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Abstract— In this paper a state estimation technique is
developed for sensing inclination angles using relatively low
cost sensors. A low bandwidth tilt sensor is used along with an
inaccurate rate gyro to obtain the measurement. The rate gyro
has an inherent bias along with sensor noise. The tilt sensor
uses an internal pendulum and therefore has its own slow
dynamics. These sensor dynamics were identified experimen-
tally and combined to achieve high bandwidth measurements
using an optimal linear state estimator. Potential uses of the
measurement technique range from robotics, to rehabilitation,
to vehicle control.

I. INTRODUCTION

Many modern mechanical control systems use orientation
feedback relative to an inertial reference frame. For systems
connected to the ground, measuring orientation is not diffi-
cult since an encoder can be attached between ground and
a rotating link to directly give orientation. However for any
untethered system, or one that can move about freely in
space, determining its orientation is not trivial. In our case,
we are designing a hopping robot with a single actuator,
capable of balancing despite inherent open-loop instabil-
ity [6]. This robot requires accurate orientation and rate
feedback at a relatively high bandwidth in order to achieve
stable balance control. In this paper we develop a state-
space estimation approach that meets these requirements
using inexpensive components. We focus our attention on
planar motions, since sensing in 3-dimensions first requires
sensing in the plane [7].

One option for planar orientation measurement is the use
of a tilt sensor, such as a pendulum type inclinometer,
but these sensors have their own dynamics with limited
bandwidth and therefore cannot provide the correct tilt
information at high frequencies. Another approach is to use
a gyroscope to infer the tilt angle of the robot. In theory,
integrating the angular velocity output of a gyroscope
(hereafter referred to as a gyro or rate gyro) should provide
an accurate tilt angle, even when the system is moving
or oscillating quickly. In practice, low-cost gyros have an
unknown bias (offset) and/or scaling in their output, as well
as signal noise. Integrating the gyro output results in a angle
estimate plus a drift term. This means that it is not practical
to sense inclination angle from a gyro alone.

Another approach is to use a 2-axis accelerometer to
measure the direction of gravity in a rotating reference
frame [8]. Because accelerometers have a relatively high
bandwidth and low cost, they are often used in this manner
as tilt sensors. In practice, however, we have found them to

be sensitive to vibrations, and relatively difficult to use since
they require a nonlinear arctangent evaluation in the control
loop. Ojeda and Borenstein [5] have used accelerometers
as tilt sensors to reset their gyros when their robot is not
moving. They also found that vibrations during motion were
problematic.

Our approach uses a state estimator which combines data
from a gyro and a pendulum inclinometer to estimate the tilt
angle. We used a US Digital T2-7200-T optical inclinometer
(cost ≈ $100) [1], along with a Murata ENC-03JA piezo
gyroscope (cost ≈ $50) [2], as shown in Figure 1. At first
glance, our approach is similar to that used by Baerveldt
and Klang [3] and by Rehbinder and Hu [4]. However,
we found that none of the existing methods produced the
accuracy or bandwidth that we required. Baerveldt and
Klang assume the inclinometer is a first order low-pass
filter, and tune the cutoff frequency by hand. This model
is good for lower frequency motions (in their case 0 to
1.5 Hz), but the first order assumption is not valid at
higher frequencies. Also, Rehbinder and Hu use a more
sophisticated nonlinear observer to estimate attitude, but
also model their inclinometer as a first order low-pass filter.
Again their system operates at frequencies around 1 Hz.
Because our robot systems potentially operate at frequencies
approaching 5 Hz, we needed to develop a significantly
improved state estimation technique.

Fig. 1. US Digital inclinometer (left), Murata gyroscope (right). For scale,
note that the connection wires are 0.1 inch apart.

Our method has three main differences to previous ap-
proaches: (1) a higher fidelity model for the inclinometer
was developed using both a physics-based model and a
frequency domain system identification techniques and (2)
an optimal state estimator (Kalman filter) is used that
continuously combines the measurements to obtain more
accurate angle and angular rate measurements. In addition
to these state estimates, the inherent bias of the gyroscope
is identified and compensated for on-line.



