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On Parameter Convergence of Adaptive Fully Linearizable
Systems

Jeng Tze Huang

Abstract— Verifiable sufficient conditions for parameter regressor, due to the variation of the estimated parameter
convergence of an adaptive fully linearizable system with vector, become negligible within a prescribed time period
unknown parameters, including those affine with the control  5¢ time passes by long enough. Therefore, prior check of

input, are provided. The adaptive control in [8] has solved . o . . .
the tracking problem for a wider class of systems, however, the fulfillment of the PE within that time period is then

parameter convergence so far can not be verified priori. By ~ Possible. By repeating such a process consecutively, it is

taking advantages of the obtained asymptotic tracking stability shown that the PE can be verified beforehand provided

and the vanishing time derivatives of the estimated parameters, some mild assumptions on the reference trajectories and

we found it can indeed be checked beforehand provided e regressor are satisfied. Though the analysis is somewhat

some mild assumptions are satisfied. Numerical examples for . - o .

illustrating the main results are given in the final. mvo!ved, th'e established verifying procedures can be carried
out in relatively easy ways.

I. INTRODUCTION The remainder of the paper is organized as follows. The
Feedback linearization is well known for its ur,iqueclosed-loop system under investigation and its properties
ability of rendering the closed-loop system linear by totallyare introduced in Section Il. Despite these nice properties,
cancelling the system’s nonlinearity [3]. In reality, completeP@rameter convergence, as stated, is not addressed so far.
knowledge of the nonlinearity is hardly available. Hence I herefore, verifiable conditions are provided in Section
it is often incorporated with other schemes to achieve thl to solve that problem. A numerical example is given
design goals. Among others, adaptive linearizing control i§! Section IV to demonstrate its usefulness. Concluding
most suitable for systems with unknown linear-in-parameteiemarks are finally made in Section V.
nonlinearity and various such schemes have been developed
(see a review in [10]). Though asymptotic tracking stability II. PROBLEM STATEMENT
has been obtained by these designs, noticeably, parameter
convergence is not guaranteed in general. The major obsta-Consider a fully linearizable system in a normal form of
cle is that the persistence of excitation (PE) of the regressor
depends in a complex way on the closed-loop signals and T = T2
hence is hard to predict in advance [5],[6]. Thanks to the
asymptotic tracking stability and the invariant property of
the PE under vanishing perturbations, verifiable conditions in = ol f(z)+ (8 g(x))u(t) 1)
for parameter convergence in certain adaptive nonlinear ) )
systems have been obtained [2],[4]. The coefficients affin¢here € R" is the state,u(t) € R is the control
with the control input, however, still need to be known ininPut, @ € R™ and § € R* are theunknown constant
these derivations, which may not be available in practicdtarameter vectors whil¢(z) € R" and g(z) € R* are
applications. the correspondingnown basis functions, respectively. The
We intend to release such restrictions for fully lineariz-'éPresentation (1) may simply be the very original model,
able systems in this paper. To that end, control schem&¥ch as a one-dimensional servo system, or may result
ensuring asymptotic tracking stability is indispensable. Thom a global coordinate transformation of a nonlinear
remarkable design in [8] fulfill that need and is thereforeSyStem with relative degree[3]. Whatsoever, we'll develop
adopted. The regressor resulting from such a design deperf}§’ main results directly on it without considering its
not only on the system states but also on the estimatéj'gination.
parameters, rendering the undertaken task difficult. Espe- Given a reference trajectory’(t), the adaptive control
cially, the latter dependence is tougher to deal with sincBroposed in [8] can be applied to achieve asymptotic track-
the ultimate behaviors of the estimated parameters are ng stability. However, as stated, parameter convergence is
known. It is noticed, however, the time derivatives of thenot guaranteed unless the regressor is persistently excited,

estimation errors do vanish, implying the changes of th#hich so far can not be checked beforehand. We try to solve
this problem in this paper. The adopted control, using the
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wherea(t), 8(t) are the estimated parameters at the time [1l. CONDITIONS FORPERSISTENTEXCITATION

