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Abstract— In this paper we adopt the Stochastic Fluid
Modeling framework for management and control of commu-
nication networks and attempt to explicitly model feedback
controlled sources. Specifically, the inflow process consists of
a feedback controlled source which is modelled as a hybrid
automaton (it has both, time-driven as well as event-driven
dynamics). This paper derives Infinitesimal Perturbation Anal-
ysis (IPA) derivative estimators for the buffer occupancy and
throughput with respect to a node parameter (i.e., the buffer
size). As also shown in earlier work [1], [2], [3], such estimators
are used together with stochastic approximation techniques to
dynamically determine the optimal operating point.

I. I NTRODUCTION

Managing and operating large scale communication net-
works is a challenging task and it is only expected to get
worse as networks grow larger and larger. The managing
difficulties stem from the fact that modeling and analysis of
large scale communication networks is an excessively diffi-
cult task. The natural modeling framework for packet-based
communication networks is provided through queueing sys-
tems, however, the huge traffic volume that networks are
supporting today makes such models highly impractical. If,
on the other hand, we are to resort to analytical techniques
from classical queueing theory, we find that traditional
traffic models, largely based on Poisson processes, need to
be replaced by more sophisticated stochastic processes that
capture the bursty nature of realistic traffic. At the same
time we need to account for the fact that the stochastic
processes involved are time-varying, i.e., no stationarity
assumption and, in addition, we need to explicitly model
buffer overflow phenomena which typically defy tractable
analytical derivations.

An alternative to queueing models is a hybrid modeling
paradigm that is based on Stochastic Fluid Models (SFM)
which have recently been shown to be especially useful
for analyzing various kinds of high-speed networks (see
[1], [4], [5], [6], [7] and references therein). Using this
modeling framework a new approach for network manage-
ment is being developed which is based on Infinitesimal
Perturbation Analysis (IPA) [1], [2], [8]. In this approach,
we estimate the gradient of the performance measure of
interest (e.g., packet delay) with respect to the control pa-
rameters of interest (e.g., buffer thresholds) and use them in

The author is with the Dept. of Electrical and Computer Engineering,
University of Cyprus, Nicosia, Cyprus. Email:christosp@ucy.ac.cy

standard stochastic approximation algorithms to determine
the optimal parameter setting. This approach has some
very important advantages.(i) The gradient estimation is
done on-line thus the approach can be implemented on
the real system; As the operating conditions change, it
continuouslyseeks to optimize a generally time-varying
performance metric.(ii) The gradient estimation process
does not require any knowledge of the system’s underlying
stochastic processes.(iii) It turns out that the estimators
consist of accumulators and timers and are generally easy
to implement.

To date, the use of IPA for the control of a single class
traffic in a single-node SFM has been studied in [1] where
the buffer capacity is adjusted to optimize a performance
measure of interest. In [2], [3] the approach is extended to
include multiple classes of traffic with multiple thresholds
while in [9] the approach is extended to a tandem network
with a single traffic class. A common assumption in the
models described above [1], [2], [3], [9] is that the packet
arrival and service processes are independent of the control
parameters, i.e., the various thresholds. In the context of
the current computer networks, this assumption is valid
for UDP (User Datagram Protocol) traffic however it is
invalid for TCP (Transmission Control Protocol) traffic. In
this paper, we extend the framework and study a class of
feedback controlled sources of traffic. As explained in the
next section, this class of sources is modelled as hybrid
automaton [10] which falls in the hybrid TCP modeling
framework developed in [11]. The first contribution of
this paper is the derivation of IPA sensitivity estimates
of performance measures such as average buffer content
and throughput with respect to the buffer thresholds. Feed-
back controlled traffic is also studied in [12] however, the
problem studied in [12] is in the context of manufacturing
systems and the source model used is different. Other efforts
to include different forms of feedback controlled traffic
include [13]. Another contribution of this paper is that the
proposed model explicitly addresses the propagation delay
in providing feedback to the source. Such propagation delay
is typical in current computer communication networks.