Fig. 2. A schematic for modeling the inclinometer as a simple pendulum.

Fig. 3. Test apparatus for encoder, inclinometer, gyroscope. A chirp test
signal was applied to the hardware by a pneumatically actuated controller.

II. MODELING AND PERFORMANCE
CHARACTERISTICS OF THE SENSORS

A. Inclinometer

The US Digital optical inclinometer measures the angular
position of a pendulum relative to its housing. An encoder
with a resolution of 7200 counts/revolution (after quadra-
ture) is used to track the position of the pendulum. Figure
2 shows a schematic representation of the inclinometer.
Because the pendulum has its own dynamics, the desired
inclination angle, θt, output from this sensor is only accurate
at low frequencies. In order to investigate the dynamics of
our inclinometer, we mounted a hinge joint to a fixed table
(see Figure 3) and measured the true angle of the pendulum
with an optical encoder. We then oscillated the joint with an
increasing frequency “chirp signal.” The chirp input starts
at 0.25 Hz and ends at approximately 4.6 Hz over a period
of 107 seconds. Sensor outputs were sampled at 500 Hz.
Figure 4 shows the output of the inclinometer as a function
of time as the actual inclination angle (measured with an
encoder used for comparison only) varies with the increas-
ing frequency chirp. At high frequencies, the inclinometer
exhibits distortion in both magnitude and phase.

Considering the tilt sensor to be a simple pendulum with
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Fig. 4. Tilt angle measured with encoder and inclinometer in a chirp
motion. Last 5 seconds (high frequency content) of data shown.

damping, where θ is the actual angle and θt is the tilt sensor
output, as seen in Figure 2, the differential equation is

J(θ̈ − θ̈t) = cθ̇t − mgl sin(θ − θt)

for some damping coefficient c, length l, mass m, and
inertia J. Assuming small θ − θt, sin(θ − θt) ≈ θ − θt,
the transfer function for this system has the form

G(s) = L
[
θt(t)
θ(t)

]
=

s2 + mgl/J

s2 + c/Js + mgl/J
. (1)

B. Gyroscope

In order to investigate the dynamic characteristics of the
Murata gyroscope, we mounted it to the same test apparatus
as used for the inclinometer experiments and applied the
same chirp test signal. The raw output voltage of a Murata
gyro is shown in the plots of Figure 5. This voltage has
been scaled to have units comparable to rad/sec. Also shown
in the figure is the signal obtained from a backward finite
difference of the joint encoder signal. This signal was also
passed through a first-order low-pass filter with a bandwidth
of 20 Hz. From the plots, it appears that a bias of about
3 rad/sec is present in the gyro output signal. We assumed
this bias was constant, subtracted it from the gyro signal,
and integrated it to obtain the plots shown in Figure 6. The
plots show a significant error in magnitude from the true
angle (as measured by the encoder). It is clear that the gyro
sensor introduces an amplification to the signal in addition
to the bias drift signal.

III. OBSERVER DESIGN FOR ACCURATE TILT
MEASUREMENT

In this section, we construct an optimal observer (Kalman
filter) that considerably improves tracking of the tilt angle
θ by combining the inaccurate measurements of the gyro
and tilt sensors. The observer reconstructs the states of the
gyro/inclinometer measuring system depicted in Fig. 5. In
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Fig. 5. The raw output from the gyroscope, and the differentiated and
filtered output of the encoder at low (top) and high (bottom) frequencies.
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Fig. 6. The integral of the gyro signal minus a constant drift and the
joint encoder signals at low (top) and high (bottom) frequencies.

this system, the tilt sensor is described by the 2nd order
transfer function (1). A minimal state space realization for
(1) can be assumed as follows:[