andu(t) is the extra control input given by The major difficulty of checking the fulfillment of PE is
d - that the regressor in (5) depends not only on the tracking
v(t) =iy, — K'e ©) errorse(t), but also on the estimated parameter veétay,
_ 4 . ) which is more difficult to predict. Nevertheless, by properly
with e = [z1 —xf, -+, 2, —2p]" the tracking error vector sing the properties P1)-P2) above and making some mild

and K the corresponding control gain vector. Clearly, to

E}‘;Oid the control in (2) from singularity, the denominator .hecieda priori in relatively easy ways established here.
B (t)g(x) must be bounded away from zero for all ime.  £4 gase of reference, the definition of PE [7] is first
By substituting (2) and (3) into (1), it yields the following quoted here.

assumptions, it is found that such a criteria can actually be

tracking error dynamics, Definition 1 A piecewise continuous signal vectar :
. - R™ — R™is PE in R™ with a level of excitatione, if
é(t) = Ae(t) + B(0" (1) (1)) (4)  there exist constants, T, > 0 such that
- R R N . t1+To
where6(t) = 6(t) — 6 = [a(t)", B(1)"]" — [a”, B7]" is / | ¢To(r) |dr > e, YVt >te  (10)
the parameter error vecta = [0,---,0,1]7, and t - -

where( is any a unit vector inR".

8 (1) (1) 8 Before introducing the main results, the following as-
A= o sumptions are made.
- 0 0 0 1 ’ Al) The reference trajectory:¢(t) is smooth andT-
-K, -Ky —-Ks3 --- —-K, periodic;

A2) The basis functiong(x), g(x) are continuous irx;

. —f(x(t ; ) .
P(O(t), z(t),t) = aT(t)f(szt())Ev)()t) (x)] (5) A3) The set of functions f;(z¢(t))g;(x%(t)),

BT (@)9(x() gr(@ ()i ()i = 1rjk = 1os s
linearly independent within the time perigd, 77;
The corresponding parameter update law is A4) A compact set) € R*"+¢ exists, within which the
) overall statesz(t),d(t)]” are confined and the term
é(t) — —(eTPB)z/J(t) (6) BT(t)g(x) is bounded away from zero for all time.

Clearly, A4) is indispensable for the control (2) to avoid
where the symmetric positive-definite matéxcomes from  from singularity. Usually, some prior bounds on the param-

the following Lyapunov equation eter vectord are sufficient to fulfill A4) [8]. To see this,
let's first assume its sustenance and a prior basirfdr 9,
ATP+PA=-Q, Q>0. (7)  defined below, is known.
~ def ~ A ~ P
By selecting the Lyapunov functio¥i(e, §) to be S=A{(@0) ] la—an| <di,[|f - BNl <d2}  (11)
- - o with ay, Sy the known nominal parameter vector. From
V(e,0) = 1/2(c" Pe+670) (8)  (9), it is not hard to obtain that
and directly calculating its time derivative, after some 18(t)]| < W,
manipulations, it yields and
. ~ t <Ww /\min Vi ;Vt > 0
V(e,0) < “Amin(@llel? © <) < W/ Amin(F)

whereW = (Anaz(P) || €(0) || +d? + d2)'/2. It implies
where Anin(Q) is the minimum eigenvalue of the matrix that
Q. Since the Lyapunov functio¥ is nonincreasing and R def - A o~
e(t) € L, as can be seen from 9), it can be easily inferred plt) € St =A{FI B~ Bn < d+Wh

that [8] et) € Sy el el W/ Amin(P)},

P1) All the signals in the closed-loop system remain vt >0 (12)

boungeth =0 Clearly, we can tak€) = S, US,. If the term 37 (t)g(x) is
P2) e(t),0(t) — 0 ast — oc. really bounded away from zero for all time with@, then
Based on P1)-P2) above, we're going to derive sufficiend4) sustains. Thus, given any a reference trajectory and a
conditions for ensuring the PE of the regressdit) in  specific system, fulfillment of Al)-A4) can be checkad
(5), which in turn guarantees thexponential stability of  priori.
the overall closed-loop system. Details are given in the After that, the estimated parameters are guaranteed to
following. converge to their true values by the following theorem.
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Theorem 1. Sustained Al)'A4), the whole C|Osed-|00p Denote the unit Vecto(’ — [CaCb]T c RT+5 and define
system, consisting of the tracking error dynamics in (4) and\ ¢ () and Ag(z) as

the update law in (6), is exponentially stable.
Proof: First, since the se) € R™""*¢ in A4) is

have a compact subsé€t ¢ R"*$, within which A4) is
fulfilled. Define the class of vector functions as