II. SYSTEM MODEL

The SFM setting is based on the fluid-flow world-view
where “liquid molecules” flow in a continuous fashion.
The basic SFM, used in [1] consists of a single-server
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Fig. 1. System model

preceded by a fluid storage buffer with finite capacityb.
The system is characterized by a set of stochastic processes,
all defined on a common probability space(Ω,F , P ). In
[1] a source produces fluid at rateα(t) while the server
processes the fluid at rateβ(t). Both, α(t) and β(t) are
time varying random functions independent of the buffer
capacity. Givenα(t), β(t) and the buffer capacityb we
derive three stochastic processes as follows:
{δ(t)}:the actual fluid discharge rate from the server,
{x(t)}:the buffer occupancy or buffer content, i.e., the

amount of fluid in the buffer,
{γ(t)}:the overflow rate due to a full buffer.
As already mentioned, in [1] it is assumed thatα(t)

is independentof the buffer capacityb = θ which will
constitute the parameter we will concentrate on for the
purposes of IPA. In this paper we relax this assumption and
allow the source’s inflow rate to depend on the parameterθ
as shown in Fig. 1. Specifically, we assume that the source
can be in either of two states and in each state it can transmit
at ratesα1(t) or α2(t) respectively. Both,α1(t) andα2(t)
are time varying random functions locally independent of
θ. On the other hand, the state transitions depend onθ and
as a result the resulting inflow processα(t; θ) is a function
of θ. The specific dependence onθ will be considered in
a following subsection. Furthermore, as shown in Fig. 1
we assume a second uncontrolled traffic source with an
inflow rate u(t) which, in the context of communication
networks may correspond to traffic like UDP;u(t) < ∞ is
also a random time-varying function. The above processes
evolve over a given time interval[0, T ] for a given fixed
0 < T < ∞.

A. System Dynamics

To simplify the notation, we define thenet inflowrate

A(t; θ) = α(t; θ) + u(t)− β(t) (1)

and similarly define

A1(t) = α1(t)+u(t)−β(t) and A2(t) = α2(t)+u(t)−β(t).

The buffer content is defined by the following one-sided
differential equation,

dx(t; θ)
dt+

=





0, if x(t; θ) = 0 and A(t; θ) ≤ 0,
0, if x(t; θ) = b and A(t; θ) ≥ 0,
A(t; θ), otherwise

whose initial condition will be set tox(0; θ) = x0; for
simplicity, we setx0 = 0 throughout the paper. The outflow

rateδ(t; θ) is defined by

δ(t; θ) =
{

β(t), if x(t; θ) > 0,
α(t; θ) + u(t), if x(t; θ) = 0,

(2)

and the overflow rateγ(t; θ) is given by,

γ(t; θ) =
{

A(t; θ), if x(t; θ) = b,
0, if x(t; θ) < b.

(3)

For completeness we assume that losses of the two types of
traffic α(t; θ) andu(t) are proportional to the inflow rates
of each traffic. This SFM can be viewed as a dynamical sys-
tem whose input consists of the three processes{α(t; θ)},
{u(t)}, and {β(t)}, its state is comprised of the buffer
content process, and its output includes the outflow and
overflow processes. This system is also viewed as a Discrete
Event System where we identify the following events.

e1: buffer ceases to be empty,
e2: buffer becomes full,
e3: buffer ceases to be full,
e4: buffer becomes empty,
e5: sign of A(t; θ) changes from positive to negative,
e6: sign of A(t; θ) changes from negative to positive.

Some events are shown in Fig. 2 which shows a typical
sample path of the system; for examplev0 corresponds to
an e1, v1 to ane2, v2 to ane3 andvS to ane4.
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Fig. 2. Typical buffering period of the system sample path

B. State Transition Mechanism of the Hybrid Automaton

In this section we examine the state transition mechanism
of the source processα(t, θ). We assume that initially
it starts transmitting according toα1(t) until the buffer
becomes full (say at timev1 as in Fig. 2). At this point
the node will send a signal to the source to change its
transmission rate. The signal will arrive at the source after
a generally random delayτ and will cause a transition
from state 1 to state 2 (pointη1 in Fig. 2). Thus the
new transmission rate will becomeα2(t). At this point,
assuming the source was effectively controlled, one would
have expected the buffer contentx(t) to cease to be full.
However, as indicated in Fig. 2, this does not happen until
ζ time units later, whereζ is another random variable.
This delay is used to model the propagation delay from
the source to the buffer. In addition,ζ is needed because
it is possible that at the time of the state transition, the net
inflow to the buffer might still be greater than the server
capacity (i.e.,A(t; θ) > β(t)) due to the uncontrolled flow
u(t). The source will continue transmitting at a rateα2(t)
until the next time the buffer will become full. At this point,



again the node will send a signal to the source to change its
transmission rate. The signal will arrive at the source after
a random delayτ and will cause a transition from state 2
to state 1 and so on.

