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Abstract—We propose a measure to quantify the relative modes of these equations in, for example, Poiseuille flow have
importance of unstable and non-normal modes in super- very slow growth rates, it is relevant to investigate whether
critical channel flows. The effect of non-normal modes dominant supercritical flow structures on finite time intervals
is quantified by measuring the response of the flow to correspond to the structures generated by these exponentially
body force excitations. In the supercritical regime, unstable growing modes or by something else. We illustrate how input-
modes in channel flows grow relatively slowly, and we output system norms can be computed for supercritical fluid
show that when compared over long but finite times, flows and show that even a small amount of noise in these
non-normal modes dominate the dynamics by orders of flows yields completely different flow patterns from the ones
magnitude. Our analysis method is based on computing so- corresponding to the exponentially growing system modes
called exponentially discounted input-output system gains. when finite time phenomena are considered. In particular, our
It is well known that non-normal modes in the form results underscore the importance of the streamwise elongated
of elongated streamwise structures prevail over Tollmien- flow structures (that is, streamwise vortices and streaks) not
Schlichting (TS) modes in subcritical channel flows. Our only in the subcritical channel flows, but also in the channel
method of analysis shows that effectively, this is also the flows taking place in the supercritical regimes.

situation in the supercritical regime. Our presentation is organized as follows: in section II,
Index Terms— Supercritical Channel Flows; Non- we briefly describe the externally excited Linearized Navier-
normal Modes; Input-output System Gains. Stokes (LNS) equations. 1§ Ill, we give a background
material on the available tools for the input-output analysis
|. INTRODUCTION of the LNS equations in channel flows. #nlll-A and § IlI-

B, we define the notions of finite horizon and exponentially

It has become clear from recent work (see the recemfiscounted system norms, respectively§liv, we study the
monograph [1], and references therein for extensive reviewhput-output gains in subcritical Poiseuille flow witR =
that the so-called non-normal modes in the form of elongateg7(0, and the exponentially discounted input-output gains in
streamwise structures dominate TS waves in subcritical chagypercritical Poiseuille flow withR = 10000. We end our
nel flows. This can be established by a variety of methodgresentation with some concluding remarks§ii.
that quantify the energy of flow perturbations rather than
simply their qsympt_o_tic behavior as is done in t_raditional linear II. DYNAMICAL DESCRIPTION OF FLOW
hydrodyne}mm stability [2]. For example, qlesplte the fact that FLUCTUATIONS
the equations represent a stable evolution (for e.g. Hagen- ) ] ) )
Poiseuille and Couette flows, or Poiseuille flow for Reynolds We consider incompressible externally excited LNS equa-
numbers below 5772), when measured in terms of the pseud#ns in channel flow geometry shown in Figure 1. Using
spectrum (which quantifies the possibility of instability whenincompressibility condition pressure can be eliminated from
perturbations in the dynamical equations are present) the sie LNS which results in the so-called ‘wall-normal velocity-
called margin of stability is very small, and decreases wittyorticity’ formulation of these equations [1]. After application
Reynolds number [3]-[7]. Another method of analysis involve$f Fourier Fransfprm in the _translatlon invariant (stream\_/wse
the construction of initial flow configurations where the energyand spanwise) directions this representation, together with an
of the subsequent subcritical flow experiences large transieffiuation for the velocity field components, can be expressed
growth followed by a very slow eventual decay [8]-[10].as [14]-[16]
Yet a third method of analysis involves the introduction of
body force fields as external excitations, which are arguably 0 (ko y, k=, ) [Alks, ke )t (ka, k2, )] (y) +
present in all physical flow problems. One then studies the [B(ko, k2)d(ke, k=, 1)](y), 1)
so-called ‘input-output resonances’ of the resulting equations, GO(kz,y, k= t) = [Clkz, k)Y (kz, k2, )] (y)
and discovers that they occur at very different spatio-temporal i .
frequencies than the poorly damped modes of the system [11)therek. and k. represent the streamwise and the spanwise
[15]. These poorly damped modes represent the TS Wavéggve-numbers, whereas the vector valued fialgsd, and

