
 
 

 

  
Abstract—This paper proposes a sliding-mode control (SMC) 

scheme based on the internal model principle (IMP) for robust 
reference tracking and disturbance rejection. The linear IMP 
controller is known for the capability of perfect tracking and 
disturbance rejection with an internal model of exogenous 
signals, while the SMC controller is robust to system 
perturbations and exogenous signals with unknown dynamics. 
In this paper, an SMC design based on IMP is proposed to 
combine the best feature of these two fundamentally different 
but effective methods. Furthermore, with the help of the SMC, 
an initial state of the internal model is determined 
independently of system perturbations in order that transient 
performance is greatly improved as compared with that of the 
linear IMP controller. In addition, by properly assigning the 
initial state of the internal model, a sliding control law is 
derived to ensure the existence of a sliding mode during an 
entire response. This global sliding motion yields excellent 
robustness of the entire system at the beginning of system 
response and afterwards. Simulation results show the 
feasibility of the proposed scheme. 
 

Index Terms — Sliding-Mode Control, Internal Model 
Principle. 

I. INTRODUCTION 
LIDING-mode control (SMC) [1] is a robust nonlinear 
control scheme, in which system state is directed towards 

some predefined switching plane and maintained on it 
through switching control effort. During the sliding motion, 
system response is completely insensitive to system 
perturbations satisfying the so-called matching condition. 
However, due to finite switching frequencies in physical 
implementation, this invariance property can not be 
thoroughly preserved, and perfect tracking performance 
cannot be achieved. An alternative approach ensuring robust 
tracking in linear control theory is based on the internal 
model principle (IMP) [2] which states that a model of the 
non-decaying exogenous signal in the loop transfer function 
ensures perfect asymptotic tracking and disturbance 
rejection. With the internal model of a reference signal, 
robust tracking performance can be ensured even when 
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system parameters are perturbed away from their nominal 
values to a certain extent. However, with the extra dynamics 
in the control loop, the system tends to have large overshoot 
or to oscillate significantly before settling down [3]. Besides, 
system perturbation is apt to have notable influences on 
system performance by this linear control technique. 
 To improve the transient performance of a linear control 
system based on the IMP, Wu [3] proposed a strategy that 
first applied a sliding controller for an improved transient 
response and then switched to a linear IMP controller in the 
steady state. A switching mechanism was devised to yield a 
smooth transition between a sliding controller and an IMP 
controller by incorporating an observer-like IMP controller 
to track the equivalent control effort [1] of the sliding 
controller in the transient phase. In the transient phase, 
however, the IMP controller made no contribution to control 
activities, and thus the transient performance would be 
deteriorated by exogenous disturbances even with known 
dynamics. On the other hand, in the steady phase the sliding 
controller is inactive, which weakened system robustness to 
parameter variations and unexpected disturbances. 
Moreover, since the active controller might jump back and 
forth between two controllers, the stability of the overall 
system is not ensured. In [4], a linear IMP controller was 
augmented by an integral SMC [1] to enhance the robustness 
of a linear IMP control system. Basically, the integral SMC 
design procedure formulated in [1] allows for incorporating 
any linear control with the integral SMC, where the linear 
control is designed for the nominal system and then the 
sliding control is applied to enhancing system robustness. 
Therefore, the nominal linear design based on IMP in [4] 
represented the desired system dynamics, in which the 
problem of large overshoot or significant oscillations 
associated with the linear IMP control system remains 
unsolved. The experimental results represented in [4] also 
showed great overshoot in step responses even with 
disturbance compensation. Moreover, system responses 
tended to be oscillatory after adopting the continuous 
approximation of the discontinuous sign function, and thus 
the information on time derivative of the switching function 
was incorporated into the control law. The measurement of 
this derivative signal however reduces the noise-immune 
capability of the whole system. 
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SMC design belongs to time-domain approaches. The 
essential feature of this nonlinear state-space method is that 
feedback gains are locally high when system state is close to 
some predefined switching hyperplane. When system state 
moves away from the switching hyperplane, the equivalent 
linear feedback gain is reduced. On the other hand, the linear 
control based on IMP features locally-high feedback gains in 
the frequency domain. The internal models in loop transfer 
functions usually have gains of infinite magnitudes at the 
frequencies of exogenous signals. In this paper, a systematic 
design approach is proposed to combine the best features of 
these two fundamentally different control schemes. A 
state-space model including the model of exogenous signals 
is first formulated, and then an SMC design approach is 
introduced to the joined system. The initial state of the 
internal model is assigned not only to make the initial value 
of a switching function zero for the existence of a global 
sliding mode [5] but also to yield non-overshooting output 
responses. In this manner, excellent transient performance is 
guaranteed while robust tracking is also achieved in the 
steady phase. Simulation validation shows the effectiveness 
of the proposed scheme. 

