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Abstract— Verifiable sufficient conditions for parameter
convergence of an adaptive fully linearizable system with
unknown parameters, including those affine with the control
input, are provided. The adaptive control in [8] has solved
the tracking problem for a wider class of systems, however,
parameter convergence so far can not be verifieda priori. By
taking advantages of the obtained asymptotic tracking stability
and the vanishing time derivatives of the estimated parameters,
we found it can indeed be checked beforehand provided
some mild assumptions are satisfied. Numerical examples for
illustrating the main results are given in the final.

I. INTRODUCTION

Feedback linearization is well known for its unique
ability of rendering the closed-loop system linear by totally
cancelling the system’s nonlinearity [3]. In reality, complete
knowledge of the nonlinearity is hardly available. Hence,
it is often incorporated with other schemes to achieve the
design goals. Among others, adaptive linearizing control is
most suitable for systems with unknown linear-in-parameter
nonlinearity and various such schemes have been developed
(see a review in [10]). Though asymptotic tracking stability
has been obtained by these designs, noticeably, parameter
convergence is not guaranteed in general. The major obsta-
cle is that the persistence of excitation (PE) of the regressor
depends in a complex way on the closed-loop signals and
hence is hard to predict in advance [5],[6]. Thanks to the
asymptotic tracking stability and the invariant property of
the PE under vanishing perturbations, verifiable conditions
for parameter convergence in certain adaptive nonlinear
systems have been obtained [2],[4]. The coefficients affine
with the control input, however, still need to be known in
these derivations, which may not be available in practical
applications.

We intend to release such restrictions for fully lineariz-
able systems in this paper. To that end, control schemes
ensuring asymptotic tracking stability is indispensable. The
remarkable design in [8] fulfill that need and is therefore
adopted. The regressor resulting from such a design depends
not only on the system states but also on the estimated
parameters, rendering the undertaken task difficult. Espe-
cially, the latter dependence is tougher to deal with since
the ultimate behaviors of the estimated parameters are not
known. It is noticed, however, the time derivatives of the
estimation errors do vanish, implying the changes of the
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regressor, due to the variation of the estimated parameter
vector, become negligible within a prescribed time period
as time passes by long enough. Therefore, prior check of
the fulfillment of the PE within that time period is then
possible. By repeating such a process consecutively, it is
shown that the PE can be verified beforehand provided
some mild assumptions on the reference trajectories and
the regressor are satisfied. Though the analysis is somewhat
involved, the established verifying procedures can be carried
out in relatively easy ways.

The remainder of the paper is organized as follows. The
closed-loop system under investigation and its properties
are introduced in Section II. Despite these nice properties,
parameter convergence, as stated, is not addressed so far.
Therefore, verifiable conditions are provided in Section
III to solve that problem. A numerical example is given
in Section IV to demonstrate its usefulness. Concluding
remarks are finally made in Section V.

II. PROBLEM STATEMENT

Consider a fully linearizable system in a normal form of

ẋ1 = x2

...

ẋn = αT f(x) + (βT g(x))u(t) (1)

where x ∈ Rn is the state,u(t) ∈ R is the control
input, α ∈ Rr and β ∈ Rs are theunknown constant
parameter vectors whilef(x) ∈ Rr and g(x) ∈ Rs are
the correspondingknown basis functions, respectively. The
representation (1) may simply be the very original model,
such as a one-dimensional servo system, or may result
from a global coordinate transformation of a nonlinear
system with relative degreen [3]. Whatsoever, we’ll develop
our main results directly on it without considering its
origination.

