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Abstract— We propose a measure to quantify the relative
importance of unstable and non-normal modes in super-
critical channel flows. The effect of non-normal modes
is quantified by measuring the response of the flow to
body force excitations. In the supercritical regime, unstable
modes in channel flows grow relatively slowly, and we
show that when compared over long but finite times,
non-normal modes dominate the dynamics by orders of
magnitude. Our analysis method is based on computing so-
called exponentially discounted input-output system gains.
It is well known that non-normal modes in the form
of elongated streamwise structures prevail over Tollmien-
Schlichting (TS) modes in subcritical channel flows. Our
method of analysis shows that effectively, this is also the
situation in the supercritical regime.

Index Terms— Supercritical Channel Flows; Non-
normal Modes; Input-output System Gains.

I. I NTRODUCTION

It has become clear from recent work (see the recent
monograph [1], and references therein for extensive review)
that the so-called non-normal modes in the form of elongated
streamwise structures dominate TS waves in subcritical chan-
nel flows. This can be established by a variety of methods
that quantify the energy of flow perturbations rather than
simply their asymptotic behavior as is done in traditional linear
hydrodynamic stability [2]. For example, despite the fact that
the equations represent a stable evolution (for e.g. Hagen-
Poiseuille and Couette flows, or Poiseuille flow for Reynolds
numbers below 5772), when measured in terms of the pseudo-
spectrum (which quantifies the possibility of instability when
perturbations in the dynamical equations are present) the so-
called margin of stability is very small, and decreases with
Reynolds number [3]–[7]. Another method of analysis involves
the construction of initial flow configurations where the energy
of the subsequent subcritical flow experiences large transient
growth followed by a very slow eventual decay [8]–[10].
Yet a third method of analysis involves the introduction of
body force fields as external excitations, which are arguably
present in all physical flow problems. One then studies the
so-called ‘input-output resonances’ of the resulting equations,
and discovers that they occur at very different spatio-temporal
frequencies than the poorly damped modes of the system [11]–
[15]. These poorly damped modes represent the TS waves,
while the input-output resonances are related to the streamwise
vortices and streaks, which are ubiquitous in transitioning shear
flows and fully turbulent boundary layers.

All of the above analysis methods discussed are applicable
only to subcritical (i.e., linearly stable) flows. In this paper, we
show that at least the input-output method can be generalized
to supercritical flows by considering either finite time evolution
or by measuring the size of perturbations with appropriate
exponential discounts on their energies. Since the unstable

modes of these equations in, for example, Poiseuille flow have
very slow growth rates, it is relevant to investigate whether
dominant supercritical flow structures on finite time intervals
correspond to the structures generated by these exponentially
growing modes or by something else. We illustrate how input-
output system norms can be computed for supercritical fluid
flows and show that even a small amount of noise in these
flows yields completely different flow patterns from the ones
corresponding to the exponentially growing system modes
when finite time phenomena are considered. In particular, our
results underscore the importance of the streamwise elongated
flow structures (that is, streamwise vortices and streaks) not
only in the subcritical channel flows, but also in the channel
flows taking place in the supercritical regimes.

Our presentation is organized as follows: in section II,
we briefly describe the externally excited Linearized Navier-
Stokes (LNS) equations. In§ III, we give a background
material on the available tools for the input-output analysis
of the LNS equations in channel flows. In§ III-A and § III-
B, we define the notions of finite horizon and exponentially
discounted system norms, respectively. In§ IV, we study the
input-output gains in subcritical Poiseuille flow withR =
5700, and the exponentially discounted input-output gains in
supercritical Poiseuille flow withR = 10000. We end our
presentation with some concluding remarks in§ V.