II. SLIDING-MODE CONTROL BASED ON INTERNAL MODEL 
PRINCIPLE 

A. Combined Model of Plant and Exo-system 
 Consider the following uncertain system of n-th order: 
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where y is the scalar output of interest, u is the scalar plant 
input, [ ] nT

nxxxx ℜ∈=     321 Lx  being the state vector of the 

plant, [ ] nn
ija ×ℜ∈=A , [ ] 100 ×ℜ∈= nTbLB , 

[ ] n
ic ×ℜ∈= 1C , and d denotes the external disturbance. We 

assume that the plant is completely controllable and has no 
zeros at the roots of the exogenous signal’s characteristic 
equation, and that its uncertainties satisfy the so-called 
matching condition. Define 
  1−= bβ , njj ab

1−

=α  for nj  ,  2, 1 L,= .       (2) 
Bounds on parameter uncertainties and external disturbance 
are assumed to be known, i.e. 

dd ∆< , βββ ∆<− ˆ , 

jjj α∆αα =− ˆ  for nj  ,  2, 1 L,=          (3) 

where β̂  and jα̂  are the estimates of β  and jα , 

respectively, and d∆ , β∆  and jα∆  are uncertainty bounds 
assumed to be known. 
 The control objective is to have the output y track a 
reference input r in the presence of external disturbance 

signal d. Assume that the exogenous signal, either reference 
or disturbance, is a pure tonal signal; i.e. a sinusoid of a 
single frequency described by 
  02 =+ rr ω&& , 02 =+ dd ω&& .           (4) 
The limitation on the dynamics of reference/disturbance 
signals is for the convenience of elaborations, while the 
following design can be extended in principle to the case of 
exogenous signals with high-order dynamics. The structure 
of the proposed closed-loop system is shown in Fig. 1, 
where the tracking error of the system is defined as 

rye −= . Notice that the controller contains an internal 
model whose input is the tracking error. The state equations 
of the overall system are then 

  ( ) rduz
z

z
z

dt
d
















−+
















+
































−=

















0
1
0

0
0

00
0

010

2

1
2

2

1

BxA
C

x
ω    (5) 

where 1z  and 2z  are state variables of the internal model. 
Based on this combined model of the plant and the internal 
model, an SMC is developed to enhance system robustness 
to parameter variations and unexpected disturbances, while 
the internal model having infinite gain at the frequency ω  
forces the tracking error to converge asymptotically. 

B. Switching Function 
In designing SMC, first determine a desired switching 

function, and then find a sliding control law that is able to 
constraint system state on the switching hyperplane, that is, 
to force the predefined switching function to zero. Rewrite 
(5) as 
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where   
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[ ]1211 −= nccc LC , and [ ]nc=2C .  
With this state partition, the joined model (6) can be divided 
into two parts as follows: 
  rxn HBxAx ++=&               (7) 
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Equation (7) describes the null space dynamics while 
equation (8) represents the range space dynamics. In 
designing an SMC, the variable nx  in (7) is regarded as a 
control input to the null space dynamics and should be so 
assigned that the null space dynamics is shaped to the 
desired sliding dynamics. Let 
  rxn υ+−= xλ                  (9) 
where [ ]121 += nλλλ Lλ  being a constant row vector, 
and υ  is a constant feedforward gain to be determined. The 
state feedback with feedback gains λ  can place the poles of 
the null space dynamics to any desired locations only when 
the null space dynamics is completely controllable. It turns 
out that it is possible to relate the controllability of the null 
space dynamics with that of the original system. 
Lemma 1: If ( )CBA  , ,  is completely controllable and has no 