I

. . T
while the input-output resonances are related to the streamwige are respectively defined by == [ v w, |7, d =
vortices and streaks, which are ubiquitous in transitioning sheér dy dy d. }T, and ¢ := [ U vow ]T. Note that
flows and fully turbulent boundary layers. we use the same symbol to denote a field and its Fourier

All of the above analysis methods discussed are applicabteansform. The reason for writing the equations in the above
only to subcritical (i.e., linearly stable) flows. In this paper, weform is to regard the vector field> as the ‘state’ of the
show that at least the input-output method can be generalizegistem (from which any other field can be computed at a
to supercritical flows by considering either finite time evolutiongiven point in time),d as an input, an@ as an output. This
or by measuring the size of perturbations with appropriatés the so-calledtate-spacdorm of driven dynamical systems
exponential discounts on their energies. Since the unstabt®@mmon in the Dynamics and Controls literature [17]. State of
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Y é; where e** denotes the symbol for the operator semigroup
1 — ——+ &w generated by [17]. Clearly, (3) represents an inverse tempo-
< ———ua U ral Fourier transform of (2). Both these responses represent
z > operators that map input fields into the appropriate output
-1 fields.

The frequency response of a system with a stable generator
A has two interesting physical interpretations:
« it describes how the system responds to persistent (i.e.,
applied since = — co) harmonic input signals,
« it describes the steady-state response to harmonic input

) ) ) signals applied over the time inten@l< ¢t < oo.
the system is expressed in terms of the wall-normal Ve|OCItK|ame|y if the input is ‘harmonic’ inz, z, and ¢, ie.

v and vorticity w, fields, the streamwise and the spanwised(m Y, 2,t) = d(y)ei(kww +hez 4@ \ith d(y) being some

velocity components are denoted byand w, whereasds, spatial distribution in the wall-normal direction, then the output

dy, and d. represent components of the forcing fieldin "\« 1o onic in these directions of the same frequencies
x, y, and z directions, respectively. We remark that, 5,  2lso harmonic in these drections of !
and(C represent one-dimensional operators in the wall—normaq am ° h 7

[H(kafv kz7 (;J)d] (y)el(krﬂc + kyz + ot)

direction which are, for a nominal velocity profile of the form ¢(z, y, 2, t)
1
/ [(H (ks k2, @)] (y,m)d(n) dn x  (4)

Fig. 1. Three dimensional Poiseuille flow.

[ U@) 0 0], given by

A 0 1
A= { Az Az } , Bi= [B. By B.], eilkaa + bz + 1)
A1 = — ik ATTUA + ik, ATTU" + lA—lAQ, where the amplitude and phase gain is precisely determined
1 R by H(k:,k.,@): the value of the frequency response at
Ago = —ik,U + =A, the input frequencieqk.,k.,o). With a slight abuse of
R notation we use the same notation in (4) for the frequency
Ao = — kU, response operatdk((k,, k.,@) and its kernel representation
B [ —ik.,AT10, } B { — (k2 + EHA? [H(Kz, k=, @)] (y,m). The time interval on which a harmonic
r o ik, v Py T 0 > input is applied determines whether the output of a stable
roo. 1 system is precisely given by (4) or whether it asymptotically
B, = | KR T0y } , converges to it.
L —ike On the other hand, the terminology for the spatio-temporal
[ C. 1 ikz0y  —ik. impulse response is due the fact that the kernel representation
C:= | C | := o E2+Ek2 0 , [H(kz, k=, 1)] (y,y0) Of operatorH(k., k,t) represents the
I Cuw %+ Kz k.9, ks solution of system (1) to a spatio-temporal impulsive input

function of the formd(y — yo, ). The response to any other

wherei is the imaginary unit,R is the Reynolds number, forcing field d(k.,y, k.,t) is then obtained as the superpo-
U' := dU(y)/dy, and A := 8,, — k7 — k2. The boundary sition of a spatially and temporally shifted family of impulse
conditions orv andw, are derived from the original no-slip responses
boundary conditions and can be written a&k,, +1, k.,t) =
Oyvo(ka, £1, ke 1) = wylke 1 kert) = 0, kb € Pkntihet) =
R, V ¢ > 0. The initial conditions on these fields are assumed o
to be identically equal to zero, that is(k.,y,k.,0) = /_1/0 [H(ka, key t = 1) (1) Ak, 1, k=, 7) d7 dip.
wy(kz,y,k=,0) =0, Vi, k: € R, Vy € [—1, 1]. (5)