Given a reference trajectoryxd(t), the adaptive control
proposed in [8] can be applied to achieve asymptotic track-
ing stability. However, as stated, parameter convergence is
not guaranteed unless the regressor is persistently excited,
which so far can not be checked beforehand. We try to solve
this problem in this paper. The adopted control, using the
terminologies here, can be written explicitly as

u =
1

β̂T (t)g(x)
· (−α̂T (t)f(x) + v) (2)



whereα̂(t), β̂(t) are the estimated parameters at the timet
andv(t) is the extra control input given by

v(t) = ẋd
n −KT e (3)

with e = [x1 − xd
1, · · · , xn − xd

n]T the tracking error vector
andK the corresponding control gain vector. Clearly, to
avoid the control in (2) from singularity, the denominator
β̂T (t)g(x) must be bounded away from zero for all time.

By substituting (2) and (3) into (1), it yields the following
tracking error dynamics,

ė(t) = Ae(t) +B(θ̃T (t)ψ(t)) (4)

where θ̃(t) = θ̂(t) − θ = [α̂(t)T , β̂(t)T ]T − [αT , βT ]T is
the parameter error vector,B = [0, · · · , 0, 1]T , and

A =




0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

−K1 −K2 −K3 · · · −Kn


 ,

ψ(θ̂(t), x(t), t) =

[ −f(x(t))
α̂T (t)f(x(t))−v(t)

β̂T (t)g(x(t))
g(x)

]
(5)

The corresponding parameter update law is

˙̂
θ(t) = −(eTPB)ψ(t) (6)

where the symmetric positive-definite matrixP comes from
the following Lyapunov equation

ATP + PA = −Q, Q > 0. (7)

By selecting the Lyapunov functionV (e, θ̃) to be

V (e, θ̃) = 1/2(eTPe+ θ̃T θ̃) (8)

and directly calculating its time derivative, after some
manipulations, it yields

V̇ (e, θ̃) ≤ −λmin(Q)‖e‖2 (9)

whereλmin(Q) is the minimum eigenvalue of the matrix
Q. Since the Lyapunov functionV is nonincreasing and
e(t) ∈ L2, as can be seen from 9), it can be easily inferred
that [8]

P1) All the signals in the closed-loop system remain
bounded∀t ≥ 0;

P2) e(t), ˙̂θ(t) → 0 as t→ ∞.

Based on P1)-P2) above, we’re going to derive sufficient
conditions for ensuring the PE of the regressorψ(t) in
(5), which in turn guarantees theexponential stability of
the overall closed-loop system. Details are given in the
following.

III. C ONDITIONS FORPERSISTENTEXCITATION

The major difficulty of checking the fulfillment of PE is
that the regressor in (5) depends not only on the tracking
errorse(t), but also on the estimated parameter vectorθ̂(t),
which is more difficult to predict. Nevertheless, by properly
using the properties P1)-P2) above and making some mild
assumptions, it is found that such a criteria can actually be
checkeda priori in relatively easy ways established here.

For ease of reference, the definition of PE [7] is first
quoted here.
Definition 1 A piecewise continuous signal vectorφ :
R+ �→ Rn is PE in Rn with a level of excitationε0 if
there exist constantst0, T0 > 0 such that∫ t1+T0

t1

| ζTφ(τ) | dτ ≥ ε0, ∀t1 ≥ t0 (10)

whereζ is any a unit vector inRn.
Before introducing the main results, the following as-

sumptions are made.
A1) The reference trajectoryxd(t) is smooth andT -

periodic;
A2) The basis functionsf(x), g(x) are continuous inx;
A3) The set of functions fi(xd(t))gj(xd(t)),

gk(xd(t))ẋd
n(t), i = 1, · · · , r, j, k = 1, · · · , s is

linearly independent within the time period[0, T ];
A4) A compact setQ ∈ Rn+r+s exists, within which the

overall states[x(t), θ̂(t)]T are confined and the term
β̂T (t)g(x) is bounded away from zero for all time.

Clearly, A4) is indispensable for the control (2) to avoid
from singularity. Usually, some prior bounds on the param-
eter vectorθ are sufficient to fulfill A4) [8]. To see this,
let’s first assume its sustenance and a prior boundS for θ,
defined below, is known.

