2

(

K1B + K2

dB

dt

)

,

dB

dt
=

A − B

τs

.

Using Laplace transform, we get the characteristic equation
of the above ODEs:

τaτss
4 + (τa + τs)s

3 + s2 + k2K2s + k2K1 = 0.

By using the Routh-Hurwitz criterion, the necessary and
sufficient condition for the stability of the polynomial

α1s
4 + α2s

3 + α3s
2 + α4s + α5 = 0, α1 > 0,

is αj > 0 (j = 1, 2, 3, 4), α2α3 > α1α4, and α2α3α4 >
α1α

2
4 +α2

2α5. So the stability of the k-th mode is given by

K1 <
K2

τa + τs

−
k2τaτsK

2
2

(τa + τs)2
,

K2 <
1

k2

(

1

τa

+
1

τs

)

.

It is easy to see from the second inequality that high
damping gain K2 tend to destabilize small spatial modes
(k large), especially when the bandwidth of the sensors
and actuators are small (large τa and τs). From the first
inequality it is clear that low bandwidth and high wave
number also limits the gain K1. An illustration of the
stability region is given in Figure 1.

III. DYNAMIC RESPONSE TO DISTURBANCES

Suppose the feedback gains K1 and K2 are selected such
that closed loop the system is stable, it is also important to
study the dynamic response of the system of vehicles to
the disturbance of the perturbations of the positions of the
leading and trailing vehicles. This is equivalent to analyze
the dynamic response of different wave numbers to the
boundary conditions. For the nonhomogeneous boundary
conditions, by letting

p(x, t) = P (x, t) +
(

1 −
x

L

)

p0(t) +
x

L
pL(t),

ps(x, t) = P s(x, t) +
(

1 −
x

L

)

p0(t) +
x

L
pL(t),

then the PDE (4), the ODE (5), and the boundary condi-
tions (6) are transformed to the following system

τa

∂3P

∂t3
+

∂2P

∂t2
= K1

∂2P s

∂x2
+ K2

∂3P s

∂t∂x2
+ F (x, t), (7)

∂P s

∂t
=

P − P s

τs

, (8)
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Fig. 1. Region of stability in the K1-K2-k space. The region of stability is given by the enclosed region between the parabolas and the K2-axis for
different wave numbers in the first figure. In the second figure, the region of stability is below the surface. The parameters: τa = 1.0, τs = 0.02.

where

F (x, t) = −
(

1 −
x

L

)

(

τa

d3p0

dt3
(t) +

d2p0

dt2
(t)

)

−
x

L

(

τa

d3pL

dt3
(t) +

d2pL

dt2
(t)

)

with homogeneous boundary conditions P (0, t) =
P (L, t) = 0. Now letting

P (x, t) =

∞
∑

m=1

Am(t) sin kmx,

P s(x, t) =

∞
∑

m=1

Bm(t) sin kmx, (9)

where km = mπ
L

. By substituting the mode representa-
tion (9) into the PDE (7) and the ODE (8), multiplying
the PDE with sin knx, and integrating from 0 to L, we get

τa

d3An

dt3
+

d2An

dt2
= −k2

n

(

K1Bn + K2

dBn

dt

)

+(−1)n+1 2

nπ

(

τa

d3p0

dt3
(t) +

d2p0

dt2
(t)

)

+(−1)n 2

nπ

(

τa

d3pL

dt3
(t) +

d2pL

dt2
(t)

)

, (10)

dBn

dt
=

1

τs

(An − Bn), (11)

where n = 1, 2, · · · ,∞. Now, applying the Laplace trans-
form to the ODEs (10) and (11), we get

An(s) =
2(−1)n

nπ

s2(τas + 1)(τss + 1)

an(s)

(pL(s) − p0(s)),

where an(s) is the characteristic polynomial and is given
by

an(s) = τaτss
4 +(τa + τs)s

3 + s2 +k2K2s+k2K1. (12)

The sensitivity of the amplitude of the n-th mode to the
boundary disturbances is given by

‖Gn(s)‖∞ =

∥

∥

∥

∥

An(s)

p0(s)

∥

∥

∥

∥

∞

= max
ω∈R

2

nπ

ω2|1 + iωτa||1 + iωτs|

|a(iω)|
,

and

‖Hn(s)‖∞ :=

∥

∥

∥

∥

An(s)

pL(s)

∥

∥

∥

∥

∞

=

∥

∥

∥

∥

An(s)

p0(s)

∥

∥

∥

∥

∞

.