Remark 1:The function αi(t) i = 1, 2 can be any
general, random, and time varying function, as long as it is
finite. For effective congestion control however, one might
expect that at the transition time,αi(t) starts small and is
an increasing functions of timet. This is consistent with
TCP’s slow start and congestion avoidance states.

For the purposes of this paper, the random delayτ will
be considered as linearly dependent onθ, i.e.,

τ = cθ + d̃ (4)

where c ≥ 0 constant, andd̃ is a random variable inde-
pendent ofθ. Note that this model allows forc = 0 which
makesτ independent ofθ. Furthermore, the random delay
ζ will be assumed independent ofθ.

Remark 2: In the context of communication networks the
propagation delay may or may not depend on the buffer
capacity θ, depending on the protocol. For example, in
protocols with backward explicit congestion notification, the
delay is independent ofθ. On the other hand, in general TCP
traffic or forward explicit congestion notification (e.g.,[14]),
the source detects congestion after a round trip time. This
is proportional toθ because the packets that follow the
dropped packet (i.e., the ones that signal congestion to the
source) have to go through a full buffer.

Other approaches that apply IPA on feedback controlled
traffic include [12], [13] however they either use different
forms of feedback or do not account for the delayed reac-
tion of the feedback controlled source. The IPA approach
is described in the next section but first we define the
performance measures of interest that one might want to
optimize through gradient based techniques and thus use
the IPA estimates.

C. Performance Measures

In this paper we are concerned with two sample per-
formance measures of interest, the average queue length
Q(T ; θ) and, the throughputW (T ; θ), both defined over a
finite interval [0, T ] as shown below.

Q(T ; θ) =
1
T

∫ T

0

x(t; θ)dt (5)

W (T ; θ) =
1
T

∫ T

0

δ(t; θ)dt (6)

We point out that fromQ(T ; θ) it is possible to get delay
related measures using Little’s Law (see [15]). Furthermore,
it is worth pointing out that unlike the problem formulation
in earlier work [1], [2] (with uncontrolled source models),
the problem considered in this paper does not include
the loss volume metric. Rather, in this paper we have
substituted the loss volume with the throughput metric.
The justification for this change is based on the fact that

in feedback controlled sources (such as TCP sources) lost
packets are retransmitted. Furthermore, it is unclear whether
it is effective (or desirable) to control packet losses from
feedback controlled sources by changing the buffer size1.

Having no buffer, implies minimum packet delay how-
ever, this seriously restricts the system’s throughput. To
trade off between the two measures we define an objective
function which is a linear combination of the two. Of course
one is interested in minimizing the average delay while
maximizing the expected throughput, thus we define the
following objective function

min J(T ; θ) ≡ E [Q(T ; θ)]− hE [W (T ; θ)] (7)

whereh ≥ 0 is an appropriate scaling constant.

III. I NFINITESIMAL PERTURBATION ANALYSIS (IPA)

As in earlier work, we divide the system sample path in
buffering periods (BP) and Empty Periods (EP) (a typical
BP is shown in Fig. 2). Thus the sample functions of (5)
and (6) can be rewritten as

Q(T ; θ) =
1
T

NT∑

k=1

qk =
1
T

NT∑

k=1

∫ vk,Sk

vk,0

x(t; θ)dt (8)

W (T ; θ) =
1
T

NT∑

k=1

wk =
1
T

NT∑

k=1

∫ vk,Sk

vk−1,Sk−1

δ(t; θ)dt (9)

where NT is the random number of BPs in the interval
[0, T ], vk,0 denotes the beginning of the thekth BP while
vk,Sk

denotes its end time. For the analysis that follows we
are only considering a single BP and in order to simplify the
notation we drop the indexk. We also use the notationv−1

to indicate the ending time of thepreviousBP. Fig. 2 shows
a typical buffering period which is divided into intervals
pi = [vi, vi+1), i = 0, · · · , S − 1. Before we proceed with
the derivation of the IPA derivatives we make the following
mild assumption that guarantees the existence of derivatives.