ẋ1

ẋ2

]
=

[
a11 a12

a21 a22

] [
x1

x2

]
+

[
b1

b2

]
θ

θt =
[

c1 c2

] [
x1

x2

]
+ d θ + vt. (2)

In (2), a11, a12, a21, a22, b1, b2, c1, c2, and d are
real constants that are determined via a frequency response
system identification procedure explained in Subsection III-
A, and vt represents the inclinometer measurement noise.
Next, the gyro sensor is described by the equation:

ωg =
1
α

(ω + δ) + vg (3)

where ω and ωg are actual and measured angular velocities
and δ, α are the bias and scaling constants in the gyro sensor

respectively, and vg represents the gyro measurement noise.
Finally, to model the gyro bias, we use the equation:

δ̇ = vb. (4)

In (4), vb is white noise that is introduced in the model
mainly for the optimal observer problem to be well-posed
and solvable; however, it also allows the gyro bias to
fluctuate to some extent, consistently with our experience
in practice.

The above equations together with the relation

θ̇ = ω,

give the following state-space equations for the
gyro/inclinometer measuring system.⎡
⎢⎣

δ̇

θ̇
ẋ1

ẋ2

⎤
⎥⎦ =

⎡
⎢⎣

0 0 0 0
−1 0 0 0
0 b1 a11 a12

0 b2 a21 a22

⎤
⎥⎦

⎡
⎢⎣

δ
θ
x1

x2

⎤
⎥⎦ +

⎡
⎢⎣

0
α
0
0

⎤
⎥⎦ωg

+

⎡
⎢⎣

1 0
0 −α
0 0
0 0

⎤
⎥⎦

[
vb

vg

]

θt =
[

0 d c1 c2

]
⎡
⎢⎣

δ
θ
x1

x2

⎤
⎥⎦ + vt.

This system is of the standard form:

ż = A z + B ωg + Bv v

θt = C z + vt

with z ≡ [δ θ x1 x2]T , v ≡ [vb vg], and A, B, Bv , and
C defined in an obvious way. Note that in this formulation,
the unknown bias δ and the tilt angle θ are states of the
system. The inputs are the measured gyro signal ωg and the
measurement noises vb, vg , and vt. Finally, the output of
the system is the measured inclinometer signal θt. Next, we
consider a standard state estimator (observer) of the form:

˙̂z = A ẑ + K (θt − C ẑ) + B ωg (5)

Selecting the gain vector K such that A − KC is an
asymptotically stable matrix guarantees that the state re-
construction error z − ẑ remains bounded, and in the
absence of the noise signals, that z − ẑ converges asymp-
totically to 0. We actually considered an optimal observer
(Kalman filter) that minimizes the mean square tracking
error E[(z − ẑ)T (z − ẑ)] and can be readily designed by
considering the dual state regulator problem (for example,
see [9]) and using MATLAB’s lqr command. In the cost
function of the latter problem, the state weighting matrix
Q = diag

{
W 2

b , α2 W 2
g , 0, 0

}
and the control weighting

matrix R = W 2
t , where Wb, Wg , and Wt are the RMS

(root mean square) values of the bias vb, gyro vg , and tilt
sensor vt noises respectively, all assumed to be modelled
as white noise. The values of W 2

b , W 2
g , and W 2

t are
actually used to tune the performance of the observer,



namely, to trade-off the speed of state reconstruction with
the extent of observer bandwidth and its susceptibility to
measurement noise. We found that the values Wb = 1,
Wg = 0.001, and Wt = 0.001 provide a reasonable
such trade-off, and resulted in the observer gains K =
[−31.6228 11.0784 0.4324 3.6152]T .