In § Ill, we give a background material on the available Since’X is a function of three independent variables there
tools for the input-output analysis of the LNS equations ins a variety of different ways to visualize system properties.

channel flows, and introduce the notions of finite horizon anéror example, one can study the maximal singular values of the
exponentially discounted system norms. operatorH

[Il. | NPUT-OUTPUT SYSTEM GAINS Oomax (H(kz, k2, w)) = Amax{H (ka, bz, w)H(ka, bz, w)},
There are two main tools in the input-output analysis ofr compute the Hilbert—-Schmidt norm &t
linear spatially-distributed dynamical systems. These are the ) .
spatio-temporal frequency and impulse responses respectivelif (ke k=, w)|[s = trace(H" (kz, kz, w)H(kz, k2, w)),
and_they will be precisely defined _in the_sequel. Given Rvhere H* represents adjoint of operatdf. For any triple
partlcular frequency response, the.re is a unique correspondu@gﬂm ks, ), omax(H(ks, k2, w)) determines the largest ‘am-
impulse response that can be derived from it. . plification’ from d to ¢, with maximization being performed
.The spatio-temporal frequency responsé system (1) is over wall-normal shapes. On the other hand, the Hilbert—
given by Schmidt norm of H quantifies the Power Spectral Density
H(ke, kzyw) = Clha, kz)(iwl — A(ky, k2)) " Bk, k=), of the output field in the presence of harmonic @nand
) z) white, unit variance, temporally stationary stochasticyin
where w denotes the temporal frequency. The frequencnd?) external excitations. Furthermore, suprema or averages
response is obtained directly from the Fourier symbols ofVer different frequencies can be determined as well, e.g. by
the operators defining the state-space realization. Spiagio-  computing the temporal-supremum of the maximal singular
temporal impulse responss system (1) is determined by ~ Values of the operatdt{

Mk kort) = Clha, ko) =) Bk k), (3) [1#lloc] (ks ks) = 5P Omax(H(ke, kz ), (6)
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or the temporal-average of the Hilbert—-Schmidt norm of thavith the initial conditionsXy (k., k-) = 0 and Yo (kz, k=) =
operatorH 0, for every (k., k.), respectively. For stable systems, these
two operators can be determined based on [11]

1 o0
2 (ko k2) = — ka, k2, w)||%s d
P} (i) = 5 [ it beilfs a v = o s i
:/O [ H (ks ks 6)| |2 . Y= oy Aty

Notation used in (6) and (7) indicates that the corresponding It is well known that non-normal modes in the form
quantities represent, for any given pait. (k.), Hoo andH2—  of elongated streamwise structures dominate TS modes in
norms of system (1) [18], respectively. We remark that botisubcritical channel flows. Among other tools, the analysis
these norms have interesting physical interpretations. Namelyf the previously defined input-output system gains can be
for any given pair(k., k.), the Ho—norm represents the used to establish this [11]-[15]. It is a standard fact from
worst case amplification of purely harmonic (in and z)  control theory [18], [19] that botH., and H, norms are
deterministic (iny andt) disturbances. This worst case input-finite for stable causal dynamical systems. However, for flows
output gain is obtained by maximizing over input temporabccurring in supercritical regimes the quantities defined by (6)
frequencies and wall-normal shapes. This quantity also hagd (7) can become infinitely large. Because of that, we want to
an interesting time domain interpretation. It is a standard faeievelop a computationally efficient procedure for studying the
from linear systems theory [18] that thié..—norm represents finite-horizon input-output gains for system (1) with unstable