Assumption 1:
a. α1(t) < ∞, α2(t) < ∞, u(t) < ∞, andβ(t) < ∞ for
all t ∈ [0, T ]
b. For everyθ ∈ Θ, w.p. 1, no two events may occur at the
same time
c. W.p. 1, there exists no interval(vi, vi + τ), τ > 0, such
thatx(t) = θ for all t ∈ (vi(θ), vi(θ)+τ), andA1(t; θ) = 0
or A2(t; θ) = 0.
All three parts ofAssumption 1are mild technical condi-
tions. Regarding partc, we point out that if it is violated,
one-sided derivatives may still be used, however we make
the assumption to simplify our analysis.

In addition, to simplify the notation we define the pro-
cessesGi(t) and Ḡi(t), where, G1(t) = A1(t) if the
previous BP ended when the source was in state 1, and
G1(t) = A2(t) if the previous BP ended when the source

1Ignoring any background traffic, every time the buffer becomes full,
it stays full for τ + ζ time units. Thus packet losses are proportional to
the length of that interval which is an increasing function ofθ. In other
words, increasing the buffer size increases packet losses.



was in state 2.Ḡ1(t) = A1(t) if G1(t) = A2(t) and
Ḡ1(t) = A2(t) if G1(t) = A1(t). Subsequently, for all
i = 2, · · · , S+1

2 the Gi(t) and Ḡi(t) will be determined
recursively

Gi(t) = Ḡi−1(t) and Ḡi(t) = Gi−1(t) (10)

Clearly, Gi(t) and Ḡi(t), i = 1, · · · , S+1
2 are all indepen-

dent ofθ. Also, for notational economy we define

∆Gi(t) = Gi(t)− Ḡi(t) (11)

A. IPA for the Buffer Content

Over a single buffering period, the buffering content is
given by

q =
∫ v1

v0

x(t)dt+

S−1
2∑

i=1

[
(v2i − v2i−1)θ +

∫ v2i+1

v2i

x(t; θ)dt

]

(12)
where we point out thatx(t) over the interval[v0, v1) is
independent of the buffer sizeθ. Next we take derivatives
one term at a time, so we have

d

dθ

∫ v1

v0

x(t)dt = x(v1)v′1 = θv′1 (13)

where the prime notation(·′) denotes the derivative with
respect toθ. To derive (13) we have used the fact thatv0

and x(t) during this interval are locally independent from
θ, and,x(v1) = θ.

d

dθ

S−1
2∑

i=1

[(v2i − v2i−1)θ]

=

S−1
2∑

i=1

[
(v2i − v2i−1) + (v′2i − v′2i−1)θ

]
(14)

d

dθ

S−3
2∑

i=1

[∫ v2i+1

v2i

x(t; θ)dt

]

=

S−3
2∑

i=1

[
(v′2i+1 − v′2i)θ +

∫ v2i+1

v2i

x′(t; θ)dt

]
(15)

and for the last non full interval,

d

dθ

∫ vS

vS−1

x(t; θ)dt = −v′S−1θ +
∫ vS

vS−1

x′(t; θ)dt (16)

Combining equations (13) - (16) we observe that all terms
v′iθ cancel out. Therefore

dq

dθ
=

S−1
2∑

i=1

[
(v2i − v2i−1) +

∫ v2i+1

v2i

x′(t; θ)dt

]
(17)

To determine thex′(t; θ) term that appears in (17) we
recognize that in any interval(v2i, v2i+1) i = 1, · · · , S−1

2

x(t; θ) = θ +
∫ t

v2i

Gi+1(r)dr

Thus,x′(t; θ) is given by

x′(t; θ) = 1−Gi+1(v2i)v′2i

and therefore
∫ v2i+1

v2i

x′(t; θ)dt = [1−Gi+1(v2i)v′2i] (v2i+1 − v2i)

(18)
Combining (18) with (17) we get

dq

dθ
= (vS − v1)−

S−1
2∑

i=1

Gi+1(v2i) (v2i+1 − v2i) v′2i. (19)