- — f(a(t))
d A _T d . d
P(0,2%(),t) = | a BfT(z(iz)()t;)%g(md) (13) _

where = [a,3]7 is a constant vector if2. Next, we'll
show that A3) implies the linear independence of the
component functions af within [0, 7). To see this, suppose
they are linearly dependent, then by definition, there exists

>
some nonzero constant vectar :b”]7 € R+ such that
(BT g(a?))a” f(a?) + (@" f(2?) — i )b" g(z?)
= D) (Bjai + aib)) fi(xh)g; (=)
j=1i=1
+Y iftgi(x?) =0
=1

>

which contradicts A3).
The linear independent property obtained above, together
with A2), implies that [1]

T
/ TR, 0), 1) | dt > @), Ve  (14)
0

where¢ € R™* is a unit vector and(0) is some positive Where
number depending oA. Since the sef) is compact, the
minimum of all those:(0), V0 € 2, denoted by,,,, is well-
defined, i.e.,

T
/ | ¢Tap(0, 2%(t),t) | dt > €, >0,¥0 €Q  (15)
0

By the periodicity of the integrand in (15), we have

t+T o
/ | D0, 24(r),7) | dr > e > 0,
t

Ve Q,t>0 (16)

Af(x) = f(z) = fa?),

compact, by projecting it onto the parameter space, we thgsy, sing these notations and the triangular inequality, the
lower boundeq in (10) can be estimated as follows

Ag(z) = g(z) — g(z?) (A7)

t+T
/t | o) | dr

t+T
/ ¢ f () + (Fg(a(n)

Al o) |

)
t+T
/t | ¢ f(a4(r)) + T g(a(r))

A () + Af(a(r)) -
BT (r)g(x(7))

t+T
- / (T (AF @) |+ FAgla(r)

6T () —ole) |
BT (r)g(a(r))

t+T
/t | ¢ f(a4(r)) + T gl (7))
AT (1) (7)) + 3 ()

v(7) | dr

- | dr
pr(r)g(x(T))
t+7T
—/t Dy (7)dr (18)
G gla’(r)) .
Di(t) = (1 ~ alr Af(T
(7) ( +II5T(7)g(x(T)) (MDA ()]l
G 9@(T)) e
32 Sy KM
a7 (1) (#() =v() | Ao
ey | 1A
By substituting the expression
a(r) = a(t) + /fT a(rydr', Teltt+T),

into (18), it yields

which ensures the PE of the vector functignid, 2% (t), t).
It is noted that the poind is fixed during the time period
[t,t+T1], but not has to be so for all> 0. Such a property
is crucial to our subsequent proof.

Based on (16), we are now in a position to establish the
PE property of the regressar in (4). The main idea is to
first decompose the integral (10) as the part (16) plus the
rest terms. Next it'll be shown that the rest terms can be
made arbitrarily small within the integration period in (10)
as time becomes sufficiently large. Therefore, the integral
in (10) will be ultimately dominated by (16) and hence the
PE of the regressor can be inferred.

t+T
/t | Ty(r) | dr

t+T
> / | ¢T F(a(r)) + T g(at (7))
AT OS0) + ()
BT (1)g(x(7))

o L g(at())
— D1 T -~ —
/t P+ 5 gt

| / "a)ae)” fat() [yar

| dr
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T
/t+ f )) + ng(l‘d(T)) IV. NUMERICAL EXAMPLES
To illustrate the main results, simulation of a second-

a’'(t) f(z4(1)) + dg(7) + Da(r) | dr order fictitious system is undertaken in this section. The
BT (t)g(z(T)) dynamics of the simulated system is
t+T .
_/ Dy(r)dr = TCllons (1) || (19) o= T
¢ By = —oqxt — anxo(x? — 1)
where +6(1 + /22 + 22) - u, (22)
T d (4!
Cv = max| A%g,(i(),)f(xd(t'))ﬂ, wherez = [z, 25]7 is the system state vectar;, ay, 3 are
- ,5 (t)g(x(t)) the three unknown system parameters arid the control.
am(t) = max|a(r)l, Vrelt,t+T] The reference trajectory is
Dy(r) = ¢ g*(m)(@” () f(x (7)) + @h(r)) 24(t) = Asin(wt) (23)
1 1