II. DYNAMICAL DESCRIPTION OF FLOW

FLUCTUATIONS

We consider incompressible externally excited LNS equa-
tions in channel flow geometry shown in Figure 1. Using
incompressibility condition pressure can be eliminated from
the LNS which results in the so-called ‘wall-normal velocity-
vorticity’ formulation of these equations [1]. After application
of Fourier transform in the translation invariant (streamwise
and spanwise) directions this representation, together with an
equation for the velocity field components, can be expressed
as [14]–[16]

∂tψ(kx, y, kz, t) = [A(kx, kz)ψ(kx, kz, t)](y) +

[B(kx, kz)d(kx, kz, t)](y),

φ(kx, y, kz, t) = [C(kx, kz)ψ(kx, kz, t)](y),

(1)

wherekx and kz represent the streamwise and the spanwise
wave-numbers, whereas the vector valued fieldsψ, d, and
φ are respectively defined byψ :=

[
v ωy

]T
, d :=[

dx dy dz

]T
, and φ :=

[
u v w

]T
. Note that

we use the same symbol to denote a field and its Fourier
transform. The reason for writing the equations in the above
form is to regard the vector fieldψ as the ‘state’ of the
system (from which any other field can be computed at a
given point in time),d as an input, andφ as an output. This
is the so-calledstate-spaceform of driven dynamical systems
common in the Dynamics and Controls literature [17]. State of
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Fig. 1. Three dimensional Poiseuille flow.

the system is expressed in terms of the wall-normal velocity
v and vorticity ωy fields, the streamwise and the spanwise
velocity components are denoted byu and w, whereasdx,
dy, and dz represent components of the forcing fieldd in
x, y, and z directions, respectively. We remark thatA, B,
andC represent one-dimensional operators in the wall-normal
direction which are, for a nominal velocity profile of the form[
U(y) 0 0

]T
, given by

A :=

[
A11 0
A21 A22

]
, B :=

[
Bx By Bz

]
,

A11 := − ikx∆−1U∆ + ikx∆−1U ′′ +
1

R
∆−1∆2,

A22 := − ikxU +
1

R
∆,

A21 := − ikzU
′,

Bx :=

[
−ikx∆−1∂y

ikz

]
, By :=

[
−(k2

x + k2
z)∆−1

0

]
,

Bz :=

[
−ikz∆

−1∂y

−ikx

]
,

C :=

 Cu

Cv

Cw

 :=
1

k2
x + k2

z

 ikx∂y −ikz

k2
x + k2

z 0

ikz∂y ikx

 ,
where i is the imaginary unit,R is the Reynolds number,
U ′ := dU(y)/dy, and ∆ := ∂yy − k2

x − k2
z . The boundary

conditions onv andωy are derived from the original no-slip
boundary conditions and can be written as:v(kx,±1, kz, t) =
∂yv(kx,±1, kz, t) = ωy(kx,±1, kz, t) = 0, ∀ kx, kz ∈
R, ∀ t ≥ 0. The initial conditions on these fields are assumed
to be identically equal to zero, that isv(kx, y, kz, 0) =
ωy(kx, y, kz, 0) = 0, ∀ kx, kz ∈ R, ∀ y ∈ [−1, 1].

In § III, we give a background material on the available
tools for the input-output analysis of the LNS equations in
channel flows, and introduce the notions of finite horizon and
exponentially discounted system norms.

III. I NPUT-OUTPUT SYSTEM GAINS

There are two main tools in the input-output analysis of
linear spatially-distributed dynamical systems. These are the
spatio-temporal frequency and impulse responses respectively,
and they will be precisely defined in the sequel. Given a
particular frequency response, there is a unique corresponding
impulse response that can be derived from it.

The spatio-temporal frequency responseof system (1) is
given by

H(kx, kz, ω) = C(kx, kz)(iωI −A(kx, kz))
−1B(kx, kz),

(2)
where ω denotes the temporal frequency. The frequency
response is obtained directly from the Fourier symbols of
the operators defining the state-space realization. Thespatio-
temporal impulse responseof system (1) is determined by

H(kx, kz, t) = C(kx, kz)e
A(kx,kz)tB(kx, kz), (3)

where eAt denotes the symbol for the operator semigroup
generated byA [17]. Clearly, (3) represents an inverse tempo-
ral Fourier transform of (2). Both these responses represent
operators that map input fields into the appropriate output
fields.