Equation (19) shows that the buffer content derivative
consists of a timer that counts the interval between the first
overflow and the end of the buffering period(vS − v1).
This is precisely the result obtained for the uncontrolled
sources (see [1]). Subsequently, there is also a “correction”
term which accounts for the feedback. Its contribution can
be evaluated given the rateA1(t) and A2(t) and the time
derivativesv′i i = 1, · · · , S. These rates can be estimated
or can be evaluated using analytical techniques (see for
example [11]). Furthermore, the time instancesvi, i =
1, · · · , S are generally easy to observe from the queue
sample path at the switch; these correspond to instances
where packets are lost or instances where the buffer ceases
to be full. Time instancesη2i−1, i = 1, · · · , S−1

2 are a
little trickier to obtain since they are not directly observable.
However, depending on the specific protocol used, it may
be possible to infer them. In the worse case, the node can
probe the network and get an estimate ofτ . We don’t expect
that accurate estimate ofτ is critical to the performance
of the estimator, but we will investigate this further in the
future. Thus if the switch has estimates ofA1(t), A2(t)
and an estimate ofτ , the only thing required for evaluating
(19) are the time derivativesv′i andη′i. These are evaluated
recursively as we show in Section III-C.

B. IPA for Throughput

As seen in equations (2) and (9) for the evaluation of
throughput, we also need to consider the empty period
that precedes the busy period. During this period the fluid
discharge of the server is equal to the fluid inflow, i.e.,
G1(t) + β(t)2. During the BP, the fluid discharge isβ(t),
thus during a cycle of an empty period followed by a busy
period, the throughput is given by

w =
∫ v0

v−1

(G1(t) + β(t)) dt +
∫ vS

v0

β(t)dt

where, as mentioned earlier, we denote the end point of the
previous BP (i.e.,vk−1,Sk−1) by v−1. Differentiating we get

dw

dθ
= −G1(v−1)v′−1 − β(v−1)v′−1 + β(vS)v′S (20)

2Note thatGi(t) corresponds to thenet inflow.



Substituting these terms in (8) then allβ(vi)v′i terms cancel
out. So the throughput sample derivative is given by the sum
of terms of the form

dw

dθ
= −G1(v−1)v′−1 (21)

The throughput derivative is simply a collection of terms
which are the product between the net inflow at the instant
when the buffer empties times the derivative of that time
instant. Next, we derive an iterative algorithm for evaluating
these event time derivatives.

C. Time Derivatives

In this section we determine the event time derivativesv′i
andη′i, i = 1, 2, · · · . First, note that

∫ v1

v0

G1(t)dt = θ.

Differentiating both sides we get

G1(v1)v′1 = 1 ⇒ v′1 =
1

G1(v1)
(22)

where we have used the fact thatv0 and G1(t) are inde-
pendent ofθ. Next, we investigate how time perturbations
propagate during any period “non-full” period[v2i, v2i+1),
i = 1, · · · , S−3

2 . For all such periods (except of the last
one) x(v2i) = θ, x(v2i+1) = θ, and x(t) < θ for all
v2i < t < v2i+1, therefore

∫ v2i+1

v2i

Gi+1(t)dt = 0.

Thus differentiating with respect toθ we get

Gi+1(v2i+1)v′2i+1 −Gi+1(v2i)v′2i = 0

Rearranging terms we get

v′2i+1 =
Gi+1(v2i)

Gi+1(v2i+1)
v′2i (23)

i = 1, · · · , S−3
2 . Finally,

∫ vS

vS−1

GS+1
2

(t)dt = −θ.

Thus, after differentiating with respect toθ and rearranging
terms we get

v′S = −
1−GS+1

2
(vS−1)v′S−1

GS+1
2

(vS)
(24)

Finally, we investigate how perturbations propagate from
the beginning of a full period to the end of the full period,
i.e., fromv2i−1 to v2i, i = 1, · · · , S−1

2 . For this, we identify
two cases.

C1: The time of the occurrence of thee3 event (i.e.,
v2i, i = 1, · · · , S−1

2 ) is locally independent ofθ3.

3Note that this would correspond to a case where thee3 event (A(t; θ)
turns from positive to negative) is caused by a change of the instantaneous
rate of the uncontrolled trafficu(t).