. — — — 20 . . .
(BT(T)g(x(r)) BT(t)g(a:d(r))) (20)  The corresponding basis functions are

- _.3 - _
Since all signals in the closed-loop system are bounded as hiz) = 2} fol@) = —ws(af — 1)

guaranteed in P1) anéf’ (¢')g(z(t")) is bounded away from g(z) = 14 /2?+ 22

zero for allt’ > 0 by assumption{'y; in (20) is therefore

well defined. Moreover, from P2) it can be concluded thatVhich apparently sustain A2). Singéx) is simply a scalar
function in this case, therefore, the linear independence of

lim ap () =0, lim Di(f)=0, i=1,2. the following three time functions withif0, «], as can be
tr=eo tr=eo easily verified, is sufficient for fulfilling A3).
Hence, given any a positive constant by definition, there d _ ) ay . 3
existt; > 0,i = 1,2, 3, such that () = 8.0sin(2t)  fi(a) = —8.0sin(21)
fa(z?) = —dcos(2t)(4sin®(2t) — 1)
1t < vt' >t . : o ,
(, ) s e , ! The control in (2) for this application can be written as
|D2(t> | S €1, Vt ZtQ R
ap(t) < e, V>t u = (B(t)g(x)) (= (t) fi(x) — aa(t) f2(x)
+21% — Kier — Kaes)
Let ¢y = max(¢1, t2, t3). The inequality (19) can be further i _ _ } _
reduced to The numerical values used in this simulation are:
o 6 = [1.0,0.8,3.0]7, 4(0) = [0.8,0.7,1.6]7, e(0) =
//+ |(Ty(r) | dr 0,07, K1 = 1,Ky = 4,A = 2.0,w = 2.0. Assume that
¢ Oy = 0.80 andd; = 0.3||an]||, d2 = 0.38n. By substi-

T e d g tuting these numerical values in (12), we hawe971 <
> /t | Ca f(@9(T)) + ¢ g(2%(T)) B(t) < 3.12,¥t > 0. Hence, A4) is satisfied. Since Al)-
T d . d A4) are fulfilled, the estimation errors are guaranteed to
2 (t)Af(x (7)) + & (7) | dr — (2+TChr)ex converge to zero, as depicted in Fig. 1.
pr(t)g(x4(T))
t+T V. CONCLUDING REMARKS
= /t | (o ( )@ ( );7) | dr Verifiable sufficient conditions for parameter convergence
—(2+TCy)er of an adaptive fully linearizable system with unknown
T parameters, including those affine with the control input,
= / | ¢Tp(0,2%(7), 7) | dr have been derived. A numerical example showing how these
t conditions can be verified is given. The key to the success
—(2+TCm)er Vt=>to (21)  of the establishment is that all the state variables entering

the regressor vector are ensured to track the reference
trajectory asymptotically. This is analogous to the necessity
of controllability of a linear system to be persistently excited
[7]. Besides, full-state measurement is required. Attempting

whered = 6(t) is a constant vector withi). From (16)
and by selecting; = (4 + 2TCy) ten, it can finally be
concluded that

t+T T i > 9 to reducing the sensors, however, will be very difficult since
; [ Co(n) ldr 2 em —€m/ the regressor depends nonlinearly on the overall system
> en/2, Vt>t states.

In respect to parameter identification, the results obtained
which, by definition, implies the PE of the regresgor B here are superior to standard schemes in that it needs no
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filtering of the system states and its PE property can be
easily verified. However, issues of robustness are not taken
into account, which will be undertaken in the near future.
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Fig. 1. Estimation errors vs. time
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