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Abstract— This article addresses the distributed parameter
system identification problem encountered in fluorescence en-
hanced optical tomography. Adaptive mesh refinement tech-
niques can increase the efficiency of estimation algorithms
by reducing the computational storage as well as tailoring
the solution strategy to the problem structure. An adaptive
refinement based Galerkin finite element scheme for coupled
photon diffusion equations is implemented with a simply bound
limited memory quasi-Newton algorithm, which is suitable for
large scale nonlinear optimization. The efficacy of the proposed
scheme is demonstrated on two dimensional test cases.

I. INTRODUCTION

The success of human genome project has paved the
way for the complete characterization and quantization of
biological processes at the molecular level. The ability to
molecularly target therapeutic agents to specific disease
markers (such as Herceptin receptors in breast cancer [1]),
has spawned an urgent need for a clinical, diagnostic imaging
technique for selection of appropriate molecular therapies.
Fluorescence enhanced optical tomography is a novel func-
tional imaging modality which is well suited for molecular
imaging of targets in nanomolar tissue concentrations [2].
The tomography problem itself involves identification of a
distributed parameter involving the recovery of the interior
optical property map from the knowledge of the source
distribution and a sampling of the boundary measurements,
that satisfies a coupled system of elliptic partial differential
equations. This is an ill-posed inverse problem. Finite ele-
ment simulations of light transport in the tissue constitute
the bulk of computational requirements for the parameter
estimation algorithms. A fine discretization improves the
quality of the simulation but at the same time increases
the ill-posed ness of the inverse problem by increasing the
number of unknown parameters to be estimated. In this
article we propose a novel algorithm which couples adaptive
finite element meshing schemes with large scale non-linear
optimization algorithms for computationally efficient and
stable solution of the fluorescence tomography problem.

II. MATHEMATICAL MODEL FOR LIGHT TRANSPORT IN
TISSUE

In fluorescence enhanced frequency domain optical to-
mography a sinusoidally modulated Near Infrared laser light

source is applied to the boundary of the domain. The
light propagates diffusively throughout the domain and upon
encountering a fluorescently tagged target is absorbed and
produces fluorescent light. The modulated fluorescence light
is detected at the boundary of the domain (Figure-1). The
amplitude and phase of fluorescent wave can be predicted
by the coupled diffusion equations [3].
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where Φ is the complex photon fluence of the excitation
or emission radiation. Φ = Iexp(−iϕ). I is the amplitude
(photons/cm2s) and ϕ is the phase shift relative to incident
excitation light; ’x’ stands for NIR excitation and ’m’ for
fluorescent emission; Dx,m (cm) is the optical diffusion
coefficient at excitation and emission wavelength; c is the
velocity of light in the media; µax,mi (cm−1) is the absorp-
tion owing to natural chromophores; µax,mf (cm−1) is the
absorption due to fluorophores; ω is the angular modulation
frequency(rad/s); φ is the quantum efficiency of fluores-
cent emission and τ is the lifetime(ns) of the fluorophores.
Equations (1) and (2) are solved with the Robin boundary
conditions:
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Where n denotes the outward vector normal to the surface.
In the fluorescence tomography problem considered in this
contribution all the parameters except µaxf are considered to
be known. The distribution of µaxf over the entire domain is
identified from the boundary emission fluence measurements.

III. INVERSE PROBLEM

In the fluorescence tomography problem considered in this
contribution all the parameters except µaxf are considered
to be known. The image reconstruction problem involves



Fig. 1. Figure-1

identification of µaxf distribution over the entire domain
from the boundary emission fluence measurements. This
inverse problem is formulated as a simply bound constrained
minimization problem:
min E(x) ∀ x s.t lb ≤ x ≤ ub
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Here x is the unknown parameter to be estimated which is
in our case. The term z denotes the experimentally measured
boundary fluorescence fluence distribution and A denotes
the elliptic operator defined by equations (1) and (2) which
maps the optical property distribution onto the boundary
fluorescence fluence distribution. The terms lb and ub denote
the lower and upper bounds on x which are assumed known.
In practice a finite number of boundary measurements are
made for each source position. The error functional can then
be written as:
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Here ’ns’ denotes the number of excitation sources and
’nd’ denotes the number of boundary measurements made for
each source. Before the minimization can be carried out, the
parameter distribution and the state equations described by
the system of equations (1) need to be discretized. Galerkin
finite element scheme is employed for this purpose [3]. We
propose a novel scheme with separate finite element meshes
for the parameter and the state equation solver. Both the
meshes are adaptively refined to ensure optimality of the
state equation solution and control of resolution in image
reconstruction process while at the same time minimizing
the computational effort.