S
def= {(α̂, β̂) | ‖α̂− αN‖ ≤ d1, ‖β̂ − βN‖ ≤ d2} (11)

with αN , βN the known nominal parameter vector. From
(9), it is not hard to obtain that

‖β̃(t)‖ ≤W,

and
‖e(t)‖ ≤W/

√
λmin(P ), ∀t ≥ 0

whereW = (λmax(P ) ‖ e(0) ‖2 +d2
1 + d2

2)
1/2. It implies

that

β̂(t) ∈ S1
def= {β̂ |‖ β̂ − βN ‖≤ d2 +W},

e(t) ∈ S2
def= {e |‖ e ‖≤W/

√
λmin(P )},

∀t ≥ 0 (12)

Clearly, we can takeQ = S1∪S2. If the termβ̂T (t)g(x) is
really bounded away from zero for all time withinQ, then
A4) sustains. Thus, given any a reference trajectory and a
specific system, fulfillment of A1)-A4) can be checkeda
priori.

After that, the estimated parameters are guaranteed to
converge to their true values by the following theorem.



Theorem 1: Sustained A1)-A4), the whole closed-loop
system, consisting of the tracking error dynamics in (4) and
the update law in (6), is exponentially stable.

Proof: First, since the setQ ∈ Rn+r+s in A4) is
compact, by projecting it onto the parameter space, we then
have a compact subsetΩ ∈ Rr+s, within which A4) is
fulfilled. Define the class of vector functions̄ψ as

ψ̄(θ̄, xd(t), t) ∆=

[ −f(xd(t))
ᾱT f(xd(t))−ẋd

n

β̄T g(xd(t))
g(xd)

]
(13)

where θ̄ = [ᾱ, β̄]T is a constant vector inΩ. Next, we’ll
show that A3) implies the linear independence of the
component functions of̄ψ within [0, T ]. To see this, suppose
they are linearly dependent, then by definition, there exists

some nonzero constant vector[aT
...bT ]T ∈ Rr+s such that

(β̄T g(xd))aT f(xd) + (ᾱT f(xd) − ẋd
n)bT g(xd)

=
s∑

j=1

r∑
i=1

(β̄jai + ᾱibj)fi(xd)gj(xd)

+
s∑

j=1

ẋd
ngj(xd) = 0

which contradicts A3).
The linear independent property obtained above, together

with A2), implies that [1]∫ T

0

| ζT ψ̄(θ̄, xd(t), t) | dt ≥ ε(θ̄), ∀θ̄ ∈ Ω (14)

whereζ ∈ Rr+s is a unit vector andε(θ̄) is some positive
number depending on̄θ. Since the setΩ is compact, the
minimum of all thoseε(θ̄), ∀θ̄ ∈ Ω, denoted byεm, is well-
defined, i.e.,∫ T

0

| ζT ψ̄(θ̄, xd(t), t) | dt ≥ εm > 0, ∀θ̄ ∈ Ω (15)

By the periodicity of the integrand in (15), we have∫ t+T

t

| ζT ψ̄(θ̄, xd(τ), τ) | dτ ≥ εm > 0,

∀θ̄ ∈ Ω, t ≥ 0 (16)

which ensures the PE of the vector function̄ψ(θ̄, xd(t), t).
It is noted that the point̄θ is fixed during the time period
[t, t+T ], but not has to be so for allt ≥ 0. Such a property
is crucial to our subsequent proof.

Based on (16), we are now in a position to establish the
PE property of the regressorψ in (4). The main idea is to
first decompose the integral (10) as the part (16) plus the
rest terms. Next it’ll be shown that the rest terms can be
made arbitrarily small within the integration period in (10)
as time becomes sufficiently large. Therefore, the integral
in (10) will be ultimately dominated by (16) and hence the
PE of the regressor can be inferred.