the inducec2—norm in the temporal domain dynamics. In§ llI-A, we define these gains and argue that
[1bll2] (ke k) their analysis represents a non-trivial mathematical exercise.
WH|oo] (ke k) = sup o2 ey 22) In § 1I-B, we show how these gains can be approximated by
(dll2) (ke ok < 1 [1dll2](Fa, k) introducing the ‘exponential discounting’ in signals appearing
where in (1)-
[1d]13])(kz, k2) = / [1d]13](kx, k=, t) dt = A. Finite horizon input-output gains
ol 0 In this subsection we define the finite horizon input-output
/ / d*(ks,y, k2, t)d(ks, y, k2, t) dy dt. system gains for flows taking place in supercritical regimes.
0 —1

In particular, we want to analyze the induced finite horizon
On the other hand, thé{s—norm has a stochastic inter- 2-norm. The definition of this norm in the temporal domain
pretation: it quantifies the variance (energy) amplification ofS given by
harmonic (inz and z) stochastic (iny andt) disturbances at

any given pair(k, k) [11], [13]. This quantity is also referred  [||Hr || o] (ko) k2) = sup M’
to as theensemble average energy densifythe statistically g lial(ka k2 < 1 [1drll2](Ke, k=)
steady-state [11]. Combining the definitions of the impulse (10)

response and the Hilbert—-Schmidt norm, fiie—norm can be Where
determined using either of the following two expressions T
e e k) = [ I3k beyt) dt =
0

[IHIZ] (Ko, k=) = trace{C(ka, kz)Xoo (ka, k=)C* (Ka, k=) }
T 1

= trace{[)’*(km,kz):)}oo(km,kz)[j'(km,kz)}, / / d*(klwyakzat)d(klayvkzvt) dy dt
0 —1

where, for stable systems, operator¥.(k.,k.) and Clearly, the measure of velocity perturbations defined by (10)
Yoo (ks, k) can be respectively obtained by solving the operfepresents a finite horizon equivalent of the previously defined

ator algebraic Lyapunov equations of the form ‘Ho—norm. This quantity assumes finite values even in super-
. . critical flows, which is an appealing property. However, the
A + X A™ = BB, computation of (10) is a non-trivial mathematical exercise (see,
A Vo + VoA = —C*C. for example, [20]).

) ) ) We can also study{|H||2] (k=, k-, t) in supercritical flows.
The Hilbert-Schmidt norm of the impulse response operatag is noteworthy that for system (1) with unstable dynamigs
can be also integrated over the finite time interval to yield: and)), cannot be computed using (9) since béth, andY..
¢ diverge in this case. Notwithstandinf}*||2] (kz, k-,t) can
IH)3] (Ko, ke, t) = / | H (ko k=, 7)||Hs dT. be determined by performing the direct numerical integration
0 of the finite dimensional equivalent of either of the two
The resulting measure of velocity perturbations can be detegguations in (8). This would typically require solving a very
mined as large number of the Ordinary Differential Equations (ODES)
9 . which is computationally inefficient. Because of thatgilil-
IR3] (ko ks, t) = trace{C(ks, k=) Xi (ke k2)C” (ke k) } B, we show how these finite horizon measures of velocity
trace{B* (kz, k=) Vi (kz, k-)B(ks, k.)}, Perturbations can be approximately determined by considering
the ‘exponentially discounted’ versions of signals in (1).
where operators; (k,, k) andY: (k., k.) represent solutions

of the following two differential Lyapunov equations B. Exponentially discounted input-output gains
dxe * * In this subsection we consider supercritical channel flows
dt AX + kA 4+ BB ®) and define the input-output gains for systems whose inputs and
d outputs represent ‘exponentially discounted’ versions of their
Yy . . ‘ ially di d’ i f thei
o - AV + VA + C'C, LNS analogues, that ifl, = e *'d, ¢, = e o,
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with @ > 0. Transformation of this form renders the LNS which implies that, for a chosem > a, [||H||2] (t) = ||Hal|2

equations into at
Opa(kasy ke 1) = [Aa(ks, ko)t (ko ke 0] () + L
[B(ka k) da(ke, k=, £)] (4), Equivalently, for a givert > 0, these two quantities are equal
¢a (kz7 Y, kz? t) = [c(kz7 kz)"nba(kzv kz? t)] (y)? If « satiSfies
(11) 2at
wheresy, = e “'1) is the exponentially weighted state a = #‘
of the LNS equations. Input and output operatd#sand € -1