The frequency response of a system with a stable generator
A has two interesting physical interpretations:

• it describes how the system responds to persistent (i.e.,
applied sincet = −∞) harmonic input signals,

• it describes the steady-state response to harmonic input
signals applied over the time interval0 ≤ t <∞.

Namely, if the input is ‘harmonic’ inx, z, and t, i.e.
d(x, y, z, t) = d̄(y)ei(k̄xx + k̄zz + ω̄t), with d̄(y) being some
spatial distribution in the wall-normal direction, then the output
is also harmonic in these directions of the same frequencies
but with a modified amplitude and phase

φ(x, y, z, t) =
[
H(k̄x, k̄z, ω̄)d̄

]
(y)ei(k̄xx + k̄zz + ω̄t)

=

∫ 1

−1

[
H(k̄x, k̄z, ω̄)

]
(y, η)d̄(η) dη ×

ei(k̄xx + k̄zz + ω̄t),

(4)

where the amplitude and phase gain is precisely determined
by H(k̄x, k̄z, ω̄): the value of the frequency response at
the input frequencies(k̄x, k̄z, ω̄). With a slight abuse of
notation we use the same notation in (4) for the frequency
response operatorH(k̄x, k̄z, ω̄) and its kernel representation[
H(k̄x, k̄z, ω̄)

]
(y, η). The time interval on which a harmonic

input is applied determines whether the output of a stable
system is precisely given by (4) or whether it asymptotically
converges to it.

On the other hand, the terminology for the spatio-temporal
impulse response is due the fact that the kernel representation
[H(kx, kz, t)] (y, y0) of operatorH(kx, kz, t) represents the
solution of system (1) to a spatio-temporal impulsive input
function of the formδ(y − y0, t). The response to any other
forcing field d(kx, y, kz, t) is then obtained as the superpo-
sition of a spatially and temporally shifted family of impulse
responses

φ(kx, y, kz, t) =∫ 1

−1

∫ ∞

0

[H(kx, kz, t− τ)] (y, η) d(kx, η, kz, τ) dτ dη.

(5)
SinceH is a function of three independent variables there

is a variety of different ways to visualize system properties.
For example, one can study the maximal singular values of the
operatorH

σ2
max(H(kx, kz, ω)) := λmax{H∗(kx, kz, ω)H(kx, kz, ω)},

or compute the Hilbert–Schmidt norm ofH

||H(kx, kz, ω)||2HS := trace(H∗(kx, kz, ω)H(kx, kz, ω)),

whereH∗ represents adjoint of operatorH. For any triple
(kx, kz, ω), σmax(H(kx, kz, ω)) determines the largest ‘am-
plification’ from d to φ, with maximization being performed
over wall-normal shapes. On the other hand, the Hilbert–
Schmidt norm ofH quantifies the Power Spectral Density
of the output field in the presence of harmonic (inx and
z) white, unit variance, temporally stationary stochastic (iny
and t) external excitations. Furthermore, suprema or averages
over different frequencies can be determined as well, e.g. by
computing the temporal-supremum of the maximal singular
values of the operatorH

[‖H‖∞] (kx, kz) := sup
ω

σmax(H(kx, kz, ω)), (6)



or the temporal-average of the Hilbert–Schmidt norm of the
operatorH[

‖H‖22
]
(kx, kz) :=

1

2π

∫ ∞

−∞
||H(kx, kz, ω)||2HS dω

=

∫ ∞

0

||H(kx, kz, t)||2HS dt.
(7)

Notation used in (6) and (7) indicates that the corresponding
quantities represent, for any given pair (kx, kz), H∞ andH2–
norms of system (1) [18], respectively. We remark that both
these norms have interesting physical interpretations. Namely,
for any given pair(kx, kz), the H∞–norm represents the
worst case amplification of purely harmonic (inx and z)
deterministic (iny andt) disturbances. This worst case input-
output gain is obtained by maximizing over input temporal
frequencies and wall-normal shapes. This quantity also has
an interesting time domain interpretation. It is a standard fact
from linear systems theory [18] that theH∞–norm represents
the induced2–norm in the temporal domain

[‖H‖∞] (kx, kz) = sup
[‖d‖2](kx,kz) ≤ 1

[‖φ‖2](kx, kz)

[‖d‖2](kx, kz)
,

where

[‖d‖22](kx, kz) :=

∫ ∞

0

[‖d‖22](kx, kz, t) dt :=∫ ∞

0

∫ 1

−1

d∗(kx, y, kz, t)d(kx, y, kz, t) dy dt.