Denote the unit vectorζ = [ζa

...ζb]T ∈ Rr+s and define
∆f(x) and∆g(x) as

∆f(x) = f(x) − f(xd), ∆g(x) = g(x) − g(xd) (17)

By using these notations and the triangular inequality, the
lower boundε0 in (10) can be estimated as follows∫ t+T

t

| ζTψ(τ) | dτ

=
∫ t+T

t

| ζT
a f(x(τ)) + ζT

b g(x(τ))

· α̂
T (τ)f(x(τ)) − v(τ)
β̂T (τ)g(x(τ))

| dτ

≥
∫ t+T

t

| ζT
a f(xd(τ)) + ζT

b g(x
d(τ))

· α̂
T (τ)(f(xd(τ)) + ∆f(x(τ))) − v(τ)

β̂T (τ)g(x(τ))
| dτ

−
∫ t+T

t

{| ζT
a (∆f(x(τ))) | + | ζT

b ∆g(x(τ))

α̂T (τ)f(x(τ)) − v(τ)

β̂T (τ)g(x(τ))
|}dτ

≥
∫ t+T

t

| ζT
a f(xd(τ)) + ζT

b g(x
d(τ))

· α̂
T (τ)f(xd(τ)) + ẋd

n(τ)
β̂T (τ)g(x(τ))

| dτ

−
∫ t+T

t

D1(τ)dτ (18)

where

D1(τ) = (1 + ‖ ζT
b g(x

d(τ))
β̂T (τ)g(x(τ))

α̂(τ)‖)‖∆f(τ)‖

+‖ ζT
b g(x

d(τ))
β̂T (τ)g(x(τ))

K‖‖e(τ)‖

+ | α̂
T (τ)f(x(τ)) − v(τ)
β̂T (τ)g(x(τ))

| ‖∆g(τ)‖

By substituting the expression

α̂(τ) = α̂(t) +
∫ τ

t

˙̂α(τ ′)dτ ′, τ ∈ [t, t+ T ],

into (18), it yields∫ t+T

t

| ζTψ(τ) | dτ

≥
∫ t+T

t

| ζT
a f(xd(τ)) + ζT

b g(x
d(τ))

· α̂
T (t)f(xd(τ)) + ẋd

n(τ)

β̂T (τ)g(x(τ))
| dτ

−
∫ t+T

t

{D1(τ)+ | ζT
b g(x

d(τ))
β̂T (τ)g(x(τ))

·[
∫ τ

t

˙̂α(t′)dt′]T f(xd(τ)) |}dτ



≥
∫ t+T

t

| ζT
a f(xd(τ)) + ζT

b g(x
d(τ))

· α̂
T (t)f(xd(τ)) + ẋd

n(τ)

β̂T (t)g(xd(τ))
+D2(τ) | dτ

−
∫ t+T

t

D1(τ)dτ − TCM‖αM (t)‖ (19)

where

CM = max
t′≥0

‖ ζT
b g(x

d(t′))
β̂T (t′)g(x(t′))

f(xd(t′))‖,

αM (t) = max
τ

| ˙̂α(τ)‖, ∀τ ∈ [t, t+ T ]

D2(τ) = ζT
b g(x

d(τ))(α̂T (t)f(xd(τ)) + ẋd
n(τ))

·( 1

β̂T (τ)g(x(τ))
− 1

β̂T (t)g(xd(τ))
) (20)

Since all signals in the closed-loop system are bounded as
guaranteed in P1) and̂βT (t′)g(x(t′)) is bounded away from
zero for all t′ ≥ 0 by assumption,CM in (20) is therefore
well defined. Moreover, from P2) it can be concluded that

lim
t′→∞

αM (t′) = 0, lim
t′→∞

Di(t′) = 0, i = 1, 2.