C have the same meaning as in (1), whereas the generBherefore, both the location of the unstable pole and the
tor of (11) is obtained by shifting the generator of (1) bydesired time interval determine the value of parametdor
the amount proportional to the exponential discounting, i.ewhich the Hsy—norm of system (13) determines the ‘finite

Aok, k) = A(ks,k.) — ol. The frequency domain horizonH.—norm’ of system (12). Furthermore, the closer
description of (11) is clearly given by, (ks,y,k.,w) = toa and the smallen, the larger time at whicli| H||2] (¢) =
[Ha ko, by w)da (b, by )] () = [COke k) (G + )T = [ Hall. , N )
Alke, k2)) " B(ks, k2)da (ks, k2, w)](y). If parametera is In § IV, we study the input-output gains in subcritical

chosen so thate > sup, . Amax{A(kz,k.)}, than Poiseuille flow withR = 5700. We also compare the relative
Ao (kz, k) represents an exponentially stable operator for anymportance of non-normal and unstable modes in supercritical
given pair of wave-number@:., k.). Therefore, the net effect Poiseuille flow with R = 10000 by analyzing the exponen-
of exponential discounting in this case is stabilization of theially discountedH., and . system norms.

LNS equations which implies that thé., and+.—norms of

system (11) can be computed using the procedure outlined in V- INPUT-OUTPUT GAINS IN POISEUILLE FLOW

§ Il. In particular, the following interpretation can be given WITH R = 5700 AND R = 10000
to the Hoo—norm of (11) in the time domain In this section, we study the input-output gains in subcrit-
b llz] (o, k2) ic_al Poiseui!le flow with R = 5700, and _the exppnerjtially
Halloo] (kzykz) = sup me == =2 discounted input-output gains in supercritical Poiseuille flow
lldaliz)(kaks) < 1 [1dall2](key k=)™ \ith R — 10000 and o = 0.0038. This particular choice
where of parametern is made because the LNS equations have an
unstable mode with a real part approximately equdl.t®)37
(ldall3) (ks k) = at R = 10000, k, = 1, andk, = 0 [21]. We compare the
o 1 subcritical and supercritical results and show that they exhibit
/ / dl (ke,y, ke t)da (ke y, koo t) dy dt = many qualitative similarities.
0o J-a All results of this section are obtained numerically us-
—2at gx _ ing the scheme described in [16], with 30and w, basis
/0 /,16 d*(ka,y, key ) d(ka, y, bz, £) dy dt = functions. TheH>—norm-like quantities are determined based

on solutions of the corresponding algebraic Lyapunov equa-
tions, with 50 x 90 grid points in the wave-number space
(ks+, k). These points are chosen in the logarithmic scale
On the other hand, for a given pajk.,k-) andt > 0,  with {kpmin := 107% Kkemas := 3.02} and {kzmin =

the ‘finite horizon He—norm’ of system (1) at timg can 1072, Kzmaz = 15.84}. On the other hand, th&(..—norm—

be determined by thé{,—norm of system (11), provided |ike quantities are calculated wittD1 x 90 x 89 grid points
that the design parameter is appropriately selected. This in the (k,, k.,w) space. The frequency vectors in this case
is because||H||2] (kz, k-, t) represents a monotonically in- gssume the formsk, := [ “ke; 0 kyy ] ky = kyy,
creasing function of time which is equal to zerotat= 0, znde = [ w1 0 wi |, whereky, ko, andw, are
and [||Ha 2] (k. k=) is @ finite number for any given pair the vectors with50, 90, and44 logarithmically spaced points
(kz, k= ). Unfortunately, in general, it is very difficult to estab- petween {kumin = 107%, komas = 3.02}, {kzmin =

lish the exact correspondence betwegH(||2] (ko k=, t) and  19-2 k.= 1585}, and {wmin := 1072, Wmae = 2},
[I*all2] (kz, k2). In other words, it is very hard to determine respectively. All plots are given in the log-log-log scale.

pair (t,) at which [|[Hlz] (kz, k=, t) = [[Hall2] (ks k).