The goal is to design K1, K2 such that the maximum
frequency response is minimized, i.e.,

min
K1,K2∈Sn

‖Gn(s)‖∞ = min
K1,K2∈Sn

max
ω∈R

|Gn(iω)|,

where Sn ⊂ R
2 is the set of gains such that the n-th mode

sin nπx
L

is asymptotically stable, and is given by

Sn =

{

(K1, K2)

∣

∣

∣

∣

0 < K1 <
K2

τa + τs

−
k2τaτsK

2
2

(τa + τs)2
,

0 < K2 <
1

k2

(

1

τa

+
1

τs

)}

Numerical calculation of maxω∈R |Gn(iω)| for different K1

and K2 are shown in Figure 2(a). It can be seen from the
figure that the minimum γn is achieved at K1 = K2 =
0, but the n-th mode is not asymptotically stable when
K1 = K2 = 0. By comparing with Figure 1, the design
of performance has to trade-off with robust stability.
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Fig. 2. Frequency response of the first mode amplitude to disturbances. Figure (a), frequency response to the boundary disturbances; Figure (b),
frequency response to internal disturbances. The parameters: τa = 1.0, τs = 0.02.

Suppose the vehicle system is subjected to the internal
disturbances, which are generated from all the vehicles
except the leading one and the trailing one. The equations
are given by

τa

∂3p

∂t3
+

∂2p

∂t2
= K1

∂2ps

∂x2
+ K2

∂3ps

∂t∂x2
+ W (x, t),

∂ps

∂t
=

p − ps

τs

,

with homogeneous boundary conditions p(0, t) = p(L, t) =
0. Assume the disturbance W (xt) can be written as follows,

W (x, t) =

∞
∑

n=1

wn(t) sin knx +

∞
∑

n=1

zn(t) cos knx,

where w(t) and zn(t) are white noises. Then the projection
of the PDE to the n-th spatial mode is given by

τa

d3An

dt3
+

d2An

dt2
= − k2

n

(

K1Bn + K2

dBn

dt

)

+ wn(t),

dBn

dt
=

1

τs

(Bn − An).

So the frequency response of the amplitude of the n-th mode
to the disturbance wn(t) is given by

gn(s) =
An(s)

wn(s)
=

τss + 1

an(s)
,

where an(s) is given by (12). The goal of control design
is to find K1, K2 ∈ Sn, such that the maximum frequency
response is minimized, i.e.,

min
K1,K2∈Sn

‖gn(s)‖∞ = min
K1,K2∈Sn

max
ω∈R

|gn(iω)|.

Numerical calculation of maxω∈R |gn(iω)| for different K1

and K2 is shown in Figure 2(b). The minimum is again
achieved on the boundary of stability on which K1 = 0.

IV. SPECIFICATION OF CONDITIONS OF SAFETY

The safety condition of the vehicles is that any two
adjacent vehicles must not collide with each other at any
time. In other words, we have |pi − pi+1| < ∆, i.e.,

∣

∣

∣

∣

pi+1 − pi

∆

∣

∣

∣

∣

< 1.

By letting ∆ −→ 0, we get
∣

∣

∣

∣

∂p

∂x
(x, t)

∣

∣

∣

∣

< 1,

for any x ∈ [0, L] and t ∈ R. By projecting the solutions
to the PDE onto the spatial modes, we get

p(x, t) =

∞
∑

n=1

An(t) sin
nπx

L
.

So the safety condition is given by
∣

∣

∣

∣

∂p

∂x
(x, t)

∣

∣

∣

∣

≤
∞
∑

n=1

An(t)
∣

∣

∣

nπ

L
sin

nπx

L

∣

∣

∣
< ν,

where 0 ≤ ν < 1 is a constant. Hence a sufficient condition
of safety is given by

∞
∑

n=1

n‖An(t)‖∞ ≤
νL

π
,

where the ∞-norm of the signal A(t) is given by

‖An(t)‖∞ := max
t∈R

|An(t)|.

Assume wn(t) is the projection of the disturbances onto the
n-th mode, then we have

An(t) = (Gn ? wn)(t),

where Gn is the impulse response and ? denotes the
convolution operator. Since we have

‖An‖∞ = ‖Gn‖1‖wn‖∞,



the safety condition can be written as the L1 design problem
∞
∑

n=1

n‖Gn‖1‖wn‖∞ ≤
νL

π
. (13)

A necessary condition that satisfies (13) is

‖Gn‖1 ≤
νL

nπ

1

‖wn‖∞
,

i.e., the higher the wave number is, the more stringent
the L1-norm response is, since the L1-gain of the transfer
functions is inversely proportional to the mode number. It
is also clear that the requirement of the L1-gain is inversely
proportional to the infinity norm of the disturbance w(t). A
sufficient condition that satisfies (13) is

‖Gn‖1 ≤
6νL

(nπ)3
1

‖wn‖∞
.

It is clear from the sufficient condition that the requirement
for the L1-gain is inversely proportional to the third power
of the mode number.

V. CONCLUSIONS

We have modelled the dynamical behavior of multi-
vehicles by using the continuum limit. We have studied
the stability of the system for finite bandwidth of actuators
and sensors, where the parametric relations between the
sensor/actuator bandwidth and the region of stability has
been explicitly derived. We have also analyzed the responses
of vehicles to boundary and internal disturbances. Safety
is specified as the L1 norm of the operators between the
disturbances and the waves of different length scales. It is
concluded that the regions of stability for modes with high
wave numbers are small compared with those of the low
wave numbers, and the system is more sensitive to the small
scale disturbances.
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