On the other hand, theH2–norm has a stochastic inter-
pretation: it quantifies the variance (energy) amplification of
harmonic (inx and z) stochastic (iny and t) disturbances at
any given pair(kx, kz) [11], [13]. This quantity is also referred
to as theensemble average energy densityof the statistically
steady-state [11]. Combining the definitions of the impulse
response and the Hilbert–Schmidt norm, theH2–norm can be
determined using either of the following two expressions[
‖H‖22

]
(kx, kz) = trace{C(kx, kz)X∞(kx, kz)C∗(kx, kz)}

= trace{B∗(kx, kz)Y∞(kx, kz)B(kx, kz)},

where, for stable systems, operatorsX∞(kx, kz) and
Y∞(kx, kz) can be respectively obtained by solving the oper-
ator algebraic Lyapunov equations of the form

AX∞ + X∞A∗ = −BB∗,

A∗Y∞ + Y∞A = −C∗C.

The Hilbert-Schmidt norm of the impulse response operator
can be also integrated over the finite time interval to yield:[

‖H‖22
]
(kx, kz, t) :=

∫ t

0

‖H(kx, kz, τ)‖2HS dτ .

The resulting measure of velocity perturbations can be deter-
mined as[
‖H‖22

]
(kx, kz, t) = trace{C(kx, kz)Xt(kx, kz)C∗(kx, kz)}

= trace{B∗(kx, kz)Yt(kx, kz)B(kx, kz)},

where operatorsXt(kx, kz) andYt(kx, kz) represent solutions
of the following two differential Lyapunov equations

dXt

dt
= AXt + XtA∗ + BB∗,

dYt

dt
= A∗Yt + YtA + C∗C,

(8)

with the initial conditionsX0(kx, kz) = 0 andY0(kx, kz) =
0, for every (kx, kz), respectively. For stable systems, these
two operators can be determined based on [11]

Xt = X∞ − eAtX∞eA
∗t,

Yt = Y∞ − eA
∗tY∞eAt.

(9)

It is well known that non-normal modes in the form
of elongated streamwise structures dominate TS modes in
subcritical channel flows. Among other tools, the analysis
of the previously defined input-output system gains can be
used to establish this [11]–[15]. It is a standard fact from
control theory [18], [19] that bothH∞ and H2 norms are
finite for stable causal dynamical systems. However, for flows
occurring in supercritical regimes the quantities defined by (6)
and (7) can become infinitely large. Because of that, we want to
develop a computationally efficient procedure for studying the
finite-horizon input-output gains for system (1) with unstable
dynamics. In§ III-A, we define these gains and argue that
their analysis represents a non-trivial mathematical exercise.
In § III-B, we show how these gains can be approximated by
introducing the ‘exponential discounting’ in signals appearing
in (1).

A. Finite horizon input-output gains

In this subsection we define the finite horizon input-output
system gains for flows taking place in supercritical regimes.
In particular, we want to analyze the induced finite horizon
2–norm. The definition of this norm in the temporal domain
is given by

[‖HT ‖∞] (kx, kz) = sup
[‖dT ‖2](kx,kz) ≤ 1

[‖φT ‖2](kx, kz)

[‖dT ‖2](kx, kz)
,

(10)
where

[‖dT ‖22](kx, kz) :=

∫ T

0

[‖d‖22](kx, kz, t) dt :=∫ T

0

∫ 1

−1

d∗(kx, y, kz, t)d(kx, y, kz, t) dy dt.