invariant zeros at ωi± , then the matrix pair ( )BA  ,  is 
completely controllable. 
The proof is omitted. Since the plant is assumed to be 
completely controllable and have no zeros at ωi± , the null 
space dynamics is completely controllable, and any linear 
state feedback method can be utilized to determine λ . 
Several approaches have been developed, including linear 
quadratic minimization [6] and direct eigenvalue assignment 
[7]. 
 In this paper, the reference signal r is assumed to be a pure 
tonal signal. In case the reference signal contains nonzero 
direct-current component, the internal model shown in Fig. 1 
does not fit in with the dynamics of the exogenous signal, 
and an integrator should be added to the internal model. 
Instead of incorporating an integrator into the internal model, 
a constant feedforward gain υ  is applied to tracking the 
direct-current component of the reference signal. To 
determine the feedforward gain υ , substituting (9) into (7) 
and considering only the direct-current component of the 
state vector gives 

  ( ) ( )rHBλBAx +−−=
− υ1 .         (10) 

Rewrite the output equation of the system as 
  nxy DxC +=                (11) 
where  

[ ]12100 −= nccc LC  and [ ]nc=D .  
Substituting (9) and (10) into (11), we obtain the 
direct-current component of the output 

  ( )( ) ( )[ ] ry υυ DHBλBAλDC ++−−−=
−1 .  (12) 

Equating it with r yields 
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when ( )( ) 01
≠+−−−

− DBλBAλDC  that is then the 
condition for the existence of a solution for the constant 
feedforward gain. 
Lemma 2: If ( )CBA  , ,  has no invariant zeros at the origin of 
the complex plane and the frequency ω  is nonzero, then (13) 
gives a finite solution for the feedforward gain υ . 
Due to limited space, the proof is omitted here. Notice that 
the loop transfer function of the system itself contains the 
model of a direct-current signal when the frequency ω  is 
equal to zero and the plant has less than two invariant zeros 
at the origin. In this case, there is no need to introduce the 
feedforward compensation rυ , and the feedforward gain υ  
should be set to zero. From (13), it is clear that the 
determination of the feedforward gain υ  is independent of 
matched uncertainties. When there exists a finite solution for 
υ , the feedforward compensation in (9) ensures the exact 
tracking of a reference signal’s direct-current component. 
This together with the internal model guarantees the precise 
tracking of a reference signal that consists of a direct-current 
part and a sinusoid of a single frequency. 
 To shape the null space dynamics, the state variable nx  
should be constrained to maintain the equation (9) valid. 
According to (9), define the switching function 

  ∫+=
t

dsktst
0

)()()( ττσ            (14) 

where rxs n υ−+= xλ  and k is a constant parameter. The 
introduction of an integral action in the switching function is 
to suppress an offset error in the plant’s output caused by a 
constant disturbance. As mentioned previously, the internal 
model shown in Fig. 1 can be modified to one with an 
integrator for restraining the offset error due to a constant 
disturbance. Here, the integral action is carried out in the 
switching function for its simplicity and convenience. 

C. Determination of Initial Conditions of the Internal 
Model 

The output response of a control system containing an 
internal model of exogenous signals tends to have 
significant overshoot and/or serious oscillations before 
settling down even if the closed-loop poles are well placed to 
look for highly-damped system behavior. In fact, the 
response of a system is primarily determined not only by its 
transfer function but also by its initial state. Assigning the 
initial state of a controller properly would have an essential 
improvement in system’s transient responses. On the other 
hand, for a certain initial state, the system response is apt to 
be influenced by parameter variations and external 
disturbances, which makes it difficult to assign a controller’s 
initial state properly. This problem, however, does not exist 
in the proposed formulation as the sliding dynamics that 
determines the system output is the shaped null space 



 
 

 

dynamics and is free from matched system perturbations. 
Matched system perturbations have an effect on the range 
space dynamics, but an SMC can suppress their effect 
efficiently. 