A. System Identification of Inclinometer Dynamics

From (5), it is clear that the observer acts as a filter
that combines the imperfect gyro ωg and inclinometer θt

signals to produce an improved estimate of the tilt angle θ
in terms of the estimated state ẑ(2). Note that the observer,
automatically estimates the gyro bias δ in terms of ẑ(1)
and compensates for it. However, in order to use this
scheme, we need to have the observer parameters a ij ,
bi, ci, and d, or equivalently to identify the inclinometer
transfer function in (1). We employ a frequency domain
identification technique to do this. More specifically, the
output of the integrator/inclinometer system in Fig. 5 is the
inclinometer measurement θt, while the input to this system
(neglecting measurement noise) is ω, that from (3) is related
to the gyro measurement ωt by:

ω = α ωg − δ.

For the moment, we assume that δ = 0 and α = 1, i.e. that
ω = ωg and we will shortly see that the value of the bias δ
does not affect the identification process, while the actual
scaling α can be easily determined through this process.
The measured signals ωg and θt are produced by applying a
chirp input as discussed in Section II-A. Over the time hori-
zon T = 107 sec with a sampling frequency f = 500Hz,
we collected N = 53501 samples. We then computed
the Discrete Fourier Transforms (DFT) of ωg(k Tp) and
θt(k Tp), k = 0, . . . , 53500, where Tp = 1/f = 0.002
sec using MATLAB’s fft command. Finally, we obtained
samples of the integrator/inclinometer frequency response
G(jkΩp), k = 0, . . . , 53500, where Ωp = 2π

T = 0.0093
rad/sec, as the ratio of the DFT of θt to the DFT of ωg . We
should remark that a number of factors contribute to errors
in the estimation of the samples G(jkΩ). First, since the
chirp input has its power over frequencies from 0.25Hz to
4.6Hz, we can expect to be able to reliably identify the
frequency range from about 0.2Hz to 5Hz. Then, errors
may be introduced because of aliasing and leakage [10].
However, we do not expect aliasing to be a factor since
we used an anti-aliasing filter with a cutoff frequency of
50 Hz. This means that our sampling rate of 500Hz is
10 times higher than the expected bandwidth of the signals
being sampled. Leakage is the ripple effect on the frequency
response created by using a finite horizon time sequence
instead of an infinite one. It can be reduced by increasing N ,
or by using windowing filters at the expense of smearing the
frequency response. Indeed, since we did not employ any
data windowing, some rippling in the frequency samples
can be observed but the curve fitting approach we use tends
to smooth out this effect. Next, the experimental frequency

response curve (samples G(jkΩ)) is fitted with a rational
transfer function by minimizing a least squares criterion:

min
ak, bl

N2∑
i=N1

wi

∣∣∣∣G(jΩi) − bm(jΩi)k + . . . + b0

an(jΩi)k + . . . + a0

∣∣∣∣
2

(6)

with k = 0, . . . , n and l = 0, . . . , m. In (6), the wis are
weights that are selected to tune the approach. We employed
a recursive algorithm reported in [11], with the additional
parametrization of the numerator and denominator poly-
nomials of the fit in terms of Chebychev polynomials to
alleviate numerical difficulties as reported in [12] and [13].
As discussed above, we took N1 and N2 in (6), to fit the
available data from 0.2Hz to 5Hz. Furthermore, to obtain
an exact integrator (1/s) behavior at low frequencies, we
first scaled the experimental frequency response samples by
s; then the resulting transfer function describes exactly the
inclinometer dynamics.

We now remark on why the gyro bias δ does not affect
this procedure and how the scaling α can be accurately
determined. First note that the bias introduces a delta
function at s = 0 in the frequency response and that curve-
fitting is attempted from 0.2Hz to 5Hz so that the bias
has no effect on the identification. Then, note that α has
the effect of scaling the experimental frequency response
and the curve-fit. Since it is known that the dc-gain of
the inclinometer is 1, we simply identify α as the scaling
required to make the resulting curve-fit have a dc-gain of
1.

Figure 7 shows the best-fit transfer functions of varying
degrees, starting with 1 pole and no zeros (top left), 2 pole
and no zeros (top right), and 2 poles and 2 zeros (bottom).
Note that the first order model, seen in Figure 7, can stay in
phase with the data fairly well, but suffers from magnitude
roll-off at frequencies exceeding 1 Hz. The bottom plot in
the figure shows an excellent fit within the 0.2 to 5Hz range,
The identified the transfer function for the inclinometer is:

G(s) =
1.024s2 − 0.1791s + 528.4

s2 + 65.86s + 528.4
.