Clearly, the measure of velocity perturbations defined by (10)
represents a finite horizon equivalent of the previously defined
H∞–norm. This quantity assumes finite values even in super-
critical flows, which is an appealing property. However, the
computation of (10) is a non-trivial mathematical exercise (see,
for example, [20]).

We can also study[‖H‖2] (kx, kz, t) in supercritical flows.
It is noteworthy that for system (1) with unstable dynamicsXt

andYt cannot be computed using (9) since bothX∞ andY∞
diverge in this case. Notwithstanding,[‖H‖2] (kx, kz, t) can
be determined by performing the direct numerical integration
of the finite dimensional equivalent of either of the two
equations in (8). This would typically require solving a very
large number of the Ordinary Differential Equations (ODEs)
which is computationally inefficient. Because of that, in§ III-
B, we show how these finite horizon measures of velocity
perturbations can be approximately determined by considering
the ‘exponentially discounted’ versions of signals in (1).

B. Exponentially discounted input-output gains

In this subsection we consider supercritical channel flows
and define the input-output gains for systems whose inputs and
outputs represent ‘exponentially discounted’ versions of their
LNS analogues, that isdα := e−αtd, φα := e−αtφ,



with α > 0. Transformation of this form renders the LNS
equations into

∂tψα(kx, y, kz, t) = [Aα(kx, kz)ψα(kx, kz, t)] (y) +

[B(kx, kz)dα(kx, kz, t)] (y),

φα(kx, y, kz, t) = [C(kx, kz)ψα(kx, kz, t)] (y),
(11)

whereψα := e−αtψ is the exponentially weighted state
of the LNS equations. Input and output operatorsB and
C have the same meaning as in (1), whereas the genera-
tor of (11) is obtained by shifting the generator of (1) by
the amount proportional to the exponential discounting, i.e.
Aα(kx, kz) := A(kx, kz) − αI. The frequency domain
description of (11) is clearly given byφα(kx, y, kz, ω) =
[Hα(kx, kz, ω)dα(kx, kz, ω)](y) = [C(kx, kz)((iω + α)I −
A(kx, kz))

−1B(kx, kz)dα(kx, kz, ω)](y). If parameterα is
chosen so thatα > supkx,kz

λmax{A(kx, kz)}, than
Aα(kx, kz) represents an exponentially stable operator for any
given pair of wave-numbers(kx, kz). Therefore, the net effect
of exponential discounting in this case is stabilization of the
LNS equations which implies that theH∞ andH2–norms of
system (11) can be computed using the procedure outlined in
§ III. In particular, the following interpretation can be given
to theH∞–norm of (11) in the time domain

[‖Hα‖∞] (kx, kz) = sup
[‖dα‖2](kx,kz) ≤ 1

[‖φα‖2](kx, kz)

[‖dα‖2](kx, kz)
,

where

[‖dα‖22](kx, kz) :=∫ ∞

0

∫ 1

−1

d∗α(kx, y, kz, t)dα(kx, y, kz, t) dy dt =∫ ∞

0

∫ 1

−1

e−2αtd∗(kx, y, kz, t)d(kx, y, kz, t) dy dt =∫ ∞

0

e−2αt[‖d‖22](kx, kz, t) dt.

On the other hand, for a given pair(kx, kz) and t > 0,
the ‘finite horizonH2–norm’ of system (1) at timet can
be determined by theH2–norm of system (11), provided
that the design parameterα is appropriately selected. This
is because[‖H‖2] (kx, kz, t) represents a monotonically in-
creasing function of time which is equal to zero att = 0,
and [‖Hα‖2] (kx, kz) is a finite number for any given pair
(kx, kz). Unfortunately, in general, it is very difficult to estab-
lish the exact correspondence between[‖H‖2] (kx, kz, t) and
[‖Hα‖2] (kx, kz). In other words, it is very hard to determine
pair (t, α) at which [‖H‖2] (kx, kz, t) = [‖Hα‖2] (kx, kz).
However, some intuition can be gained by considering the
following scalar example

ψ̇ = aψ + d

φ = ψ

}
, a > 0, (12)

with its ‘exponentially discounted’ equivalent of the form

ψ̇α = (a − α)ψα + dα

φα = ψα

}
, α > a. (13)

The ‘finite horizonH2–norm’ of system (12) and theH2–norm
of system (13) are respectively given by[

‖H‖22
]
(t) =

1

2a
(e2at − 1),

‖Hα‖22 =
1

2a(α − a)
,

which implies that, for a chosenα > a, [‖H‖2] (t) = ‖Hα‖2
at

t =
1

2a
ln

α

α − a
.