In this paper, the initial state of an internal model is 
assigned to make the initial value of the switching function 
(14) zero as well as to have a smooth start-up. When the 
switching function (14) is forced to be initially zero and a 
sliding control law is so designed that the sliding condition 
[8] is valid, a global sliding mode control (GSMC) [5] is 
achieved and robust performance is thus ensured. To have 

0)0( =σ , setting 0)0( =s  gives 

 (0)(0)(0)(0)(0)
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which is the necessary condition for global sliding behavior. 
Since in a global sliding mode 0)( =tσ  during an entire 
response, we have 0)( =tσ& . This together with the 
requirement of a smooth start-up demands 0)0( =σ&  and 

0(0) =nx& . Taking the time derivative of (14) and noting that 
0)0( =s , we have 

( ) 0)0()0()0()0( =−++ rrxn &υHBxAλ .    (16) 
Solve the simultaneous algebraic equations, (15) and (16), 
for the required initial values of the internal model, (0)1z  
and (0)2z , which is independent of matched system 
perturbations. Since the internal model is implemented 
inside a controller, its initial state can be arbitrarily assigned. 
When determined by (15) and (16), the initial state of the 
internal model leads the overall system state initially on the 
predefined sliding hyperplane and guarantees a smooth 
start-up behavior. The arrangement for a smooth start-up 
reduces the necessary starting torque, lowers 
mechanical/electrical stress on the plant, and improves the 
transient response as well. 

D. Sliding Control Law 
The objective of a sliding control law is to attract 

system state onto the switching hyperplane so that system 
state reaches the switching hyperplane and stays on it 
thereafter. This can be achieved by designing a control law 
that satisfies the sliding condition, 0)()( <tt σσ & . Taking the 
derivative of (14) with respect to time and substituting (7) 
yields 
  ηυσ +=+−+= nn xksrx &&&&& xλ         (17) 

where ( ) ksrrxn +−++= &υη HBxAλ . Dividing both sides 
of (17) by b and substituting (8) gives 
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which leads to the sliding control law 
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(19) 
where )sgn(⋅  denotes the discontinuous sign function. Since 

1−= bβ  is assumed to be positive, it can be easily verified 
that the sliding control law (19) ensures the satisfaction of 
the sliding condition 0)()( <tt σσ &  for 0)( ≠tσ  and 0≥t . 
 According to (15), the initial value of the switching 
function is set to zero. This together with the satisfaction of 
the sliding condition implies that the sliding mode exists 
throughout an entire response, i.e. 
  0  allfor    0 ≥= tσ                  (20) 
Therefore, an initial period of time is not required to reach 
the sliding regime 0=σ , and the reaching phase is 
eliminated in this design. As the sliding mode exits 
throughout an entire response, robust performance is thus 
guaranteed. 

III. SIMULATION VALIDATION 

A. System Description and Controller Design 
Consider the second-order model of a voice-coil motor 
described by 

12
2 asas

b
sU
sX

++
=

)(
)(  (µm/volt)          (21) 

where x is the output of interest, ( )0.511002 ±×=a , 
( ) ( )0.511.0e51 ±×=a , and ( ) ( )0.517.0e8 ±×=b . Let 

  ( ))550()50(070)sin(10)( .t.t.t.td −−−−= 11ω   (22) 
where )(⋅1  denotes the unit-step function, and 1200=ω  
(rad/s). 
 From the extreme values of uncertain parameters, we get 

42.3810eˆ1 −−=α , 72.3810eˆ2 −−=α , 

91.9048eˆ −=β , 41.9048e1 −=α∆ , 71.9048e2 −=α∆ , 
109.5238e −=β∆ . Moreover, the bounds on external 

disturbance 10.d =∆ . For performance comparisons, we 
designed three kinds of controllers, i.e. the conventional 
SMC, the linear IMP controller, and the proposed controller. 
All three controllers were based on the same parameter 
values listed above, and all poles were assigned at -600 in 
the nominal case. To alleviate chattering phenomenon, the 
boundary layer method is adopted in all sliding controllers. 
For the regulation problem r=0, the conventional SMC is 
designed as 
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where xx 600+= &σ , 5.0e2=ε , and )sat(⋅  denotes the 
saturation function defined as 
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A detailed derivation of a linear IMP controller can be found 
in [9], and the controller structure is shown in Fig. 2, where 
the state feedback gains [ ]43 KK=K  contribute a control 
component ( )xKxK &43 +  to u in our case. To have all 
closed-loop poles at -600, we have 18800641 =K , 