Hence, given any a positive constantε1, by definition, there
exist ti > 0, i = 1, 2, 3, such that

D1(t′) ≤ ε1, ∀t′ ≥ t1

| D2(t′) | ≤ ε1, ∀t′ ≥ t2

αM (t′) ≤ ε1, ∀t′ ≥ t3

Let t0 = max(t1, t2, t3). The inequality (19) can be further
reduced to∫ t+T

t

| ζTψ(τ) | dτ

≥
∫ t+T

t

| ζT
a f(xd(τ)) + ζT

b g(x
d(τ))

· α̂
T (t)f(xd(τ)) + ẋd

n(τ)

β̂T (t)g(xd(τ))
| dτ − (2 + TCM )ε1

=
∫ t+T

t

| ζTψ(θ̂(t), xd(τ), τ) | dτ
−(2 + TCM )ε1

=
∫ t+T

t

| ζT ψ̄(θ̄, xd(τ), τ) | dτ
−(2 + TCM )ε1 ∀t ≥ t0 (21)

where θ̄ = θ̂(t) is a constant vector withinΩ. From (16)
and by selectingε1 = (4 + 2TCM)−1εm, it can finally be
concluded that∫ t+T

t

| ζTψ(τ) | dτ ≥ εm − εm/2

≥ εm/2, ∀t ≥ t0

which, by definition, implies the PE of the regressorψ.

IV. N UMERICAL EXAMPLES

To illustrate the main results, simulation of a second-
order fictitious system is undertaken in this section. The
dynamics of the simulated system is

ẋ1 = x2,

ẋ2 = −α1x
3
1 − α2x2(x2

1 − 1)

+β(1 +
√
x2

1 + x2
2) · u, (22)

wherex = [x1, x2]T is the system state vector;α1, α2, β are
the three unknown system parameters andu is the control.
The reference trajectory is

xd
1(t) = A sin(ωt) (23)

The corresponding basis functions are

f1(x) = −x3
1 f2(x) = −x2(x2

1 − 1)

g(x) = 1 +
√
x2

1 + x2
2

which apparently sustain A2). Sinceg(x) is simply a scalar
function in this case, therefore, the linear independence of
the following three time functions within[0, π], as can be
easily verified, is sufficient for fulfilling A3).

ẋd
2(t) = 8.0 sin(2t) f1(xd) = −8.0 sin3(2t)

f2(xd) = −4 cos(2t)(4 sin2(2t) − 1)

The control in (2) for this application can be written as

u = (β̂(t)g(x))−1(−α̂1(t)f1(x) − α̂2(t)f2(x)
+ẍ1

d −K1e1 −K2e2)

The numerical values used in this simulation are:
θ = [1.0, 0.8, 3.0]T , θ̂(0) = [0.8, 0.7, 1.6]T , e(0) =
[0, 0]T ,K1 = 1,K2 = 4, A = 2.0, ω = 2.0. Assume that
θN = 0.8θ and d1 = 0.3‖αN‖, d2 = 0.3βN . By substi-
tuting these numerical values in (12), we have0.2971 ≤
β̂(t) ≤ 3.12, ∀t ≥ 0. Hence, A4) is satisfied. Since A1)-
A4) are fulfilled, the estimation errors are guaranteed to
converge to zero, as depicted in Fig. 1.

V. CONCLUDING REMARKS

Verifiable sufficient conditions for parameter convergence
of an adaptive fully linearizable system with unknown
parameters, including those affine with the control input,
have been derived. A numerical example showing how these
conditions can be verified is given. The key to the success
of the establishment is that all the state variables entering
the regressor vector are ensured to track the reference
trajectory asymptotically. This is analogous to the necessity
of controllability of a linear system to be persistently excited
[7]. Besides, full-state measurement is required. Attempting
to reducing the sensors, however, will be very difficult since
the regressor depends nonlinearly on the overall system
states.

In respect to parameter identification, the results obtained
here are superior to standard schemes in that it needs no



filtering of the system states and its PE property can be
easily verified. However, issues of robustness are not taken
into account, which will be undertaken in the near future.
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Fig. 1. Estimation errors vs. time
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