IV. ADAPTIVE FINITE ELEMENT MESH REFINEMENTS
FOR INVERSE PROBLEM

A. State Equation Discretization

The minimization routine iteratively updates the interior
µaxf map. Determination of these updates requires repeated
solution of the coupled diffusion equations (1) and (2). We
have employed the Galerkin finite element method. The

problem domain is subdivided into triangular finite elements.
A finer mesh ensures more accurate solution, however mesh
needs to fine only where the error in solution is larger
but the exact solution is unknown. This creates a need for
the generation of a posteriori error estimates which identify
the triangles to be refined once a trial solution has been
computed on a coarse mesh. Solution process is started
with a coarse mesh and the successive meshes are generated
according to the a posteriori error estimator. To develop
the error estimates for coupled diffusion equations we have
followed the procedure developed by Kelly [4] and Salazar-
Palma [5]. Kelly’s error estimator is a residual based energy
norm estimator which essentially refines the mesh where the
gradient of the solution shows rapid variation. The error
for each triangular element is calculated by the following
equation:
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Here rs and red are the surface and lumped edge residuals
of the intra-element and inter-element photon fluence flux
densities. αe and βe are weighing factors depending upon the
triangle dimensions. The global error for the finite element
mesh is determined by summing the local error for all the
elements:
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If global error is greater than a predefined threshold the
mesh is refined then the mesh is refined wherever the local
error is greater than 50% of the maximum error, that is if
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The triangles which were marked to refined were subdivided
into four triangles. To maintain the continuity of the mesh
neighboring triangles are also refined to some degree.

V. PARAMETER DISCRETIZATION

The unknown parameter x is also discretized on a separate
triangular mesh which is coarser than the state equation
mesh to ensure that the inverse problem is well posed.
The parameter mesh is adapted when the error function has



converged on the coarser mesh. This refinement is driven by
the jump in the reconstructed unknown parameter. In effect
this refines the mesh at the boundaries of the fluorescent
heterogeneity embedded in the domain and thus improves
the resolution of the reconstructed image only where needed.
The refinement criteria we have used is inspired by the work
of Molinari et al [6] in electrical impedance tomography. The
elemental error estimate for the parameter mesh estimates the
smoothness of the parameter distribution. It is given by:
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Where lij is the length of the edge separating element i and
element j. xi is the value of the parameter in the triangle i.
The criterion described in equation (8) is used to determine
the triangles to be refined.

VI. INVERSION ALGORITHM

We have employed the limited memory BFGS method with
simply bound constraints [7] to carry out the minimization
of the error functional. Limited memory BFGS method is
a quasi-Newton optimization method which approximates
the second derivative of the error function by storing the
gradients of error function at previous five iterates. This
results in a robust and memory efficient algorithm. The quasi-
Newton update for the µaxf map is given by

µk+1

axf = µk
axf − αk(Hk)−1gk

Here gk is the gradient of the error function evaluated at kth
iterate. The gradients of the error functional are constructed
by an ad joint differentiation scheme [3] employing the
finite element discretization of the state equations; Hk is the
Hessian matrix of the error function at the current iterate. It
is approximated by the following expression:

Hk+1 = (I − ρskyT
k )Hk(I − ρyksT

k ) + ρsksT
k

Where sk = µk+1

axf − µk
axf

yk = gk+1 − gk

The number of vectors k stored can be varied according
to the dimensions of the problem. We have gotten optimal
results with k = 5. The term αk is the step length which
is determined by the line search procedure of More and
Thuente [8]. We have used the information about lower and
upper bounds of µaxf in determining the update direction.
This helps in minimizing computational costs and ensuring
feasible solutions. When the error function converges on a
given mesh, the meshes for the state and parameter variables
are refined. This process is continued till there is no further
decrease in error function.

VII. IMPLEMENTATION AND RESULTS

The inversion process is outlined above was tested with
synthetic measurement data generated on a two dimensional
domain. The domain used is an ellipse with a fluorescent

heterogeneity embedded in the middle (Figure-2).
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Fig. 2. Domain used for generating synthetic data

The optical properties are fixed to have a fluorescence
absorption contrast of 100 : 1 in the embedded heterogeneity
with respect to the background. Six sources and twenty six
detectors for each source are used. To generate the boundary
fluorescence fluence measurements the coupled diffusion
equations were solved on a very fine finite element mesh with
2257 nodes and 4384 triangles. The reconstruction algorithm
started with coarse meshes (154 nodes) for the state and the
unknown parameter (fluorescence absorption coefficient) and
the meshes were adaptively refined during the iterations of
the limited memory BFGS method. The final solution was
obtained in 250 iterations. The final state mesh contained 751
nodes and the parameter mesh contained 401 nodes.Figure-3
shows the reconstructed image.

A substantial accuracy was attained in the state equation
solution as the global solution error was matched with a
2257 node mesh with only 751 nodes.In the parameter mesh,
maintaining a separate adaptable discretization helped in
keeping the number of unknowns to 401 while still providing
a finer resolution at the boundary of the heterogeneity.

The efficiency achieved by adaptive finite element schemes
is demonstrated in figure-4 which compares the decrease in
global error (7) attained by adaptive mesh refinement with
that attained by uniform global refinement.

To reduce the global error to a level equivalent to global
refinement, adaptive refinement requires an order of mag-
nitude less number of nodes. This results in a two or-
der of magnitude saving in the computational cost of the
algorithm.Figure-5 shows the evolution of the state and
parameter meshes. MATLAB’s PDE Toolbox was used to
generate and adaptively refine the finite element meshes for
these contributions.
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Fig. 5. Global error decrease with adaptive and uniform refinement

VIII. CONCLUSIONS AND FUTURE WORK

We have demonstrated a novel approach to handle large
dimensional ill-posed system identification problems for dis-
tributed parameter systems with adaptive finite elements. The
approach can be readily transformed for handling three di-
mensional systems provided sophisticated tools for handling
three dimensional meshes are available. Currently work is
underway on applying these techniques for three dimensional
problems and on working with actual experimental data
obtained in the photon migration laboratories.
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Fig. 3. Self Adaptive Mesh evolution for State and Parameter Discretization
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