1.5799e32 =K , 0.40843 =K , 54.5476e4 −=K . 
According to (19), the proposed controller is designed as 
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B. Dynamic Response 
To test the effectiveness of the controllers, different 

parameter values and an external disturbance are applied to 
the plant in simulations, where there exists an aperiodic 
disturbance component during the period between 0.5s and 
0.55s. Assume that 50 =)(x  and 00 =)(x& . Consider the 
following three cases of plant model 
  Case 0) βα ˆˆ22 −=a , βα ˆˆ11 −=a , β̂1=b  

Case 1) ( )0.511002 +×=a , ( ) ( )0.511.0e51 +×=a ,  
 ( ) ( )0.517.0e8 +×=b  
Case 2) ( )0.511002 −×=a , ( ) ( )0.511.0e51 −×=a ,  
 ( ) ( )0.517.0e8 −×=b  

Figure 3 shows the regulation performance with the 
conventional SMC. Due to the existence of a reaching phase 
in the conventional SMC the transient performance is not 
robust. Moreover, the steady-state performance is 
deteriorated by the external disturbance. Reducing the width 
of the boundary layer can improve steady-state responses. 
However, this would increase the switching level in the 
control and lead to more severe chattering phenomenon. The 
dynamical responses with the linear IMP controller are 
shown in Fig. 4. It is seen that the periodic disturbance 
component is suppressed by this approach, but significant 
undershoot appears in the output response. Figure 5 shows 
the regulation performance using the proposed scheme. It is 
clear that the disturbance is effectively restrained by this 
approach without undershoot in the output response. 
Moreover, the transient responses are robust to parameter 
uncertainties and external disturbances without causing 

significant chatter in the control. It is seen that the 
conventional SMC is not effective in dealing with periodic 
disturbances while the linear IMP controller is incapable of 
eliminating unexpected disturbances well. On the other hand, 
the proposed approach rejects both periodic and sudden 
disturbances efficiently. Figure 6 shows the tracking 
performance by the proposed scheme, where the reference 
signal ( ))sin(110)( ttr ω+= . Output performance is 
excellent in tracking both constant and sinusoidal reference 
signals. 

IV. CONCLUSIONS 
This paper has presented the design of integrating two 
essentially different approaches. In principle, the SMC 
possesses the property of locally high feedback gains in time 
domain while the IMP design makes use of locally high 
feedback gains in frequency domain. To obtain the best 
features of these two schemes, the proposed scheme was 
designed based on a combined model that consists of the 
plant and the internal model. With the help of SMC, the IMP 
scheme became robust to unexpected system perturbations. 
On the other hand, the IMP method enhanced the 
capabilities of SMC for tracking reference signals and 
rejecting external disturbances with known dynamics. 
Furthermore, through assigning the initial state of an internal 
model properly the problem of excessive overshoot or 
oscillating response caused by the conventional IMP scheme 
was alleviated greatly. The determination of this initial state 
can be performed precisely since it is free from the influence 
of matched system perturbations with the aid of the SMC 
approach. At the same time, the assignment of this initial 
state was so determined that a sliding control law ensured a 
global sliding motion, implying that system robustness is 
maintained during an entire response. Simulation results 
demonstrated the effectiveness of the proposed scheme. 
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Fig. 1.  Controller structure for the proposed SMC based on IMP. 
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Fig. 2.  Controller structure for the IMP controller.  
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Fig. 3. Dynamic response with the conventional SMC. 

Solid line: Case 0. Dashed line: Case 1. Dotted line: Case 2. 
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Fig. 4. Dynamic response with the IMP controller. 

Solid line: Case 0. Dashed line: Case 1. Dotted line: Case 2. 
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Fig. 5. Dynamic response with the proposed SMC based on IMP. 

Solid line: Case 0. Dashed line: Case 1. Dotted line: Case 2. 
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Fig. 6. Tracking response with the proposed SMC based on IMP. 

Solid line: Case 0.  Dashed line: Case 1.  Dash-dot line: Case 2.  
Dotted line: reference signal. 
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