However, some intuition can be gained by considering thé. Input-output gains in Poiseuille flow witR = 5700

e 2M||d||3] (x, k=, t) dt.

following scalar example Figure 2 shows thé{., andH.—norms of the operatck
. as functions ofk, andk., in subcritical Poiseuille flow with
¥ = ap +d . a>0, (12) R = 5700. Despite the fact that the equations are about to
¢ = ¥ become unstable if the Reynolds number is slightly increased

o ) i ) (critical value of Reynolds number is approximately equal to
with its ‘exponentially discounted’ equivalent of the form 5772, [21]), the least-stable modes of generatérare not
. most amplified by system’s dynamics. Rather, the largest input-
Yo = (@ = a)ga + da , a>a. (13) output gains are attained for small streamwise wave-numbers
ba = PYa at certain non-zer®(1) value ofk.. This implies that the most
. i , amplified structures have very large streamwise elongation
The ‘finite horizon>—norm’ of system (12) and th>—norm g spanwise periodicity determined by the valuekofat
of system (13) are respectively given by which maximum happens to be. We remark that the peaks

) 1, o corresponding to the least-stable modes have much bigger
IHIE] 1) = 25 =D, values here than, for example, Bt= 2000 [14], [15]. These
2 1 peaks would go to infinity if the Reynolds number is increased
[Hallz = 2a(c — a)’ above its critical value. However, this is an artifact of the
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definition of theH.. and Hz—norms rather than something LNS equations from an input-output point of view in the pres-
that would play a dominant role in the initial stages ofence of ‘exponentially discounted’ input and output signals.
laminar-turbulent transition in flows that have some amounErom a physical perspective this type of analysis amounts
of background disturbances in them. This is further illustrateto accounting for the finite time phenomena rather than the
in the next subsection where we analyze the exponentiallgsymptotic phenomena of infinite time limits. In particular, our
discounted input-output gains in supercritical Poiseuille flowresults underscore the importance of the streamwise elongated
with R = 10000. flow structures (that is, streamwise vortices and streaks) not
. . . . . only in the subcritical channel flows, but also in the channel
B. Exponentially discounted input-output gains  iNfoys taking place in the supercritical regimes.
Poiseuille flow with’z = 10000 It is quite compelling to argue that long-but-finite time
The left plot in Figure 3 illustrates the dependence of the@nalysis is relevant when considering linearized models. These
exponentially discounte® ..—norm on both streamwise and models are not expected to be valid for infinite time in any
spanwise wave-numbers. The global maximum of the inpuase, as when perturbations grow, the linearized dynamics are
output gain visualized in this way occurs &t = 0 for altered. In the supercritical channel flow case, we see that the
certain non-zer@(1) spanwise wave-number. It is important main features of the model (i.e., the modes contributing the
to remark that these dominant input-output resonances doost to perturbation energy) are very dependent on whether
not correspond to the exponentially growing modes of thave take an infinite time limit or a large-but-finite time limit.
generatorA. Rather, they are a product of the coupling fromThe latter is arguably the more reasonable of the two, and
the wall-normal velocity to the wall-normal vorticity, which when viewed this way, we have shown that aside from the
depends upon shedid’ and spanwise frequenck. [13]. energy of the perturbation, the spectral content of subcritical
This coupling is physically generated by the vortex tiltingand supercritical channel flows is qualitatively very similar.
mechanism [22], [23]. Numerical experiments of [24] showed
that without the coupling frona to w, the near-wall turbulence
decays in a fully turbulent channel flow. The two-dimensional
unstable modes of the operatdrcreate a local peak & = 0 [1]
and k, ~ 1. The corresponding amplification is significantly
lower than the one achieved by dominant streamwise constarigl
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