Equivalently, for a givent > 0, these two quantities are equal
if α satisfies

α =
ae2at

e2at − 1
.

Therefore, both the location of the unstable pole and the
desired time interval determine the value of parameterα for
which the H2–norm of system (13) determines the ‘finite
horizonH2–norm’ of system (12). Furthermore, the closerα
to a and the smallera, the larger time at which[‖H‖2] (t) =
‖Hα‖2.

In § IV, we study the input-output gains in subcritical
Poiseuille flow withR = 5700. We also compare the relative
importance of non-normal and unstable modes in supercritical
Poiseuille flow withR = 10000 by analyzing the exponen-
tially discountedH∞ andH2 system norms.

IV. I NPUT-OUTPUT GAINS IN POISEUILLE FLOW

WITH R = 5700 AND R = 10000
In this section, we study the input-output gains in subcrit-

ical Poiseuille flow withR = 5700, and the exponentially
discounted input-output gains in supercritical Poiseuille flow
with R = 10000 and α := 0.0038. This particular choice
of parameterα is made because the LNS equations have an
unstable mode with a real part approximately equal to0.0037
at R = 10000, kx = 1, and kz = 0 [21]. We compare the
subcritical and supercritical results and show that they exhibit
many qualitative similarities.

All results of this section are obtained numerically us-
ing the scheme described in [16], with 30v and ωy basis
functions. TheH2–norm–like quantities are determined based
on solutions of the corresponding algebraic Lyapunov equa-
tions, with 50 × 90 grid points in the wave-number space
(kx, kz). These points are chosen in the logarithmic scale
with {kxmin := 10−4, kxmax := 3.02} and {kzmin :=
10−2, kzmax := 15.84}. On the other hand, theH∞–norm–
like quantities are calculated with101 × 90 × 89 grid points
in the (kx, kz, ω) space. The frequency vectors in this case
assume the forms:kx :=

[
−kx1 0 kx1

]
, kz := kz1,

andω :=
[
−ω1 0 ω1

]
, wherekx1, kz1, andω1 are

the vectors with50, 90, and44 logarithmically spaced points
between{kxmin := 10−4, kxmax := 3.02}, {kzmin :=
10−2, kzmax := 15.85}, and{ωmin := 10−3, ωmax := 2},
respectively. All plots are given in the log–log–log scale.

A. Input-output gains in Poiseuille flow withR = 5700
Figure 2 shows theH∞ andH2–norms of the operatorH

as functions ofkx andkz, in subcritical Poiseuille flow with
R = 5700. Despite the fact that the equations are about to
become unstable if the Reynolds number is slightly increased
(critical value of Reynolds number is approximately equal to
5772, [21]), the least-stable modes of generatorA are not
most amplified by system’s dynamics. Rather, the largest input-
output gains are attained for small streamwise wave-numbers
at certain non-zeroO(1) value ofkz. This implies that the most
amplified structures have very large streamwise elongation
and spanwise periodicity determined by the value ofkz at
which maximum happens to be. We remark that the peaks
corresponding to the least-stable modes have much bigger
values here than, for example, atR = 2000 [14], [15]. These
peaks would go to infinity if the Reynolds number is increased
above its critical value. However, this is an artifact of the



definition of theH∞ andH2–norms rather than something
that would play a dominant role in the initial stages of
laminar-turbulent transition in flows that have some amount
of background disturbances in them. This is further illustrated
in the next subsection where we analyze the exponentially
discounted input-output gains in supercritical Poiseuille flow
with R = 10000.