In this case,

v′2i = 0 for all i = 1, · · · ,
S − 1

2
. (25)

C2: The evente3 dependents onθ. For the purposes
of this paper we will consider the following linear
dependence4:

v2i = v2i−1 + τ + ζ

= v2i−1 + cθ + ζ̃ (26)

whereζ̃ = d̃+ζ is a random variable independent
of θ. Differentiating, we get

v′2i = v′2i−1 + c (27)

Equations (22)-(27) describe recursive algorithms for
determining the time derivativesv′i, i = 1, · · · , S. Further-
more, the derivative ofη2i−1, i = 1, · · · , S−1

2 is given by

η′2i−1 = v′2i (28)

This follows immediately since (as mentioned earlier)
η2i−1 +ζ = v2i, i = 1, · · · , S−1

2 andζ is independent ofθ.
For the two cases described above, we can also summarize
the algorithms.

C1: All occurrences ofe3 events are independent ofθ,
then

v′i =





1
G1(v1)

if i = 1
0 for i = 2, · · · , S − 1
−1

G S+1
2

(vS) if i = S.
(29)

Note thatv′S > 0 sinceGS+1
2

(vS) < 0 because at
vS the buffer empties. This is precisely the result
obtained in [1].

C2: All occurrences ofe3 event have a linear depen-
dence with respect toθ and the previouse2 event.

v′i =





1
G1(v1)

if i = 1,

v′i−1 + c if i is even,
G i−1

2
(vi−1)

G i−1
2

(vi)
v′i−1 if i > 1 is odd

(30)

In a simulation environment, it is generally easy to
identify which of the two cases above applies and thus
use the right formula. For online implementations however,
this might not be so easy, since one would have to infer
which case applies. One approach would be to just assume
that only one of the cases always applies. For examples, in
problems with heavy uncontrolled UDP traffic, the moment
that the eventbuffer cease to be fulloccurs is likely to
be independent of the buffer sizeθ and thus for such
instances one can use only case 1. Another approach is
to just randomize (according to observed probability mass
function). In any case the exact implementation of this for
online applications is still under investigation.

4Non-linear dependence is also possible but it is out of the scope of this
paper.



IV. SIMULATION RESULTS

In this section we present some simulation results that
indicate the benefit of this approach. The model used
consists of a controlled source with two states (see Fig. 1).
Once the source switches to any of the two states, it starts
transmitting according to a Poisson process with rate 1
packet per second. Every 0.2 seconds its transmission rate
rate is increased by 1, i.e.,

α1(t− tk) = α2(t− tk) = 1 + 5(t− tk)

packets per second, wheretk indicates the time of the
kth transition from one state to the other. All packets are
assumed to have fixed size equal to1K bytes. Furthermore,
we assume that the transmission rate of the link is constant
at 0.5M bytes per second and that there is no background
traffic, i.e., u(t) = 0 for all t. Finally, we assume the
τ = 10ms andζ = 0, both deterministic.
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Fig. 3. Simulation results

The “Brute Force” curve in Figure 3 shows an estimate
of the cost function of (7) withh = 0.2. These estimates are
obtained by running long simulations forθ = 1, · · · , 200
(10 hours for each sample point). Subsequently, we use the
algorithm

θk+1 = θk − σkĴ ′k

to obtain the optimal buffer threshold. Whereσk, k =
1, 2, · · · is the step size sequence but for simplicity we used
σk = 1 for all k. Ĵ ′k is the sample derivative of the cost
function obtained through IPA. Each sample derivative was
obtained after observing a sample path of lengthT = 1000
seconds, however, we point out that significantly shorter
observation intervals can also be used at the expense of
some oscillations around the optimal point. As indicated
in the simulation results, within asingle iteration, the
controller was able to bring the system very close to the
optimality region.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we propose a stochastic fluid model with
feedback controlled traffic and derive IPA derivative esti-
mates of metrics like buffer content and throughput with
respect to the buffer threshold. This approach is intended

to extend the control framework proposed in [1] (i.e.,
use SFM-based IPA together with gradient-based stochastic
approximation techniques for on-line control of queueing
networks) to networks with TCP traffic. A number of issues
are still open and are investigated. The first issue is the
unbiasedness of the derived estimators. This can be done
by showing that the performance measures of interest are
Lipschitz continuous functions of the parameterθ. This task
has been proven more difficult than earlier work because of
the introduction of the round-trip time delay5. The second
issue deals with finding the most appropriate TCP hybrid
model for the various versions of TCP and verify it. Finally,
some implementation issues need to be resolved (e.g., figure
out ways of determining the inflow rates).
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