We observe, that Gp(s) is consistent with our theoretical
analysis, less the small damping in the numerator that can
be attributed mainly to the finite resolution in our samples.
We also remark that the natural frequency of the zeros of the
model is

√
528.4
2π = 3.66Hz, well within the range of device,

which shows the importance of using the more accurate
model. Finally, the gyro scaling is identified to have a value
of α = 0.76 based on the approach discussed above.

B. Experimental Results

Figure 8 shows the estimated tilt angle by the observer
designed as explained in Subsection III and based on the
inclinometer parameters identified as discussed in Subsec-
tion III-A. The observer output is compared to the actual
angle (measured separately by an encoder for the purpose
of comparison) at low and high frequencies. Note that the
observer, given arbitrary initial conditions, converges to the
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Fig. 7. Best-fit transfer function with 2 poles and 2 zeros.

encoder signal in about 2 seconds. The last 5 seconds of
the chirp motion show our observer tracking a signal of
frequencies exceeding 4 Hz. Figure 9 shows the estimate
of the gyro bias signal to quickly converge to a value of
δ = −2.74 deg/sec.
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Fig. 8. Observer designed from tilt sensor transfer function, 2 poles and
2 zeros (top–first 15 sec, bottom–last 5 sec).

IV. EFFECT OF MOVING TILT SENSOR AWAY FROM

ROTATION CENTER

The model seen in (1) is only good for the case when the
inclinometer rotates without translating. If the inclinometer
is placed away from the axis of rotation, the sensor will
translate as well as rotate, and a new model is required. In
this case, one might develop a non-linear physical model
and linearize it around a typical operating point. However,
the linearized model can be found experimentally by finding
a transfer function that fits the frequency response of the
system. In other words, one can identify the linearized
model using the same methods as Section III-A, without
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Fig. 9. The observer’s estimate of the gyro bias during the chirp motion.

taking the physical model into account. Figure 10 compares
the frequency response of our best-fit model (a 2 pole, 1
zero transfer function) to the experimental response. Notice
that a first order model would be incapable of fitting this
high-pass type frequency response.
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Fig. 10. Best-fit transfer function with 2 poles and 1 zero, using data
from an inclinometer that has been displaced from the axis of rotation

Figure 11 shows the results of the observer we designed
with our identified second order model. The observer tracks
the actual angle well at low and high frequencies, although
not as closely as before. This is because the nonlinear
acceleration of the inclinometer has more of an effect on the
errors in our linear observer. An important feature of our
system identification technique used in this section and in
Section III-A is that it can be applied to untethered systems,
since no encoder is needed for the system identification. It
can also potentially be done on-line.
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Fig. 11. Observer designed from tilt sensor transfer function (sensor away
from center of rotation), 2 poles and 1 zero (top–first 15 sec, bottom–last
5 sec).

V. CONCLUSION

We have outlined a method for combining data from 2
inexpensive sensors, an inclinometer and a rate gyro, to
produce an accurate angle measurement for high bandwidth
signals. The rate gyro is modeled as the derivative of the
angle to be estimated, plus an unknown constant bias. The
tilt sensor is modeled as a second-order proper transfer
function from the actual angle to the tilt sensor output.
The parameters of this transfer function are obtained by
fitting its frequency response to the experimental frequency
response of the tilt sensor to a chirp motion. Then, an
optimal linear state estimator is constructed that estimates
the gyro bias, and infers the correct angle from the output of
both sensors. Although not shown in this paper, our method
removes the gyro bias more effectively than the analog high-
pass filter suggested by the manufacturer. Furthermore, our
more realistic model of the inclinometer allows for state
observation at higher frequencies than has been reported in
previous research.
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