B. Exponentially discounted input-output gains in
Poiseuille flow withR = 10000

The left plot in Figure 3 illustrates the dependence of the
exponentially discountedH∞–norm on both streamwise and
spanwise wave-numbers. The global maximum of the input-
output gain visualized in this way occurs atkx = 0 for
certain non-zeroO(1) spanwise wave-number. It is important
to remark that these dominant input-output resonances do
not correspond to the exponentially growing modes of the
generatorA. Rather, they are a product of the coupling from
the wall-normal velocity to the wall-normal vorticity, which
depends upon shearU ′ and spanwise frequencykz [13].
This coupling is physically generated by the vortex tilting
mechanism [22], [23]. Numerical experiments of [24] showed
that without the coupling fromv toωy the near-wall turbulence
decays in a fully turbulent channel flow. The two-dimensional
unstable modes of the operatorA create a local peak atkz = 0
and kx ≈ 1. The corresponding amplification is significantly
lower than the one achieved by dominant streamwise constant
flow structures. We also notice local three-dimensional peaks
occurring atkx ≈ 0.85 and kz ≈ 0.38. These peaks are
caused by the three-dimensional TS waves and they clearly
induce larger input-output gains than the two dimensional
exponentially growing normal modes. This further illustrates
the importance of the three dimensional analysis which has
traditionally been neglected owing to the misinterpretation of
the Squire theorem (for more detail see, for example, [1] and
discussions therein).

The exponentially discountedH2–norm is shown in the
right plot of Figure 3. As for[‖Hα‖∞] (kx, kz), the global
maximum takes place at (kx = 0, kz = O(1)). The peaks
arising due to the exponentially growing eigenvalues ofA are
not as pronounced as their equivalents in[‖Hα‖∞] (kx, kz),
due to the integration in time. Thus, the analysis of the variance
accumulated on finite horizons indicates that in stochastically
excited supercritical channel flows the most amplified input-
output resonances (over long, but finite times) assume the form
of streamwise vortices and streaks.

The results of this section illustrate that even a small
amount of external excitation in supercritical flows yields
completely different flow patterns from the ones corresponding
to the exponentially growing system modes when finite time
phenomena are considered. In particular, our results underscore
the importance of the streamwise elongated flow structures not
only in the subcritical channel flows, but also in the channel
flows occurring in the supercritical regimes. We have also
demonstrated the striking similarity between the supercritical
and subcritical flows when the former are analyzed using the
exponentially discounted system gains. The fact that the fre-
quency response peaks produced by the TS waves (especially
the three dimensional ones) achieve much higher magnitudes
than the corresponding peaks in subcritical channel flows at
moderate Reynolds numbers (e.g.R = 2000) suggests that
most turbulent flows probably have both instabilities and high
amplification of background disturbances.

V. CONCLUDING REMARKS

This paper illustrates the significance of non-modal effects
in supercritical channel flows. This is done by analyzing the

LNS equations from an input-output point of view in the pres-
ence of ‘exponentially discounted’ input and output signals.
From a physical perspective this type of analysis amounts
to accounting for the finite time phenomena rather than the
asymptotic phenomena of infinite time limits. In particular, our
results underscore the importance of the streamwise elongated
flow structures (that is, streamwise vortices and streaks) not
only in the subcritical channel flows, but also in the channel
flows taking place in the supercritical regimes.

It is quite compelling to argue that long-but-finite time
analysis is relevant when considering linearized models. These
models are not expected to be valid for infinite time in any
case, as when perturbations grow, the linearized dynamics are
altered. In the supercritical channel flow case, we see that the
main features of the model (i.e., the modes contributing the
most to perturbation energy) are very dependent on whether
we take an infinite time limit or a large-but-finite time limit.
The latter is arguably the more reasonable of the two, and
when viewed this way, we have shown that aside from the
energy of the perturbation, the spectral content of subcritical
and supercritical channel flows is qualitatively very similar.
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